/* * This file is part of RawTherapee. * * Copyright (C) 2010 Emil Martinec * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #ifndef _BOXBLUR_H_ #define _BOXBLUR_H_ #include #include #include #include #include #include "alignedbuffer.h" #include "rt_math.h" #include "opthelper.h" namespace rtengine { // classical filtering if the support window is small: template void boxblur (T** src, A** dst, int radx, int rady, int W, int H) { //box blur image; box range = (radx,rady) assert(2*radx+1 < W); assert(2*rady+1 < H); AlignedBuffer* buffer = new AlignedBuffer (W * H); float* temp = buffer->data; if (radx == 0) { #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { temp[row * W + col] = (float)src[row][col]; } } else { //horizontal blur #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) { int len = radx + 1; temp[row * W + 0] = (float)src[row][0] / len; for (int j = 1; j <= radx; j++) { temp[row * W + 0] += (float)src[row][j] / len; } for (int col = 1; col <= radx; col++) { temp[row * W + col] = (temp[row * W + col - 1] * len + (float)src[row][col + radx]) / (len + 1); len ++; } for (int col = radx + 1; col < W - radx; col++) { temp[row * W + col] = temp[row * W + col - 1] + ((float)(src[row][col + radx] - src[row][col - radx - 1])) / len; } for (int col = W - radx; col < W; col++) { temp[row * W + col] = (temp[row * W + col - 1] * len - src[row][col - radx - 1]) / (len - 1); len --; } } } if (rady == 0) { #ifdef _OPENMP #pragma omp parallel for #endif for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { dst[row][col] = temp[row * W + col]; } } else { //vertical blur #ifdef _OPENMP #pragma omp parallel for #endif for (int col = 0; col < W; col++) { int len = rady + 1; dst[0][col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0][col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row][col] = dst[(row - 1)][col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } } delete buffer; } template void boxblur (T** src, A** dst, T* buffer, int radx, int rady, int W, int H) { //box blur image; box range = (radx,rady) float* temp = buffer; if (radx == 0) { #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { temp[row * W + col] = (float)src[row][col]; } } else { //horizontal blur #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H; row++) { float len = radx + 1; float tempval = (float)src[row][0]; for (int j = 1; j <= radx; j++) { tempval += (float)src[row][j]; } tempval /= len; temp[row * W + 0] = tempval; for (int col = 1; col <= radx; col++) { temp[row * W + col] = tempval = (tempval * len + (float)src[row][col + radx]) / (len + 1); len ++; } for (int col = radx + 1; col < W - radx; col++) { temp[row * W + col] = tempval = tempval + ((float)(src[row][col + radx] - src[row][col - radx - 1])) / len; } for (int col = W - radx; col < W; col++) { temp[row * W + col] = tempval = (tempval * len - src[row][col - radx - 1]) / (len - 1); len --; } } } if (rady == 0) { #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { dst[row][col] = temp[row * W + col]; } } else { const int numCols = 8; // process numCols columns at once for better usage of L1 cpu cache #ifdef __SSE2__ vfloat leninitv = F2V( (float)(rady + 1)); vfloat onev = F2V( 1.f ); vfloat tempv, temp1v, lenv, lenp1v, lenm1v, rlenv; #ifdef _OPENMP #pragma omp for #endif for (int col = 0; col < W - 7; col += 8) { lenv = leninitv; tempv = LVFU(temp[0 * W + col]); temp1v = LVFU(temp[0 * W + col + 4]); for (int i = 1; i <= rady; i++) { tempv = tempv + LVFU(temp[i * W + col]); temp1v = temp1v + LVFU(temp[i * W + col + 4]); } tempv = tempv / lenv; temp1v = temp1v / lenv; STVFU(dst[0][col], tempv); STVFU(dst[0][col + 4], temp1v); for (int row = 1; row <= rady; row++) { lenp1v = lenv + onev; tempv = (tempv * lenv + LVFU(temp[(row + rady) * W + col])) / lenp1v; temp1v = (temp1v * lenv + LVFU(temp[(row + rady) * W + col + 4])) / lenp1v; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); lenv = lenp1v; } rlenv = onev / lenv; for (int row = rady + 1; row < H - rady; row++) { tempv = tempv + (LVFU(temp[(row + rady) * W + col]) - LVFU(temp[(row - rady - 1) * W + col])) * rlenv ; temp1v = temp1v + (LVFU(temp[(row + rady) * W + col + 4]) - LVFU(temp[(row - rady - 1) * W + col + 4])) * rlenv ; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); } for (int row = H - rady; row < H; row++) { lenm1v = lenv - onev; tempv = (tempv * lenv - LVFU(temp[(row - rady - 1) * W + col])) / lenm1v; temp1v = (temp1v * lenv - LVFU(temp[(row - rady - 1) * W + col + 4])) / lenm1v; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); lenv = lenm1v; } } #else //vertical blur #ifdef _OPENMP #pragma omp for #endif for (int col = 0; col < W - numCols + 1; col += 8) { float len = rady + 1; for(int k = 0; k < numCols; k++) { dst[0][col + k] = temp[0 * W + col + k]; } for (int i = 1; i <= rady; i++) { for(int k = 0; k < numCols; k++) { dst[0][col + k] += temp[i * W + col + k]; } } for(int k = 0; k < numCols; k++) { dst[0][col + k] /= len; } for (int row = 1; row <= rady; row++) { for(int k = 0; k < numCols; k++) { dst[row][col + k] = (dst[(row - 1)][col + k] * len + temp[(row + rady) * W + col + k]) / (len + 1); } len ++; } for (int row = rady + 1; row < H - rady; row++) { for(int k = 0; k < numCols; k++) { dst[row][col + k] = dst[(row - 1)][col + k] + (temp[(row + rady) * W + col + k] - temp[(row - rady - 1) * W + col + k]) / len; } } for (int row = H - rady; row < H; row++) { for(int k = 0; k < numCols; k++) { dst[row][col + k] = (dst[(row - 1)][col + k] * len - temp[(row - rady - 1) * W + col + k]) / (len - 1); } len --; } } #endif #ifdef _OPENMP #pragma omp single #endif for (int col = W - (W % numCols); col < W; col++) { float len = rady + 1; dst[0][col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0][col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row][col] = (dst[(row - 1)][col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row][col] = dst[(row - 1)][col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row][col] = (dst[(row - 1)][col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } } } inline void boxblur (float** src, float** dst, int radius, int W, int H, bool multiThread) { //box blur using rowbuffers and linebuffers instead of a full size buffer if (radius == 0) { if (src != dst) { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { dst[row][col] = src[row][col]; } } } return; } constexpr int numCols = 8; // process numCols columns at once for better usage of L1 cpu cache #ifdef _OPENMP #pragma omp parallel if (multiThread) #endif { std::unique_ptr buffer(new float[numCols * (radius + 1)]); //horizontal blur float* const lineBuffer = buffer.get(); #ifdef _OPENMP #pragma omp for #endif for (int row = 0; row < H; row++) { float len = radius + 1; float tempval = src[row][0]; lineBuffer[0] = tempval; for (int j = 1; j <= radius; j++) { tempval += src[row][j]; } tempval /= len; dst[row][0] = tempval; for (int col = 1; col <= radius; col++) { lineBuffer[col] = src[row][col]; tempval = (tempval * len + src[row][col + radius]) / (len + 1); dst[row][col] = tempval; ++len; } int pos = 0; for (int col = radius + 1; col < W - radius; col++) { const float oldVal = lineBuffer[pos]; lineBuffer[pos] = src[row][col]; tempval = tempval + (src[row][col + radius] - oldVal) / len; dst[row][col] = tempval; ++pos; pos = pos <= radius ? pos : 0; } for (int col = W - radius; col < W; col++) { tempval = (tempval * len - lineBuffer[pos]) / (len - 1); dst[row][col] = tempval; --len; ++pos; pos = pos <= radius ? pos : 0; } } //vertical blur #ifdef __SSE2__ vfloat (* const rowBuffer)[2] = (vfloat(*)[2]) buffer.get(); const vfloat leninitv = F2V(radius + 1); const vfloat onev = F2V(1.f); vfloat tempv, temp1v, lenv, lenp1v, lenm1v, rlenv; #ifdef _OPENMP #pragma omp for nowait #endif for (int col = 0; col < W - 7; col += 8) { lenv = leninitv; tempv = LVFU(dst[0][col]); temp1v = LVFU(dst[0][col + 4]); rowBuffer[0][0] = tempv; rowBuffer[0][1] = temp1v; for (int i = 1; i <= radius; i++) { tempv = tempv + LVFU(dst[i][col]); temp1v = temp1v + LVFU(dst[i][col + 4]); } tempv = tempv / lenv; temp1v = temp1v / lenv; STVFU(dst[0][col], tempv); STVFU(dst[0][col + 4], temp1v); for (int row = 1; row <= radius; row++) { rowBuffer[row][0] = LVFU(dst[row][col]); rowBuffer[row][1] = LVFU(dst[row][col + 4]); lenp1v = lenv + onev; tempv = (tempv * lenv + LVFU(dst[row + radius][col])) / lenp1v; temp1v = (temp1v * lenv + LVFU(dst[row + radius][col + 4])) / lenp1v; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); lenv = lenp1v; } rlenv = onev / lenv; int pos = 0; for (int row = radius + 1; row < H - radius; row++) { vfloat oldVal0 = rowBuffer[pos][0]; vfloat oldVal1 = rowBuffer[pos][1]; rowBuffer[pos][0] = LVFU(dst[row][col]); rowBuffer[pos][1] = LVFU(dst[row][col + 4]); tempv = tempv + (LVFU(dst[row + radius][col]) - oldVal0) * rlenv ; temp1v = temp1v + (LVFU(dst[row + radius][col + 4]) - oldVal1) * rlenv ; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); ++pos; pos = pos <= radius ? pos : 0; } for (int row = H - radius; row < H; row++) { lenm1v = lenv - onev; tempv = (tempv * lenv - rowBuffer[pos][0]) / lenm1v; temp1v = (temp1v * lenv - rowBuffer[pos][1]) / lenm1v; STVFU(dst[row][col], tempv); STVFU(dst[row][col + 4], temp1v); lenv = lenm1v; ++pos; pos = pos <= radius ? pos : 0; } } #else float (* const rowBuffer)[8] = (float(*)[8]) buffer.get(); #ifdef _OPENMP #pragma omp for nowait #endif for (int col = 0; col < W - numCols + 1; col += 8) { float len = radius + 1; for (int k = 0; k < numCols; k++) { rowBuffer[0][k] = dst[0][col + k]; } for (int i = 1; i <= radius; i++) { for (int k = 0; k < numCols; k++) { dst[0][col + k] += dst[i][col + k]; } } for(int k = 0; k < numCols; k++) { dst[0][col + k] /= len; } for (int row = 1; row <= radius; row++) { for(int k = 0; k < numCols; k++) { rowBuffer[row][k] = dst[row][col + k]; dst[row][col + k] = (dst[row - 1][col + k] * len + dst[row + radius][col + k]) / (len + 1); } len ++; } int pos = 0; for (int row = radius + 1; row < H - radius; row++) { for(int k = 0; k < numCols; k++) { float oldVal = rowBuffer[pos][k]; rowBuffer[pos][k] = dst[row][col + k]; dst[row][col + k] = dst[row - 1][col + k] + (dst[row + radius][col + k] - oldVal) / len; } ++pos; pos = pos <= radius ? pos : 0; } for (int row = H - radius; row < H; row++) { for(int k = 0; k < numCols; k++) { dst[row][col + k] = (dst[row - 1][col + k] * len - rowBuffer[pos][k]) / (len - 1); } len --; ++pos; pos = pos <= radius ? pos : 0; } } #endif //vertical blur, remaining columns #ifdef _OPENMP #pragma omp single #endif { const int remaining = W % numCols; if (remaining > 0) { float (* const rowBuffer)[8] = (float(*)[8]) buffer.get(); const int col = W - remaining; float len = radius + 1; for(int k = 0; k < remaining; ++k) { rowBuffer[0][k] = dst[0][col + k]; } for (int row = 1; row <= radius; ++row) { for(int k = 0; k < remaining; ++k) { dst[0][col + k] += dst[row][col + k]; } } for(int k = 0; k < remaining; ++k) { dst[0][col + k] /= len; } for (int row = 1; row <= radius; ++row) { for(int k = 0; k < remaining; ++k) { rowBuffer[row][k] = dst[row][col + k]; dst[row][col + k] = (dst[row - 1][col + k] * len + dst[row + radius][col + k]) / (len + 1); } len ++; } const float rlen = 1.f / len; int pos = 0; for (int row = radius + 1; row < H - radius; ++row) { for(int k = 0; k < remaining; ++k) { float oldVal = rowBuffer[pos][k]; rowBuffer[pos][k] = dst[row][col + k]; dst[row][col + k] = dst[row - 1][col + k] + (dst[row + radius][col + k] - oldVal) * rlen; } ++pos; pos = pos <= radius ? pos : 0; } for (int row = H - radius; row < H; ++row) { for(int k = 0; k < remaining; ++k) { dst[row][col + k] = (dst[(row - 1)][col + k] * len - rowBuffer[pos][k]) / (len - 1); } len --; ++pos; pos = pos <= radius ? pos : 0; } } } } } template void boxblur (T* src, A* dst, A* buffer, int radx, int rady, int W, int H) { //box blur image; box range = (radx,rady) i.e. box size is (2*radx+1)x(2*rady+1) float* temp = buffer; if (radx == 0) { for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { temp[row * W + col] = src[row * W + col]; } } else { //horizontal blur for (int row = H - 1; row >= 0; row--) { int len = radx + 1; float tempval = (float)src[row * W]; for (int j = 1; j <= radx; j++) { tempval += (float)src[row * W + j]; } tempval = tempval / len; temp[row * W] = tempval; for (int col = 1; col <= radx; col++) { tempval = (tempval * len + src[row * W + col + radx]) / (len + 1); temp[row * W + col] = tempval; len ++; } float reclen = 1.f / len; for (int col = radx + 1; col < W - radx; col++) { tempval = tempval + ((float)(src[row * W + col + radx] - src[row * W + col - radx - 1])) * reclen; temp[row * W + col] = tempval; } for (int col = W - radx; col < W; col++) { tempval = (tempval * len - src[row * W + col - radx - 1]) / (len - 1); temp[row * W + col] = tempval; len --; } } } if (rady == 0) { for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { dst[row * W + col] = temp[row * W + col]; } } else { //vertical blur #ifdef __SSE2__ vfloat leninitv = F2V( (float)(rady + 1)); vfloat onev = F2V( 1.f ); vfloat tempv, temp1v, lenv, lenp1v, lenm1v, rlenv; int col; for (col = 0; col < W - 7; col += 8) { lenv = leninitv; tempv = LVFU(temp[0 * W + col]); temp1v = LVFU(temp[0 * W + col + 4]); for (int i = 1; i <= rady; i++) { tempv = tempv + LVFU(temp[i * W + col]); temp1v = temp1v + LVFU(temp[i * W + col + 4]); } tempv = tempv / lenv; temp1v = temp1v / lenv; STVFU(dst[0 * W + col], tempv); STVFU(dst[0 * W + col + 4], temp1v); for (int row = 1; row <= rady; row++) { lenp1v = lenv + onev; tempv = (tempv * lenv + LVFU(temp[(row + rady) * W + col])) / lenp1v; temp1v = (temp1v * lenv + LVFU(temp[(row + rady) * W + col + 4])) / lenp1v; STVFU(dst[row * W + col], tempv); STVFU(dst[row * W + col + 4], temp1v); lenv = lenp1v; } rlenv = onev / lenv; for (int row = rady + 1; row < H - rady; row++) { tempv = tempv + (LVFU(temp[(row + rady) * W + col]) - LVFU(temp[(row - rady - 1) * W + col])) * rlenv ; temp1v = temp1v + (LVFU(temp[(row + rady) * W + col + 4]) - LVFU(temp[(row - rady - 1) * W + col + 4])) * rlenv ; STVFU(dst[row * W + col], tempv); STVFU(dst[row * W + col + 4], temp1v); } for (int row = H - rady; row < H; row++) { lenm1v = lenv - onev; tempv = (tempv * lenv - LVFU(temp[(row - rady - 1) * W + col])) / lenm1v; temp1v = (temp1v * lenv - LVFU(temp[(row - rady - 1) * W + col + 4])) / lenm1v; STVFU(dst[row * W + col], tempv); STVFU(dst[row * W + col + 4], temp1v); lenv = lenm1v; } } for (; col < W - 3; col += 4) { lenv = leninitv; tempv = LVFU(temp[0 * W + col]); for (int i = 1; i <= rady; i++) { tempv = tempv + LVFU(temp[i * W + col]); } tempv = tempv / lenv; STVFU(dst[0 * W + col], tempv); for (int row = 1; row <= rady; row++) { lenp1v = lenv + onev; tempv = (tempv * lenv + LVFU(temp[(row + rady) * W + col])) / lenp1v; STVFU(dst[row * W + col], tempv); lenv = lenp1v; } rlenv = onev / lenv; for (int row = rady + 1; row < H - rady; row++) { tempv = tempv + (LVFU(temp[(row + rady) * W + col]) - LVFU(temp[(row - rady - 1) * W + col])) * rlenv ; STVFU(dst[row * W + col], tempv); } for (int row = H - rady; row < H; row++) { lenm1v = lenv - onev; tempv = (tempv * lenv - LVFU(temp[(row - rady - 1) * W + col])) / lenm1v; STVFU(dst[row * W + col], tempv); lenv = lenm1v; } } for (; col < W; col++) { int len = rady + 1; dst[0 * W + col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0 * W + col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row * W + col] = dst[(row - 1) * W + col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } #else for (int col = 0; col < W; col++) { int len = rady + 1; dst[0 * W + col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0 * W + col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row * W + col] = dst[(row - 1) * W + col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } #endif } } template void boxabsblur (T* src, A* dst, int radx, int rady, int W, int H, float * temp) { //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //box blur image; box range = (radx,rady) i.e. box size is (2*radx+1)x(2*rady+1) if (radx == 0) { for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { temp[row * W + col] = fabs(src[row * W + col]); } } else { //horizontal blur for (int row = 0; row < H; row++) { int len = radx + 1; float tempval = fabsf((float)src[row * W + 0]); for (int j = 1; j <= radx; j++) { tempval += fabsf((float)src[row * W + j]); } tempval /= len; temp[row * W + 0] = tempval; for (int col = 1; col <= radx; col++) { tempval = (tempval * len + fabsf(src[row * W + col + radx])) / (len + 1); temp[row * W + col] = tempval; len ++; } float rlen = 1.f / (float)len; for (int col = radx + 1; col < W - radx; col++) { tempval = tempval + ((float)(fabsf(src[row * W + col + radx]) - fabsf(src[row * W + col - radx - 1]))) * rlen; temp[row * W + col] = tempval; } for (int col = W - radx; col < W; col++) { tempval = (tempval * len - fabsf(src[row * W + col - radx - 1])) / (len - 1); temp[row * W + col] = tempval; len --; } } } if (rady == 0) { for (int row = 0; row < H; row++) for (int col = 0; col < W; col++) { dst[row * W + col] = temp[row * W + col]; } } else { //vertical blur #ifdef __SSE2__ vfloat leninitv = F2V( (float)(rady + 1)); vfloat onev = F2V( 1.f ); vfloat tempv, lenv, lenp1v, lenm1v, rlenv; for (int col = 0; col < W - 3; col += 4) { lenv = leninitv; tempv = LVF(temp[0 * W + col]); for (int i = 1; i <= rady; i++) { tempv = tempv + LVF(temp[i * W + col]); } tempv = tempv / lenv; STVF(dst[0 * W + col], tempv); for (int row = 1; row <= rady; row++) { lenp1v = lenv + onev; tempv = (tempv * lenv + LVF(temp[(row + rady) * W + col])) / lenp1v; STVF(dst[row * W + col], tempv); lenv = lenp1v; } rlenv = onev / lenv; for (int row = rady + 1; row < H - rady; row++) { tempv = tempv + (LVF(temp[(row + rady) * W + col]) - LVF(temp[(row - rady - 1) * W + col])) * rlenv; STVF(dst[row * W + col], tempv); } for (int row = H - rady; row < H; row++) { lenm1v = lenv - onev; tempv = (tempv * lenv - LVF(temp[(row - rady - 1) * W + col])) / lenm1v; STVF(dst[row * W + col], tempv); lenv = lenm1v; } } for (int col = W - (W % 4); col < W; col++) { int len = rady + 1; dst[0 * W + col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0 * W + col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row * W + col] = dst[(row - 1) * W + col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } #else for (int col = 0; col < W; col++) { int len = rady + 1; dst[0 * W + col] = temp[0 * W + col] / len; for (int i = 1; i <= rady; i++) { dst[0 * W + col] += temp[i * W + col] / len; } for (int row = 1; row <= rady; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len + temp[(row + rady) * W + col]) / (len + 1); len ++; } for (int row = rady + 1; row < H - rady; row++) { dst[row * W + col] = dst[(row - 1) * W + col] + (temp[(row + rady) * W + col] - temp[(row - rady - 1) * W + col]) / len; } for (int row = H - rady; row < H; row++) { dst[row * W + col] = (dst[(row - 1) * W + col] * len - temp[(row - rady - 1) * W + col]) / (len - 1); len --; } } #endif } } } #endif /* _BOXBLUR_H_ */