/* -*- C++ -*- * * This file is part of RawTherapee. * * Copyright 2018 Alberto Griggio * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "improcfun.h" #include "array2D.h" #include "color.h" #include "curves.h" #include "gauss.h" #include "guidedfilter.h" #include "iccstore.h" #include "labimage.h" #include "opthelper.h" #include "procparams.h" #include "sleef.h" namespace rtengine { void ImProcFunctions::shadowsHighlights(LabImage *lab) { if (!params->sh.enabled || (!params->sh.highlights && !params->sh.shadows)){ return; } const int width = lab->W; const int height = lab->H; const bool lab_mode = params->sh.lab; array2D mask(width, height); array2D L(width, height); const float radius = params->sh.radius * 10 / scale; LUTf f(lab_mode ? 32768 : 65536); TMatrix ws = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile); TMatrix iws = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile); const auto rgb2lab = [&](float R, float G, float B, float &l, float &a, float &b) -> void { float x, y, z; Color::rgbxyz(R, G, B, x, y, z, ws); Color::XYZ2Lab(x, y, z, l, a, b); }; const auto lab2rgb = [&](float l, float a, float b, float &R, float &G, float &B) -> void { float x, y, z; Color::Lab2XYZ(l, a, b, x, y, z); Color::xyz2rgb(x, y, z, R, G, B, iws); }; const auto apply = [&](int amount, int tonalwidth, bool hl) -> void { const float thresh = tonalwidth * 327.68f; const float scale = hl ? (thresh > 0.f ? 0.9f / thresh : 1.f) : thresh * 0.9f; #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { float l = lab->L[y][x]; float l1 = l / 32768.f; if (hl) { mask[y][x] = (l > thresh) ? 1.f : pow4(l * scale); L[y][x] = 1.f - l1; } else { mask[y][x] = l <= thresh ? 1.f : pow4(scale / l); L[y][x] = l1; } } } guidedFilter(L, mask, mask, radius, 0.075, multiThread, 4); const float base = std::pow(4.f, float(amount)/100.f); const float gamma = hl ? base : 1.f / base; const float contrast = std::pow(2.f, float(amount)/100.f); DiagonalCurve sh_contrast({ DCT_NURBS, 0, 0, 0.125, std::pow(0.125 / 0.25, contrast) * 0.25, 0.25, 0.25, 0.375, std::pow(0.375 / 0.25, contrast) * 0.25, 1, 1 }); if(!hl) { if (lab_mode) { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int l = 0; l < 32768; ++l) { auto val = pow_F(l / 32768.f, gamma); // get a bit more contrast in the shadows val = sh_contrast.getVal(val); f[l] = val * 32768.f; } } else { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int c = 0; c < 65536; ++c) { float l, a, b; float R = c, G = c, B = c; rgb2lab(R, G, B, l, a, b); auto val = pow_F(l / 32768.f, gamma); // get a bit more contrast in the shadows val = sh_contrast.getVal(val); l = val * 32768.f; lab2rgb(l, a, b, R, G, B); f[c] = G; } } } else { if (lab_mode) { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int l = 0; l < 32768; ++l) { auto val = pow_F(l / 32768.f, gamma); f[l] = val * 32768.f; } } else { #ifdef _OPENMP #pragma omp parallel for if (multiThread) #endif for (int c = 0; c < 65536; ++c) { float l, a, b; float R = c, G = c, B = c; rgb2lab(R, G, B, l, a, b); auto val = pow_F(l / 32768.f, gamma); l = val * 32768.f; lab2rgb(l, a, b, R, G, B); f[c] = G; } } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { float l = lab->L[y][x]; float blend = LIM01(mask[y][x]); float orig = 1.f - blend; if (l >= 0.f && l < 32768.f) { if (lab_mode) { lab->L[y][x] = intp(blend, f[l], l); if (!hl && l > 1.f) { // when pushing shadows, scale also the chromaticity float s = max(lab->L[y][x] / l * 0.5f, 1.f) * blend; float a = lab->a[y][x]; float b = lab->b[y][x]; lab->a[y][x] = a * s + a * orig; lab->b[y][x] = b * s + b * orig; } } else { float rgb[3]; lab2rgb(l, lab->a[y][x], lab->b[y][x], rgb[0], rgb[1], rgb[2]); for (int i = 0; i < 3; ++i) { float c = rgb[i]; if (!OOG(c)) { rgb[i] = intp(blend, f[c], c); } } rgb2lab(rgb[0], rgb[1], rgb[2], lab->L[y][x], lab->a[y][x], lab->b[y][x]); } } } } }; if (params->sh.highlights > 0) { apply(params->sh.highlights * 0.7, params->sh.htonalwidth, true); } if (params->sh.shadows > 0) { apply(params->sh.shadows * 0.6, params->sh.stonalwidth, false); } } } // namespace rtengine