/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include "rtengine.h" #include "image8.h" #include "imagefloat.h" #include "labimage.h" #include "improcfun.h" #include #include "iccstore.h" #include "iccmatrices.h" #include "settings.h" #include "alignedbuffer.h" #include "color.h" #include "procparams.h" namespace rtengine { namespace { inline void copyAndClampLine(const float *src, unsigned char *dst, const int W) { for (int j = 0; j < W * 3; ++j) { dst[j] = uint16ToUint8Rounded(CLIP(src[j] * MAXVALF)); } } inline void copyAndClamp(const LabImage *src, unsigned char *dst, const double rgb_xyz[3][3], bool multiThread) { const int W = src->W; const int H = src->H; float rgb_xyzf[3][3]; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { rgb_xyzf[i][j] = rgb_xyz[i][j]; } } #ifdef __SSE2__ vfloat rgb_xyzv[3][3]; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { rgb_xyzv[i][j] = F2V(rgb_xyzf[i][j]); } } #endif #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int i = 0; i < H; ++i) { float* rL = src->L[i]; float* ra = src->a[i]; float* rb = src->b[i]; int ix = i * 3 * W; #ifdef __SSE2__ float rbuffer[W] ALIGNED16; float gbuffer[W] ALIGNED16; float bbuffer[W] ALIGNED16; int j = 0; for (; j < W - 3; j += 4) { vfloat R, G, B; vfloat x_, y_, z_; Color::Lab2XYZ(LVFU(rL[j]), LVFU(ra[j]), LVFU(rb[j]), x_, y_, z_ ); Color::xyz2rgb(x_, y_, z_, R, G, B, rgb_xyzv); STVF(rbuffer[j], Color::gamma2curve[R]); STVF(gbuffer[j], Color::gamma2curve[G]); STVF(bbuffer[j], Color::gamma2curve[B]); } for (; j < W; ++j) { float R, G, B; float x_, y_, z_; Color::Lab2XYZ(rL[j], ra[j], rb[j], x_, y_, z_ ); Color::xyz2rgb(x_, y_, z_, R, G, B, rgb_xyzf); rbuffer[j] = Color::gamma2curve[R]; gbuffer[j] = Color::gamma2curve[G]; bbuffer[j] = Color::gamma2curve[B]; } for (int j = 0; j < W; ++j) { dst[ix++] = uint16ToUint8Rounded(rbuffer[j]); dst[ix++] = uint16ToUint8Rounded(gbuffer[j]); dst[ix++] = uint16ToUint8Rounded(bbuffer[j]); } #else for (int j = 0; j < W; ++j) { float R, G, B; float x_, y_, z_; Color::Lab2XYZ(rL[j], ra[j], rb[j], x_, y_, z_ ); Color::xyz2rgb(x_, y_, z_, R, G, B, rgb_xyzf); dst[ix++] = uint16ToUint8Rounded(Color::gamma2curve[R]); dst[ix++] = uint16ToUint8Rounded(Color::gamma2curve[G]); dst[ix++] = uint16ToUint8Rounded(Color::gamma2curve[B]); } #endif } } } // namespace // Used in ImProcCoordinator::updatePreviewImage (rtengine/improccoordinator.cc) // Crop::update (rtengine/dcrop.cc) // Thumbnail::processImage (rtengine/rtthumbnail.cc) // // If monitorTransform, divide by 327.68 then apply monitorTransform (which can integrate soft-proofing) // otherwise divide by 327.68, convert to xyz and apply the sRGB transform, before converting with gamma2curve void ImProcFunctions::lab2monitorRgb(LabImage* lab, Image8* image) { if (monitorTransform) { const int W = lab->W; const int H = lab->H; unsigned char * data = image->data; // cmsDoTransform is relatively expensive #ifdef _OPENMP #pragma omp parallel firstprivate(lab, data, W, H) #endif { AlignedBuffer pBuf(3 * lab->W); AlignedBuffer mBuf; AlignedBuffer gwBuf1; AlignedBuffer gwBuf2; if (gamutWarning) { gwBuf1.resize(3 * lab->W); gwBuf2.resize(3 * lab->W); mBuf.resize(3 * lab->W); } float *buffer = pBuf.data; float *outbuffer = gamutWarning ? mBuf.data : pBuf.data; // make in place transformations when gamutWarning is not needed #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = 0; i < H; i++) { const int ix = i * 3 * W; int iy = 0; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = 0; j < W; j++) { buffer[iy++] = rL[j] / 327.68f; buffer[iy++] = ra[j] / 327.68f; buffer[iy++] = rb[j] / 327.68f; } cmsDoTransform(monitorTransform, buffer, outbuffer, W); copyAndClampLine(outbuffer, data + ix, W); if (gamutWarning) { gamutWarning->markLine(image, i, buffer, gwBuf1.data, gwBuf2.data); } } } // End of parallelization } else { copyAndClamp(lab, image->data, sRGB_xyz, multiThread); } } // Used in ImProcCoordinator::updatePreviewImage (rtengine/improccoordinator.cc) // Crop::update (rtengine/dcrop.cc) // // Generate an Image8 // // If output profile used, divide by 327.68 then apply the "profile" profile (eventually with a standard gamma) // otherwise divide by 327.68, convert to xyz and apply the RGB transform, before converting with gamma2curve Image8* ImProcFunctions::lab2rgb(LabImage* lab, int cx, int cy, int cw, int ch, const procparams::ColorManagementParams &icm, bool consider_histogram_settings) { if (cx < 0) { cx = 0; } if (cy < 0) { cy = 0; } if (cx + cw > lab->W) { cw = lab->W - cx; } if (cy + ch > lab->H) { ch = lab->H - cy; } Image8* image = new Image8(cw, ch); Glib::ustring profile; cmsHPROFILE oprof = nullptr; if (settings->HistogramWorking && consider_histogram_settings) { profile = icm.workingProfile; } else { profile = icm.outputProfile; if (icm.outputProfile.empty() || icm.outputProfile == ColorManagementParams::NoICMString) { profile = "sRGB"; } oprof = ICCStore::getInstance()->getProfile(profile); } if (oprof) { const cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE | (icm.outputBPC ? cmsFLAGS_BLACKPOINTCOMPENSATION : 0); // NOCACHE is important for thread safety lcmsMutex->lock(); cmsHPROFILE LabIProf = cmsCreateLab4Profile(nullptr); cmsHTRANSFORM hTransform = cmsCreateTransform (LabIProf, TYPE_Lab_DBL, oprof, TYPE_RGB_FLT, icm.outputIntent, flags); cmsCloseProfile(LabIProf); lcmsMutex->unlock(); unsigned char *data = image->data; // cmsDoTransform is relatively expensive #ifdef _OPENMP #pragma omp parallel #endif { AlignedBuffer pBuf(3 * cw); AlignedBuffer oBuf(3 * cw); double *buffer = pBuf.data; float *outbuffer = oBuf.data; int condition = cy + ch; #ifdef _OPENMP #pragma omp for firstprivate(lab) schedule(dynamic,16) #endif for (int i = cy; i < condition; i++) { const int ix = i * 3 * cw; int iy = 0; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = cx; j < cx + cw; j++) { buffer[iy++] = rL[j] / 327.68f; buffer[iy++] = ra[j] / 327.68f; buffer[iy++] = rb[j] / 327.68f; } cmsDoTransform (hTransform, buffer, outbuffer, cw); copyAndClampLine(outbuffer, data + ix, cw); } } // End of parallelization cmsDeleteTransform(hTransform); } else { const auto xyz_rgb = ICCStore::getInstance()->workingSpaceInverseMatrix(profile); copyAndClamp(lab, image->data, xyz_rgb, multiThread); } return image; } /** @brief Convert the final Lab image to the output RGB color space * * Used in processImage (rtengine/simpleprocess.cc) * * Provide a pointer to a 7 floats array for "ga" (uninitialized ; this array will be filled with the gamma values) if you want * to use the custom gamma scenario. Those gamma values will correspond to the ones of the chosen standard output profile * (Prophoto if non standard output profile given) * * If "ga" is NULL, then we're considering standard gamma with the chosen output profile. * * Generate an Image16 * * If a custom gamma profile can be created, divide by 327.68, convert to xyz and apply the custom gamma transform * otherwise divide by 327.68, convert to xyz and apply the sRGB transform, before converting with gamma2curve */ Imagefloat* ImProcFunctions::lab2rgbOut(LabImage* lab, int cx, int cy, int cw, int ch, const procparams::ColorManagementParams &icm) { if (cx < 0) { cx = 0; } if (cy < 0) { cy = 0; } if (cx + cw > lab->W) { cw = lab->W - cx; } if (cy + ch > lab->H) { ch = lab->H - cy; } Imagefloat* image = new Imagefloat(cw, ch); cmsHPROFILE oprof = ICCStore::getInstance()->getProfile(icm.outputProfile); if (oprof) { cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE; if (icm.outputBPC) { flags |= cmsFLAGS_BLACKPOINTCOMPENSATION; } lcmsMutex->lock(); cmsHPROFILE iprof = cmsCreateLab4Profile(nullptr); cmsHTRANSFORM hTransform = cmsCreateTransform(iprof, TYPE_Lab_FLT, oprof, TYPE_RGB_FLT, icm.outputIntent, flags); lcmsMutex->unlock(); image->ExecCMSTransform(hTransform, *lab, cx, cy); cmsDeleteTransform(hTransform); image->normalizeFloatTo65535(); } else { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) if (multiThread) #endif for (int i = cy; i < cy + ch; i++) { float R, G, B; float* rL = lab->L[i]; float* ra = lab->a[i]; float* rb = lab->b[i]; for (int j = cx; j < cx + cw; j++) { float fy = (Color::c1By116 * rL[j]) / 327.68f + Color::c16By116; // (L+16)/116 float fx = (0.002f * ra[j]) / 327.68f + fy; float fz = fy - (0.005f * rb[j]) / 327.68f; float LL = rL[j] / 327.68f; float x_ = 65535.0f * Color::f2xyz(fx) * Color::D50x; //float y_ = 65535.0 * Color::f2xyz(fy); float z_ = 65535.0f * Color::f2xyz(fz) * Color::D50z; float y_ = (LL > (float)Color::epskap) ? 65535.0f * fy * fy * fy : 65535.0f * LL / (float)Color::kappa; Color::xyz2srgb(x_, y_, z_, R, G, B); image->r(i - cy, j - cx) = Color::gamma2curve[CLIP(R)]; image->g(i - cy, j - cx) = Color::gamma2curve[CLIP(G)]; image->b(i - cy, j - cx) = Color::gamma2curve[CLIP(B)]; } } } return image; } void ImProcFunctions::workingtrc(const Imagefloat* src, Imagefloat* dst, int cw, int ch, int mul, const Glib::ustring &profile, double gampos, double slpos, cmsHTRANSFORM &transform, bool normalizeIn, bool normalizeOut, bool keepTransForm) const { const TMatrix wprof = ICCStore::getInstance()->workingSpaceMatrix(params->icm.workingProfile); const float toxyz[3][3] = { { static_cast(wprof[0][0] / ((normalizeIn ? 65535.0 : 1.0))), //I have suppressed / Color::D50x static_cast(wprof[0][1] / ((normalizeIn ? 65535.0 : 1.0))), static_cast(wprof[0][2] / ((normalizeIn ? 65535.0 : 1.0))) }, { static_cast(wprof[1][0] / (normalizeIn ? 65535.0 : 1.0)), static_cast(wprof[1][1] / (normalizeIn ? 65535.0 : 1.0)), static_cast(wprof[1][2] / (normalizeIn ? 65535.0 : 1.0)) }, { static_cast(wprof[2][0] / ((normalizeIn ? 65535.0 : 1.0))), //I have suppressed / Color::D50z static_cast(wprof[2][1] / ((normalizeIn ? 65535.0 : 1.0))), static_cast(wprof[2][2] / ((normalizeIn ? 65535.0 : 1.0))) } }; cmsHTRANSFORM hTransform = nullptr; if (transform) { hTransform = transform; } else { double pwr = 1.0 / gampos; double ts = slpos; int five = mul; if (gampos < 1.0) { pwr = gampos; gampos = 1. / gampos; five = -mul; } // int select_temp = 1; //5003K constexpr double eps = 0.000000001; // not divide by zero enum class ColorTemp { D50 = 5003, // for Widegamut, ProPhoto Best, Beta -> D50 D65 = 6504, // for sRGB, AdobeRGB, Bruce Rec2020 -> D65 D60 = 6005 // for ACES AP0 and AP1 }; ColorTemp temp = ColorTemp::D50; float p[6]; //primaries //primaries for 10 working profiles ==> output profiles if (profile == "WideGamut") { p[0] = 0.7350; //Widegamut primaries p[1] = 0.2650; p[2] = 0.1150; p[3] = 0.8260; p[4] = 0.1570; p[5] = 0.0180; } else if (profile == "Adobe RGB") { p[0] = 0.6400; //Adobe primaries p[1] = 0.3300; p[2] = 0.2100; p[3] = 0.7100; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profile == "sRGB") { p[0] = 0.6400; // sRGB primaries p[1] = 0.3300; p[2] = 0.3000; p[3] = 0.6000; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profile == "BruceRGB") { p[0] = 0.6400; // Bruce primaries p[1] = 0.3300; p[2] = 0.2800; p[3] = 0.6500; p[4] = 0.1500; p[5] = 0.0600; temp = ColorTemp::D65; } else if (profile == "Beta RGB") { p[0] = 0.6888; // Beta primaries p[1] = 0.3112; p[2] = 0.1986; p[3] = 0.7551; p[4] = 0.1265; p[5] = 0.0352; } else if (profile == "BestRGB") { p[0] = 0.7347; // Best primaries p[1] = 0.2653; p[2] = 0.2150; p[3] = 0.7750; p[4] = 0.1300; p[5] = 0.0350; } else if (profile == "Rec2020") { p[0] = 0.7080; // Rec2020 primaries p[1] = 0.2920; p[2] = 0.1700; p[3] = 0.7970; p[4] = 0.1310; p[5] = 0.0460; temp = ColorTemp::D65; } else if (profile == "ACESp0") { p[0] = 0.7347; // ACES P0 primaries p[1] = 0.2653; p[2] = 0.0000; p[3] = 1.0; p[4] = 0.0001; p[5] = -0.0770; temp = ColorTemp::D60; } else if (profile == "ACESp1") { p[0] = 0.713; // ACES P1 primaries p[1] = 0.293; p[2] = 0.165; p[3] = 0.830; p[4] = 0.128; p[5] = 0.044; temp = ColorTemp::D60; } else if (profile == "ProPhoto") { p[0] = 0.7347; //ProPhoto and default primaries p[1] = 0.2653; p[2] = 0.1596; p[3] = 0.8404; p[4] = 0.0366; p[5] = 0.0001; } else { p[0] = 0.7347; //default primaries always unused p[1] = 0.2653; p[2] = 0.1596; p[3] = 0.8404; p[4] = 0.0366; p[5] = 0.0001; } if (slpos == 0) { slpos = eps; } GammaValues g_a; //gamma parameters Color::calcGamma(pwr, ts, g_a); // call to calcGamma with selected gamma and slope : return parameters for LCMS2 cmsFloat64Number gammaParams[7]; gammaParams[4] = g_a[3] * ts; gammaParams[0] = gampos; gammaParams[1] = 1. / (1.0 + g_a[4]); gammaParams[2] = g_a[4] / (1.0 + g_a[4]); gammaParams[3] = 1. / slpos; gammaParams[5] = 0.0; gammaParams[6] = 0.0; // printf("ga0=%f ga1=%f ga2=%f ga3=%f ga4=%f\n", ga0, ga1, ga2, ga3, ga4); // 7 parameters for smoother curves cmsCIExyY xyD; cmsWhitePointFromTemp(&xyD, (double)temp); if (profile == "ACESp0") { xyD = {0.32168, 0.33767, 1.0};//refine white point to avoid differences } cmsToneCurve* GammaTRC[3]; GammaTRC[0] = GammaTRC[1] = GammaTRC[2] = cmsBuildParametricToneCurve(NULL, five, gammaParams);//5 = more smoother than 4 const cmsCIExyYTRIPLE Primaries = { {p[0], p[1], 1.0}, // red {p[2], p[3], 1.0}, // green {p[4], p[5], 1.0} // blue }; const cmsHPROFILE oprofdef = cmsCreateRGBProfile(&xyD, &Primaries, GammaTRC); cmsFreeToneCurve(GammaTRC[0]); if (oprofdef) { constexpr cmsUInt32Number flags = cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE; const cmsHPROFILE iprof = ICCStore::getInstance()->getXYZProfile(); lcmsMutex->lock(); hTransform = cmsCreateTransform(iprof, TYPE_RGB_FLT, oprofdef, TYPE_RGB_FLT, params->icm.outputIntent, flags); lcmsMutex->unlock(); } } if (hTransform) { #ifdef _OPENMP #pragma omp parallel if (multiThread) #endif { AlignedBuffer pBuf(cw * 3); const float normalize = normalizeOut ? 65535.f : 1.f; #ifdef _OPENMP #pragma omp for schedule(dynamic, 16) nowait #endif for (int i = 0; i < ch; ++i) { float *p = pBuf.data; for (int j = 0; j < cw; ++j) { const float r = src->r(i, j); const float g = src->g(i, j); const float b = src->b(i, j); *(p++) = toxyz[0][0] * r + toxyz[0][1] * g + toxyz[0][2] * b; *(p++) = toxyz[1][0] * r + toxyz[1][1] * g + toxyz[1][2] * b; *(p++) = toxyz[2][0] * r + toxyz[2][1] * g + toxyz[2][2] * b; } p = pBuf.data; cmsDoTransform(hTransform, p, p, cw); for (int j = 0; j < cw; ++j) { dst->r(i, j) = *(p++) * normalize; dst->g(i, j) = *(p++) * normalize; dst->b(i, j) = *(p++) * normalize; } } } if (!keepTransForm) { cmsDeleteTransform(hTransform); hTransform = nullptr; } transform = hTransform; } } }