/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright (c) 2017 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include "imagedata.h" #include "procparams.h" #include "rtlensfun.h" #include "settings.h" namespace { bool isNextLensCropFactorBetter(const lfLens *current_lens, const lfCamera *camera, float next_lens_crop_factor) { if (!current_lens) { // No current lens, so next lens's crop factor is // automatically better. return true; } const float current_lens_crop_factor = current_lens->CropFactor; if (!camera) { // Favor the smaller crop factor for maximum coverage. return current_lens_crop_factor > next_lens_crop_factor; } const float camera_crop_factor = camera->CropFactor; if (current_lens_crop_factor > camera_crop_factor) { // Current lens's data does not cover the entire camera // sensor. Any lens's data with a smaller crop factor is // better. return current_lens->CropFactor > next_lens_crop_factor; } // Current lens's data covers the entire camera sensor. A lens // with data from a larger crop factor will be more precise, but // also must not be larger than the camera sensor's crop factor // to maintain full coverage. return current_lens->CropFactor < next_lens_crop_factor && next_lens_crop_factor <= camera_crop_factor; } bool isNextLensBetter(const lfCamera *camera, const lfLens *current_lens, const lfLens &next_lens, const Glib::ustring &lens_name, const Glib::ustring &next_lens_name) { return isNextLensCropFactorBetter(current_lens, camera, next_lens.CropFactor) && lens_name == next_lens_name; } /** * Trims whitespace from around dashes. */ std::string trimDashWhitespace(const std::string &input) { enum class SeekStatus { /// Start of whitespace-dash unit. WHITESPACE_DASH, /// Dash after whitespace. DASH, /// End of whitespace-dash unit. OTHER, }; std::string trimmed; trimmed.reserve(input.size()); unsigned whitespace_index = 0; SeekStatus seek_status = SeekStatus::WHITESPACE_DASH; for (unsigned i = 0; i < input.size(); i++) { const auto cur_char = input[i]; switch (seek_status) { case SeekStatus::WHITESPACE_DASH: if (std::isspace(cur_char)) { // Possible beginning of whitespace-dash unit. Start seeking // dash, but record current index in case there is no dash. seek_status = SeekStatus::DASH; whitespace_index = i; } else if (cur_char == '-') { // Start of a whitespace-dash unit. Add the dash and skip // all whitespace. seek_status = SeekStatus::OTHER; trimmed += cur_char; } else { // Not a whitespace-dash unit, so just copy the character. trimmed += cur_char; } break; case SeekStatus::DASH: if (cur_char == '-') { // Found the dash. Now add the dash and skip all whitespace. seek_status = SeekStatus::OTHER; trimmed += cur_char; } else if (!std::isspace(cur_char)) { // No dash found after whitespace. Copy the whitespace and // character over and start looking for a whitespace-dash // unit again. seek_status = SeekStatus::WHITESPACE_DASH; trimmed += input.substr( whitespace_index, i - whitespace_index + 1); } // For whitespace, just continue looking for the dash. break; case SeekStatus::OTHER: if (cur_char == '-') { // Found a dash. Now add the dash and skip all whitespace. trimmed += cur_char; } else if (!std::isspace(cur_char)) { // End of whitespace-dash unit, so add the character and // start looking for another unit. seek_status = SeekStatus::WHITESPACE_DASH; trimmed += cur_char; } // For whitespace, just continue looking for the end of the // unit. break; } } if (seek_status == SeekStatus::DASH) { // Whitespace found, but no dash. Add the whitespace. trimmed += input.substr(whitespace_index); } // If seeking a whitespace-dash unit, all the characters have been added. // If seeking the end of a whitespace-dash unit, the dash has been added. return trimmed; } } // namespace namespace rtengine { //----------------------------------------------------------------------------- // LFModifier //----------------------------------------------------------------------------- LFModifier::~LFModifier() { if (data_) { data_->Destroy(); } } LFModifier::operator bool() const { return data_; } bool LFModifier::hasDistortionCorrection() const { return (flags_ & LF_MODIFY_DISTORTION); } bool LFModifier::hasCACorrection() const { return (flags_ & LF_MODIFY_TCA); } bool LFModifier::hasVignettingCorrection() const { return (flags_ & LF_MODIFY_VIGNETTING); } void LFModifier::correctDistortion(double &x, double &y, int cx, int cy) const { if (!data_) { return; } float pos[2]; float xx = x + cx; float yy = y + cy; if (swap_xy_) { std::swap(xx, yy); } if (data_->ApplyGeometryDistortion(xx, yy, 1, 1, pos)) { // This is thread-safe x = pos[0]; y = pos[1]; if (swap_xy_) { std::swap(x, y); } x -= cx; y -= cy; } } void LFModifier::correctCA(double &x, double &y, int cx, int cy, int channel) const { assert(channel >= 0 && channel <= 2); // agriggio: RT currently applies the CA correction per channel, whereas // lensfun applies it to all the three channels simultaneously. This means // we do the work 3 times, because each time we discard 2 of the 3 // channels. We could consider caching the info to speed this up x += cx; y += cy; float pos[6]; if (swap_xy_) { std::swap(x, y); } data_->ApplySubpixelDistortion(x, y, 1, 1, pos); // This is thread-safe x = pos[2*channel]; y = pos[2*channel+1]; if (swap_xy_) { std::swap(x, y); } x -= cx; y -= cy; } void LFModifier::correctDistortionAndCA(double &x, double &y, int cx, int cy, int channel) const { assert(channel >= 0 && channel <= 2); // RT currently applies the CA correction per channel, whereas // lensfun applies it to all the three channels simultaneously. This means // we do the work 3 times, because each time we discard 2 of the 3 // channels. We could consider caching the info to speed this up x += cx; y += cy; float pos[6]; if (swap_xy_) { std::swap(x, y); } data_->ApplySubpixelGeometryDistortion(x, y, 1, 1, pos); // This is thread-safe x = pos[2*channel]; y = pos[2*channel+1]; if (swap_xy_) { std::swap(x, y); } x -= cx; y -= cy; } #ifdef _OPENMP void LFModifier::processVignette(int width, int height, float** rawData) const { #pragma omp parallel for schedule(dynamic,16) for (int y = 0; y < height; ++y) { data_->ApplyColorModification(rawData[y], 0, y, width, 1, LF_CR_1(INTENSITY), 0); } } #else void LFModifier::processVignette(int width, int height, float** rawData) const { data_->ApplyColorModification(rawData[0], 0, 0, width, height, LF_CR_1(INTENSITY), width * sizeof(float)); } #endif #ifdef _OPENMP void LFModifier::processVignette3Channels(int width, int height, float** rawData) const { #pragma omp parallel for schedule(dynamic,16) for (int y = 0; y < height; ++y) { data_->ApplyColorModification(rawData[y], 0, y, width, 1, LF_CR_3(RED, GREEN, BLUE), 0); } } #else void LFModifier::processVignette3Channels(int width, int height, float** rawData) const { data_->ApplyColorModification(rawData[0], 0, 0, width, height, LF_CR_3(RED, GREEN, BLUE), width * 3 * sizeof(float)); } #endif Glib::ustring LFModifier::getDisplayString() const { if (!data_) { return "NONE"; } else { Glib::ustring ret; Glib::ustring sep; if (flags_ & LF_MODIFY_DISTORTION) { ret += "distortion"; sep = ", "; } if (flags_ & LF_MODIFY_VIGNETTING) { ret += sep; ret += "vignetting"; sep = ", "; } if (flags_ & LF_MODIFY_TCA) { ret += sep; ret += "CA"; sep = ", "; } if (flags_ & LF_MODIFY_SCALE) { ret += sep; ret += "autoscaling"; } return ret; } } LFModifier::LFModifier(lfModifier *m, bool swap_xy, int flags): data_(m), swap_xy_(swap_xy), flags_(flags) { } //----------------------------------------------------------------------------- // LFCamera //----------------------------------------------------------------------------- LFCamera::LFCamera(): data_(nullptr) { } LFCamera::operator bool() const { return data_; } Glib::ustring LFCamera::getMake() const { if (data_) { return data_->Maker; } else { return ""; } } Glib::ustring LFCamera::getModel() const { if (data_) { return data_->Model; } else { return ""; } } float LFCamera::getCropFactor() const { if (data_) { return data_->CropFactor; } else { return 0; } } bool LFCamera::isFixedLens() const { // per lensfun's main developer Torsten Bronger: // "Compact camera mounts can be identified by the fact that the mount // starts with a lowercase letter" return data_ && data_->Mount && std::islower(data_->Mount[0]); } Glib::ustring LFCamera::getDisplayString() const { if (data_) { return getMake() + ' ' + getModel(); } else { return "---"; } } //----------------------------------------------------------------------------- // LFLens //----------------------------------------------------------------------------- LFLens::LFLens(): data_(nullptr) { } LFLens::operator bool() const { return data_; } Glib::ustring LFLens::getMake() const { if (data_) { return data_->Maker; } else { return ""; } } Glib::ustring LFLens::getLens() const { if (data_) { return Glib::ustring(data_->Maker) + ' ' + data_->Model; } else { return "---"; } } float LFLens::getCropFactor() const { if (data_) { return data_->CropFactor; } else { return 0; } } bool LFLens::hasVignettingCorrection() const { if (data_) { return data_->CalibVignetting; } else { return false; } } bool LFLens::hasDistortionCorrection() const { if (data_) { return data_->CalibDistortion; } else { return false; } } bool LFLens::hasCACorrection() const { if (data_) { return data_->CalibTCA; } else { return false; } } //----------------------------------------------------------------------------- // LFDatabase //----------------------------------------------------------------------------- LFDatabase LFDatabase::instance_; bool LFDatabase::init(const Glib::ustring &dbdir) { instance_.data_ = lfDatabase::Create(); if (settings->verbose) { std::cout << "Loading lensfun database from "; if (dbdir.empty()) { std::cout << "the default directories"; } else { std::cout << "'" << dbdir << "'"; } std::cout << "..." << std::flush; } bool ok = false; if (dbdir.empty()) { ok = (instance_.data_->Load() == LF_NO_ERROR); } else { ok = instance_.LoadDirectory(dbdir.c_str()); } if (settings->verbose) { std::cout << (ok ? "OK" : "FAIL") << std::endl; } return ok; } bool LFDatabase::LoadDirectory(const char *dirname) { #if RT_LENSFUN_HAS_LOAD_DIRECTORY return instance_.data_->LoadDirectory(dirname); #else // backported from lensfun 0.3.x bool database_found = false; GDir *dir = g_dir_open (dirname, 0, NULL); if (dir) { GPatternSpec *ps = g_pattern_spec_new ("*.xml"); if (ps) { const gchar *fn; while ((fn = g_dir_read_name (dir))) { size_t sl = strlen (fn); if (g_pattern_match (ps, sl, fn, NULL)) { gchar *ffn = g_build_filename (dirname, fn, NULL); /* Ignore errors */ if (data_->Load (ffn) == LF_NO_ERROR) database_found = true; g_free (ffn); } } g_pattern_spec_free (ps); } g_dir_close (dir); } return database_found; #endif } LFDatabase::LFDatabase(): data_(nullptr) { } LFDatabase::~LFDatabase() { if (data_) { MyMutex::MyLock lock(lfDBMutex); data_->Destroy(); } } const LFDatabase *LFDatabase::getInstance() { return &instance_; } std::vector LFDatabase::getCameras() const { std::vector ret; if (data_) { MyMutex::MyLock lock(lfDBMutex); auto cams = data_->GetCameras(); while (*cams) { ret.emplace_back(); ret.back().data_ = *cams; ++cams; } } return ret; } std::vector LFDatabase::getLenses() const { std::vector ret; if (data_) { MyMutex::MyLock lock(lfDBMutex); auto lenses = data_->GetLenses(); while (*lenses) { ret.emplace_back(); ret.back().data_ = *lenses; ++lenses; } } return ret; } LFCamera LFDatabase::findCamera(const Glib::ustring &make, const Glib::ustring &model, bool autoMatch) const { LFCamera ret; if (data_ && !make.empty()) { MyMutex::MyLock lock(lfDBMutex); if (!autoMatch) { // Try to find exact match by name. for (auto camera_list = data_->GetCameras(); camera_list[0]; camera_list++) { const auto camera = camera_list[0]; if (make == camera->Maker && model == camera->Model) { ret.data_ = camera; return ret; } } } auto found = data_->FindCamerasExt(make.c_str(), model.c_str()); if (found) { ret.data_ = found[0]; lf_free(found); } } return ret; } LFLens LFDatabase::findLens(const LFCamera &camera, const Glib::ustring &name, bool autoMatch) const { LFLens ret; if (data_ && !name.empty()) { MyMutex::MyLock lock(lfDBMutex); if (!autoMatch) { // Only the lens name provided. Try to find exact match by name. LFLens candidate; LFLens bestCandidate; for (auto lens_list = data_->GetLenses(); lens_list[0]; lens_list++) { candidate.data_ = lens_list[0]; if (isNextLensBetter(camera.data_, bestCandidate.data_, *(candidate.data_), name, candidate.getLens())) { bestCandidate.data_ = candidate.data_; } } if (bestCandidate.data_) { return bestCandidate; } } const auto find_lens_from_name = [](const lfDatabase *database, const lfCamera *cam, const Glib::ustring &lens_name) { auto found = database->FindLenses(cam, nullptr, lens_name.c_str()); for (size_t pos = 0; !found && pos < lens_name.size(); ) { // try to split the maker from the model of the lens -- we have to // guess a bit here, since there are makers with a multi-word name // (e.g. "Leica Camera AG") if (lens_name.find("f/", pos) == 0) { break; // no need to search further } Glib::ustring make, model; auto i = lens_name.find(' ', pos); if (i != Glib::ustring::npos) { make = lens_name.substr(0, i); model = lens_name.substr(i+1); found = database->FindLenses(cam, make.c_str(), model.c_str()); pos = i+1; } else { break; } } return found; }; auto found = find_lens_from_name(data_, camera.data_, name); if (!found) { // Some names have white-space around the dash(s) while Lensfun does // not have any. const auto formatted_name = trimDashWhitespace(name.raw()); if (name != formatted_name) { found = find_lens_from_name(data_, camera.data_, formatted_name); } } if (!found && camera && camera.isFixedLens()) { found = data_->FindLenses(camera.data_, nullptr, ""); } if (found) { ret.data_ = found[0]; lf_free(found); } } return ret; } std::unique_ptr LFDatabase::getModifier(const LFCamera &camera, const LFLens &lens, float focalLen, float aperture, float focusDist, int width, int height, bool swap_xy) const { std::unique_ptr ret; if (data_) { MyMutex::MyLock lock(lfDBMutex); if (camera && lens) { lfModifier *mod = lfModifier::Create(lens.data_, camera.getCropFactor(), width, height); int flags = LF_MODIFY_DISTORTION | LF_MODIFY_SCALE | LF_MODIFY_TCA; if (aperture > 0) { flags |= LF_MODIFY_VIGNETTING; } flags = mod->Initialize(lens.data_, LF_PF_F32, focalLen, aperture, focusDist > 0 ? focusDist : 1000, 0.0, LF_RECTILINEAR, flags, false); ret.reset(new LFModifier(mod, swap_xy, flags)); } } return ret; } std::unique_ptr LFDatabase::findModifier( const procparams::LensProfParams &lensProf, const FramesMetaData *idata, int width, int height, const procparams::CoarseTransformParams &coarse, int rawRotationDeg ) const { const float focallen = idata->getFocalLen(); Glib::ustring make, model, lens; if (lensProf.lfAutoMatch()) { if (focallen <= 0.f) { return nullptr; } make = idata->getMake(); model = idata->getModel(); lens = idata->getLens(); } else { make = lensProf.lfCameraMake; model = lensProf.lfCameraModel; lens = lensProf.lfLens; } if (make.empty() || model.empty() || lens.empty()) { return nullptr; } const std::string key = (make + model + lens).collate_key(); if (notFound.find(key) != notFound.end()) { // This combination was not found => do not search again return nullptr; } const LFCamera c = findCamera(make, model, lensProf.lfAutoMatch()); const LFLens l = findLens(c, lens, lensProf.lfAutoMatch()); bool swap_xy = false; if (rawRotationDeg >= 0) { int rot = (coarse.rotate + rawRotationDeg) % 360; swap_xy = (rot == 90 || rot == 270); if (swap_xy) { std::swap(width, height); } } std::unique_ptr ret = getModifier( c, l, idata->getFocalLen(), idata->getFNumber(), idata->getFocusDist(), width, height, swap_xy ); if (settings->verbose) { std::cout << "LENSFUN:\n" << " camera: " << c.getDisplayString() << "\n" << " lens: " << l.getDisplayString() << "\n" << " correction: " << (ret ? ret->getDisplayString() : "NONE") << std::endl; } if (!ret) { notFound.insert(key); } return ret; } } // namespace rtengine