//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 24, 2010 // optimized: September 2013, Ingo Weyrich // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "mytime.h" #include "../rtgui/myflatcurve.h" #include "rt_math.h" #include "opthelper.h" #ifdef _OPENMP #include #endif using namespace std; namespace rtengine { extern const Settings* settings; SSEFUNCTION void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) { const int halfwin = ceil(2 * radius) + 1; FlatCurve* chCurve = NULL; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve = new FlatCurve(params->defringe.huecurve); } // local variables const int width = src->W, height = src->H; //temporary array to store chromaticity float (*fringe); fringe = (float (*)) malloc (height * width * sizeof(*fringe)); LabImage * tmp1; tmp1 = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur (src->a, tmp1->a, src->W, src->H, radius); gaussianBlur (src->b, tmp1->b, src->W, src->H, radius); } float chromave = 0.0f; #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.0f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { #ifdef __SSE2__ // vectorized per row precalculation of the atan2 values if (chCurve) { int k = 0; for(; k < width - 3; k += 4) { STVFU(fringe[i * width + k], xatan2f(LVFU(src->b[i][k]), LVFU(src->a[i][k]))); } for(; k < width; k++) { fringe[i * width + k] = xatan2f(src->b[i][k], src->a[i][k]); } } #endif // __SSE2__ for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate float HH = xatan2f(src->b[i][j], src->a[i][j]); #endif float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f) * 2.0f); //get C=f(H) if(chparam > 0.f) { chparam /= 2.f; // reduced action if chparam > 0 } chromaChfactor = 1.0f + chparam; } float chroma = SQR(chromaChfactor * (src->a[i][j] - tmp1->a[i][j])) + SQR(chromaChfactor * (src->b[i][j] - tmp1->b[i][j])); //modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= (height * width); float threshfactor = SQR(thresh / 33.f) * chromave * 5.0f; // now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { __m128 sumv = F2V( chromave ); __m128 onev = F2V( 1.0f ); #ifdef _OPENMP #pragma omp for nowait #endif for(int j = 0; j < width * height - 3; j += 4) { STVFU(fringe[j], onev / (LVFU(fringe[j]) + sumv)); } #pragma omp single for(int j = width * height - (width * height) % 4; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } } #else #ifdef _OPENMP #pragma omp parallel for #endif for(int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } #endif // because we changed the values of fringe we also have to recalculate threshfactor threshfactor = 1.0f / (threshfactor + chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j; for(j = 0; j < halfwin - 1; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot / norm; tmp1->b[i][j] = btot / norm; } } for(; j < width - halfwin + 1; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot / norm; tmp1->b[i][j] = btot / norm; } } for(; j < width; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot / norm; tmp1->b[i][j] = btot / norm; } } }//end of ab channel averaging if(src != dst) #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->L[i][j] = src->L[i][j]; } } #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->a[i][j] = tmp1->a[i][j]; dst->b[i][j] = tmp1->b[i][j]; } } delete tmp1; if(chCurve) { delete chCurve; } free(fringe); } SSEFUNCTION void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) { const int halfwin = ceil(2 * radius) + 1; FlatCurve* chCurve = NULL; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve = new FlatCurve(params->defringe.huecurve); } // local variables const int width = src->W, height = src->H; const float piid = 3.14159265f / 180.f; const float eps2 = 0.01f; //temporary array to store chromaticity float (*fringe); fringe = (float (*)) malloc (height * width * sizeof(*fringe)); float** sraa; sraa = new float*[height]; for (int i = 0; i < height; i++) { sraa[i] = new float[width]; } float** srbb; srbb = new float*[height]; for (int i = 0; i < height; i++) { srbb[i] = new float[width]; } float** tmaa; tmaa = new float*[height]; for (int i = 0; i < height; i++) { tmaa[i] = new float[width]; } float** tmbb; tmbb = new float*[height]; for (int i = 0; i < height; i++) { tmbb[i] = new float[width]; } #ifdef _OPENMP #pragma omp parallel #endif { float2 sincosval; #ifdef __SSE2__ int j; vfloat2 sincosvalv; __m128 piidv = F2V(piid); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { #ifdef __SSE2__ for (j = 0; j < width - 3; j += 4) { sincosvalv = xsincosf(piidv * LVFU(src->h_p[i][j])); STVFU(sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y); STVFU(srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x); } for (; j < width; j++) { sincosval = xsincosf(piid * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } #else for (int j = 0; j < width; j++) { sincosval = xsincosf(piid * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur (sraa, tmaa, src->W, src->H, radius); gaussianBlur (srbb, tmbb, src->W, src->H, radius); } float chromave = 0.0f; #ifdef __SSE2__ if( chCurve ) { // vectorized precalculation of the atan2 values #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(j = 0; j < width - 3; j += 4) { STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j]))); } for(; j < width; j++) { fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]); } } } } #endif #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.0f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate float HH = xatan2f(srbb[i][j], sraa[i][j]); #endif float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f) * 2.0f); //get C=f(H) if(chparam > 0.f) { chparam /= 2.f; // reduced action if chparam > 0 } chromaChfactor = 1.0f + chparam; } float chroma = SQR(chromaChfactor * (sraa[i][j] - tmaa[i][j])) + SQR(chromaChfactor * (srbb[i][j] - tmbb[i][j])); //modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= (height * width); float threshfactor = SQR(thresh / 33.f) * chromave * 5.0f; // Calculated once to eliminate mult inside the next loop // now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { __m128 sumv = F2V( chromave + eps2 ); __m128 onev = F2V( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int j = 0; j < width * height - 3; j += 4) { STVFU(fringe[j], onev / (LVFU(fringe[j]) + sumv)); } } for(int j = width * height - (width * height) % 4; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave + eps2); } #else #ifdef _OPENMP #pragma omp parallel for #endif for(int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave + eps2); } #endif // because we changed the values of fringe we also have to recalculate threshfactor threshfactor = 1.0f / (threshfactor + chromave + eps2); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j; for(j = 0; j < halfwin - 1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width - halfwin + 1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { //neighborhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } } //end of ab channel averaging #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ int j; __m128 interav, interbv; __m128 piidv = F2V(piid); #endif #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { #ifdef __SSE2__ for(j = 0; j < width - 3; j += 4) { STVFU(dst->sh_p[i][j], LVFU(src->sh_p[i][j])); interav = LVFU(tmaa[i][j]); interbv = LVFU(tmbb[i][j]); STVFU(dst->h_p[i][j], (xatan2f(interbv, interav)) / piidv); STVFU(dst->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav))); } for(; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j] = (xatan2f(interb, intera)) / piid; dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } #else for(int j = 0; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j] = (xatan2f(interb, intera)) / piid; dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } #endif } } for (int i = 0; i < height; i++) { delete [] sraa[i]; } delete [] sraa; for (int i = 0; i < height; i++) { delete [] srbb[i]; } delete [] srbb; for (int i = 0; i < height; i++) { delete [] tmaa[i]; } delete [] tmaa; for (int i = 0; i < height; i++) { delete [] tmbb[i]; } delete [] tmbb; if(chCurve) { delete chCurve; } free(fringe); } SSEFUNCTION void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom, int hotbad) { const int halfwin = ceil(2 * radius) + 1; MyTime t1, t2; t1.set(); const int width = src->W, height = src->H; const float piid = 3.14159265f / 180.f; float shfabs, shmed; int i1, j1, tot; const float eps = 1.0f; const float eps2 = 0.01f; float shsum, dirsh, norm, sum; float** sraa; sraa = new float*[height]; for (int i = 0; i < height; i++) { sraa[i] = new float[width]; } float** srbb; srbb = new float*[height]; for (int i = 0; i < height; i++) { srbb[i] = new float[width]; } float** tmaa; tmaa = new float*[height]; for (int i = 0; i < height; i++) { tmaa[i] = new float[width]; } float** tmbb; tmbb = new float*[height]; for (int i = 0; i < height; i++) { tmbb[i] = new float[width]; } float* badpix = (float*)malloc(width * height * sizeof(float)); float** tmL; tmL = new float*[height]; for (int i = 0; i < height; i++) { tmL[i] = new float[width]; } #ifdef _OPENMP #pragma omp parallel #endif { float2 sincosval; #ifdef __SSE2__ int j; vfloat2 sincosvalv; __m128 piidv = F2V(piid); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { #ifdef __SSE2__ for (j = 0; j < width - 3; j += 4) { sincosvalv = xsincosf(piidv * LVFU(src->h_p[i][j])); STVFU(sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y); STVFU(srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x); } for (; j < width; j++) { sincosval = xsincosf(piid * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } #else for (int j = 0; j < width; j++) { sincosval = xsincosf(piid * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { //chroma a and b if(mode == 2) { //choice of gaussian blur gaussianBlur (sraa, tmaa, src->W, src->H, radius); gaussianBlur (srbb, tmbb, src->W, src->H, radius); } //luma sh_p gaussianBlur (src->sh_p, tmL, src->W, src->H, 2.0);//low value to avoid artifacts } if(mode == 1) { //choice of median #pragma omp parallel { int ip, in, jp, jn; float pp[9], temp; #pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } med3(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn], tmaa[i][j]); } } #pragma omp for for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } med3(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn], tmbb[i][j]); } } } } //luma badpixels const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts const float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef __SSE2__ __m128 shfabsv, shmedv; __m128 shthrv = F2V(shthr); __m128 onev = F2V(1.0f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for private(shfabs, shmed,i1,j1) #endif for (int i = 0; i < height; i++) { for (j = 0; j < 2; j++) { shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = 0; j1 <= j + 2; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { shfabsv = vabsf(LVFU(src->sh_p[i][j]) - LVFU(tmL[i][j])); shmedv = ZEROV; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1])); } STVFU(badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv)*shthrv), onev, ZEROV)); } for (; j < width - 2; j++) { shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #else for (; j < width - 2; j++) { shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #endif for (; j < width; j++) { shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 < width; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } } } #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { for (j = 0; j < 2; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = 0; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else { if(tot > 0) { src->sh_p[i][j] = sum / tot; } } } for (; j < width - 2; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else { if(tot > 0) { src->sh_p[i][j] = sum / tot; } } } for (; j < width; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 < width; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else { if(tot > 0) { src->sh_p[i][j] = sum / tot; } } } } } // end luma badpixels // begin chroma badpixels float chrommed = 0.f; #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= (height * width); float threshfactor = (thresh * chrommed) / 33.f; // now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { int j; __m128 sumv = F2V( chrommed + eps2 ); __m128 onev = F2V( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { for(j = 0; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv)); } for(; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2); } } } #else #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2); } #endif // because we changed the values of badpix we also have to recalculate threshfactor threshfactor = 1.0f / (threshfactor + chrommed + eps2); #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { for(j = 0; j < halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width - halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } } } #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; float CC = sqrt(SQR(interb) + SQR(intera)); if(hotbad == 0) { if(CC < chrom && skinprot != 0.f) { dst->h_p[i][j] = (xatan2f(interb, intera)) / piid; dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } } else { dst->h_p[i][j] = (xatan2f(interb, intera)) / piid; dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } } } } if(src != dst) { #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) for(int j = 0; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; } } for (int i = 0; i < height; i++) { delete [] sraa[i]; } delete [] sraa; for (int i = 0; i < height; i++) { delete [] srbb[i]; } delete [] srbb; for (int i = 0; i < height; i++) { delete [] tmaa[i]; } delete [] tmaa; for (int i = 0; i < height; i++) { delete [] tmbb[i]; } delete [] tmbb; for (int i = 0; i < height; i++) { delete [] tmL[i]; } delete [] tmL; free(badpix); t2.set(); if( settings->verbose ) { printf("Ciecam badpixels:- %d usec\n", t2.etime(t1)); } } SSEFUNCTION void ImProcFunctions::BadpixelsLab(LabImage * src, LabImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom) { const int halfwin = ceil(2 * radius) + 1; MyTime t1, t2; t1.set(); const int width = src->W, height = src->H; // const float piid=3.14159265f/180.f; float shfabs, shmed; int i1, j1, tot; const float eps = 1.0f; const float eps2 = 0.01f; float shsum, dirsh, norm, sum; float** sraa; sraa = new float*[height]; for (int i = 0; i < height; i++) { sraa[i] = new float[width]; } float** srbb; srbb = new float*[height]; for (int i = 0; i < height; i++) { srbb[i] = new float[width]; } float** tmaa; tmaa = new float*[height]; for (int i = 0; i < height; i++) { tmaa[i] = new float[width]; } float** tmbb; tmbb = new float*[height]; for (int i = 0; i < height; i++) { tmbb[i] = new float[width]; } float* badpix = (float*)malloc(width * height * sizeof(float)); float** tmL; tmL = new float*[height]; for (int i = 0; i < height; i++) { tmL[i] = new float[width]; } #ifdef _OPENMP #pragma omp parallel #endif { // float2 sincosval; #ifdef __SSE2__ int j; // vfloat2 sincosvalv; // __m128 piidv = F2V(piid); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { #ifdef __SSE2__ for (j = 0; j < width - 3; j += 4) { STVFU(sraa[i][j], LVFU(src->a[i][j])); STVFU(srbb[i][j], LVFU(src->b[i][j])); } for (; j < width; j++) { sraa[i][j] = src->a[i][j]; srbb[i][j] = src->b[i][j]; } #else for (int j = 0; j < width; j++) { sraa[i][j] = src->a[i][j]; srbb[i][j] = src->b[i][j]; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { //chroma a and b if(mode >= 2) { //choice of gaussian blur gaussianBlur (sraa, tmaa, src->W, src->H, radius); gaussianBlur (srbb, tmbb, src->W, src->H, radius); } //luma sh_p gaussianBlur (src->L, tmL, src->W, src->H, 2.0);//low value to avoid artifacts } if(mode == 1) { //choice of median #pragma omp parallel { int ip, in, jp, jn; float pp[9], temp; #pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } med3(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn], tmaa[i][j]); } } #pragma omp for for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } med3(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn], tmbb[i][j]); } } } } //luma badpixels const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts const float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef __SSE2__ __m128 shfabsv, shmedv; __m128 shthrv = F2V(shthr); __m128 onev = F2V(1.0f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for private(shfabs, shmed,i1,j1) #endif for (int i = 0; i < height; i++) { for (j = 0; j < 2; j++) { shfabs = fabs(src->L[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = 0; j1 <= j + 2; j1++ ) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j])); shmedv = ZEROV; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1])); } STVFU(badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv)*shthrv), onev, ZEROV)); } for (; j < width - 2; j++) { shfabs = fabs(src->L[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #else for (; j < width - 2; j++) { shfabs = fabs(src->L[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #endif for (; j < width; j++) { shfabs = fabs(src->L[i][j] - tmL[i][j]); shmed = 0.0f; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 < width; j1++ ) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } } } #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { for (j = 0; j < 2; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = 0; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot++; dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else { if(tot > 0) { src->L[i][j] = sum / tot; } } } for (; j < width - 2; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot++; dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else { if(tot > 0) { src->L[i][j] = sum / tot; } } } for (; j < width; j++) { if (!badpix[i * width + j]) { continue; } norm = 0.0f; shsum = 0.0f; sum = 0.0f; tot = 0; for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (j1 = j - 2; j1 < width; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot++; dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else { if(tot > 0) { src->L[i][j] = sum / tot; } } } } } // end luma badpixels if(mode == 3) { // begin chroma badpixels float chrommed = 0.f; #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= (height * width); float threshfactor = (thresh * chrommed) / 33.f; // now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { int j; __m128 sumv = F2V( chrommed + eps2 ); __m128 onev = F2V( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { for(j = 0; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv)); } for(; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2); } } } #else #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) for(int j = 0; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2); } #endif // because we changed the values of badpix we also have to recalculate threshfactor threshfactor = 1.0f / (threshfactor + chrommed + eps2); #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { for(j = 0; j < halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width - halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = (atot / norm); tmbb[i][j] = (btot / norm); } } } } } #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; float CC = sqrt(SQR(interb / 327.68) + SQR(intera / 327.68f)); if(CC < chrom && skinprot != 0.f) { dst->a[i][j] = intera; dst->b[i][j] = interb; } } } } } if(src != dst) { #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) for(int j = 0; j < width; j++) { dst->L[i][j] = src->L[i][j]; } } for (int i = 0; i < height; i++) { delete [] sraa[i]; } delete [] sraa; for (int i = 0; i < height; i++) { delete [] srbb[i]; } delete [] srbb; for (int i = 0; i < height; i++) { delete [] tmaa[i]; } delete [] tmaa; for (int i = 0; i < height; i++) { delete [] tmbb[i]; } delete [] tmbb; for (int i = 0; i < height; i++) { delete [] tmL[i]; } delete [] tmL; free(badpix); t2.set(); if( settings->verbose ) { printf("Lab artifacts:- %d usec\n", t2.etime(t1)); } } }