/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright (c) 2018 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include "color.h" #include "curves.h" #include "improcfun.h" #include "procparams.h" #include "rawimagesource.h" #include "rt_math.h" #include "rtthumbnail.h" #include "settings.h" //#define BENCHMARK #include "StopWatch.h" namespace rtengine { namespace { struct CdfInfo { std::vector cdf; int min_val; int max_val; CdfInfo(): cdf(256), min_val(-1), max_val(-1) {} }; CdfInfo getCdf(const IImage8 &img) { CdfInfo ret; for (int y = 0; y < img.getHeight(); ++y) { for (int x = 0; x < img.getWidth(); ++x) { int lum = LIM(int(Color::rgbLuminance(float(img.r(y, x)), float(img.g(y, x)), float(img.b(y, x)))), 0, 255); ++ret.cdf[lum]; } } int sum = 0; for (size_t i = 0; i < ret.cdf.size(); ++i) { if (ret.cdf[i] > 0) { if (ret.min_val < 0) { ret.min_val = i; } ret.max_val = i; } sum += ret.cdf[i]; ret.cdf[i] = sum; } return ret; } int findMatch(int val, const std::vector &cdf, int j) { if (cdf[j] <= val) { for (; j < int(cdf.size()); ++j) { if (cdf[j] == val) { return j; } else if (cdf[j] > val) { return (cdf[j] - val <= val - cdf[j-1] ? j : j-1); } } return 255; } else { for (; j >= 0; --j) { if (cdf[j] == val) { return j; } else if (cdf[j] < val) { return (val - cdf[j] <= cdf[j+1] - val ? j : j+1); } } return 0; } } void mappingToCurve(const std::vector &mapping, std::vector &curve) { curve.clear(); int idx = 15; for (; idx < int(mapping.size()); ++idx) { if (mapping[idx] >= idx) { break; } } if (idx == int(mapping.size())) { for (idx = 1; idx < int(mapping.size())-1; ++idx) { if (mapping[idx] >= idx) { break; } } } auto coord = [](int v) -> double { return double(v)/255.0; }; auto doit = [&](int start, int stop, int step, bool addstart, int maxdelta=0) -> void { if (!maxdelta) maxdelta = step * 2; int prev = start; if (addstart && mapping[start] >= 0) { curve.push_back(coord(start)); curve.push_back(coord(mapping[start])); } for (int i = start; i < stop; ++i) { int v = mapping[i]; if (v < 0) { continue; } bool change = i > 0 && v != mapping[i-1]; int diff = i - prev; if ((change && std::abs(diff - step) <= 1) || diff > maxdelta) { curve.push_back(coord(i)); curve.push_back(coord(v)); prev = i; } } }; curve.push_back(0.0); curve.push_back(0.0); int start = 0; while (start < idx && (mapping[start] < 0 || start < idx / 2)) { ++start; } const int npoints = 8; int step = std::max(int(mapping.size())/npoints, 1); int end = mapping.size(); if (idx <= end / 3) { doit(start, idx, idx / 2, true); step = (end - idx) / 4; doit(idx, end, step, false, step); } else { doit(start, idx, idx > step ? step : idx / 2, true); doit(idx, end, step, idx - step > step / 2 && std::abs(curve[curve.size()-2] - coord(idx)) > 0.01); } if (curve.size() > 2 && (1 - curve[curve.size()-2] <= coord(step) / 3)) { curve.pop_back(); curve.pop_back(); } curve.push_back(1.0); curve.push_back(1.0); // we assume we are matching an S-shaped curve, so try to avoid // concavities in the upper part of the S const auto getpos = [](float x, float xa, float ya, float xb, float yb) { // line equation: // (x - xa) / (xb - xa) = (y - ya) / (yb - ya) return (x - xa) / (xb - xa) * (yb - ya) + ya; }; idx = -1; for (ssize_t i = curve.size()-1; i > 0; i -= 2) { if (curve[i] <= 0.0) { idx = i+1; break; } } if (idx >= 0 && size_t(idx) < curve.size()) { // idx is the position of the first point in the upper part of the S // for each 3 consecutive points (xa, ya), (x, y), (xb, yb) we check // that y is above the point at x of the line between the other two // if this is not the case, we remove (x, y) from the curve while (size_t(idx+5) < curve.size()) { float xa = curve[idx]; float ya = curve[idx+1]; float x = curve[idx+2]; float y = curve[idx+3]; float xb = curve[idx+4]; float yb = curve[idx+5]; float yy = getpos(x, xa, ya, xb, yb); if (yy > y) { // we have to remove (x, y) from the curve curve.erase(curve.begin()+(idx+2), curve.begin()+(idx+4)); } else { // move on to the next point idx += 2; } } } if (curve.size() < 4) { curve = { DCT_Linear }; // not enough points, fall back to linear } else { curve.insert(curve.begin(), DCT_Spline); DiagonalCurve c(curve); double gap = 0.05; double x = 0.0; curve = { DCT_CatumullRom }; while (x < 1.0) { curve.push_back(x); curve.push_back(c.getVal(x)); x += gap; gap *= 1.4; } curve.push_back(1.0); curve.push_back(c.getVal(1.0)); } } } // namespace void RawImageSource::getAutoMatchedToneCurve(const ColorManagementParams &cp, std::vector &outCurve) { BENCHFUN if (settings->verbose) { std::cout << "performing histogram matching for " << getFileName() << " on the embedded thumbnail" << std::endl; } const auto same_profile = [](const ColorManagementParams &a, const ColorManagementParams &b) -> bool { return (a.inputProfile == b.inputProfile && a.toneCurve == b.toneCurve && a.applyLookTable == b.applyLookTable && a.applyBaselineExposureOffset == b.applyBaselineExposureOffset && a.applyHueSatMap == b.applyHueSatMap && a.dcpIlluminant == b.dcpIlluminant); }; if (!histMatchingCache.empty() && same_profile(*histMatchingParams, cp)) { if (settings->verbose) { std::cout << "tone curve found in cache" << std::endl; } outCurve = histMatchingCache; return; } outCurve = { DCT_Linear }; int fw, fh; getFullSize(fw, fh, TR_NONE); if (getRotateDegree() == 90 || getRotateDegree() == 270) { std::swap(fw, fh); } int skip = 3; if (settings->verbose) { std::cout << "histogram matching: full raw image size is " << fw << "x" << fh << std::endl; } ProcParams neutral; neutral.icm = cp; neutral.raw.bayersensor.method = RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::FAST); neutral.raw.xtranssensor.method = RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FAST); neutral.icm.outputProfile = ColorManagementParams::NoICMString; std::unique_ptr source; { RawMetaDataLocation rml; eSensorType sensor_type; int w, h; std::unique_ptr thumb(Thumbnail::loadQuickFromRaw(getFileName(), rml, sensor_type, w, h, 1, false, true, true)); if (!thumb) { if (settings->verbose) { std::cout << "histogram matching: no thumbnail found, generating a neutral curve" << std::endl; } histMatchingCache = outCurve; *histMatchingParams = cp; return; } else if (w * 33 < fw || w * h < 19200) { // Some cameras have extremely small thumbs, for example Canon PowerShot A3100 IS has 128x96 thumbs. // For them we skip histogram matching. // With 160x120 thumbs from RICOH GR DIGITAL 2 it works fine, so we use 19200 as limit. if (settings->verbose) { std::cout << "histogram matching: the embedded thumbnail is too small: " << w << "x" << h << std::endl; } histMatchingCache = outCurve; *histMatchingParams = cp; return; } skip = LIM(skip * fh / h, 6, 10); // adjust the skip factor -- the larger the thumbnail, the less we should skip to get a good match source.reset(thumb->quickProcessImage(neutral, fh / skip, TI_Nearest)); if (settings->verbose) { std::cout << "histogram matching: extracted embedded thumbnail" << std::endl; } } std::unique_ptr target; { RawMetaDataLocation rml; eSensorType sensor_type; double scale; int w = fw / skip, h = fh / skip; std::unique_ptr thumb(Thumbnail::loadFromRaw(getFileName(), rml, sensor_type, w, h, 1, false, false, true)); if (!thumb) { if (settings->verbose) { std::cout << "histogram matching: raw decoding failed, generating a neutral curve" << std::endl; } histMatchingCache = outCurve; *histMatchingParams = cp; return; } target.reset(thumb->processImage(neutral, sensor_type, fh / skip, TI_Nearest, getMetaData(), scale, false, true)); int sw = source->getWidth(), sh = source->getHeight(); int tw = target->getWidth(), th = target->getHeight(); float thumb_ratio = float(std::max(sw, sh)) / float(std::min(sw, sh)); float target_ratio = float(std::max(tw, th)) / float(std::min(tw, th)); if (std::abs(thumb_ratio - target_ratio) > 0.01f) { int cx = 0, cy = 0; if (thumb_ratio > target_ratio) { // crop the height int ch = th - (tw * float(sh) / float(sw)); cy += ch / 2; th -= ch; } else { // crop the width int cw = tw - (th * float(sw) / float(sh)); cx += cw / 2; tw -= cw; } if (settings->verbose) { std::cout << "histogram matching: cropping target to get an aspect ratio of " << round(thumb_ratio * 100)/100.f << ":1, new size is " << tw << "x" << th << std::endl; } if (cx || cy) { Image8 *tmp = new Image8(tw, th); #ifdef _OPENMP #pragma omp parallel for #endif for (int y = 0; y < th; ++y) { for (int x = 0; x < tw; ++x) { tmp->r(y, x) = target->r(y+cy, x+cx); tmp->g(y, x) = target->g(y+cy, x+cx); tmp->b(y, x) = target->b(y+cy, x+cx); } } target.reset(tmp); } } if (settings->verbose) { std::cout << "histogram matching: generated neutral rendering" << std::endl; } } if (target->getWidth() != source->getWidth() || target->getHeight() != source->getHeight()) { Image8 *tmp = new Image8(source->getWidth(), source->getHeight()); target->resizeImgTo(source->getWidth(), source->getHeight(), TI_Nearest, tmp); target.reset(tmp); } CdfInfo scdf = getCdf(*source); CdfInfo tcdf = getCdf(*target); std::vector mapping; int j = 0; for (int i = 0; i < int(tcdf.cdf.size()); ++i) { j = findMatch(tcdf.cdf[i], scdf.cdf, j); if (i >= tcdf.min_val && i <= tcdf.max_val && j >= scdf.min_val && j <= scdf.max_val) { mapping.push_back(j); } else { mapping.push_back(-1); } } mappingToCurve(mapping, outCurve); if (settings->verbose) { std::cout << "histogram matching: generated curve with " << outCurve.size()/2 << " control points" << std::endl; } histMatchingCache = outCurve; *histMatchingParams = cp; } } // namespace rtengine