//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: June 2, 2010 // // CA_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::LinEqSolve(int c, int dir, int nDim, float* pfMatr, float* pfVect, float* pfSolution) { //============================================================================== // return 1 if system not solving, 0 if system solved // nDim - system dimension // pfMatr - matrix with coefficients // pfVect - vector with free members // pfSolution - vector with system solution // pfMatr becames trianglular after function call // pfVect changes after function call // // Developer: Henry Guennadi Levkin // //============================================================================== float fMaxElem; float fAcc; int i, j, k, m; for(k=0; k<(nDim-1); k++) {// base row of matrix // search of line with max element fMaxElem = fabs( pfMatr[k*nDim + k] ); m = k; for (i=k+1; i=0; k--) { pfSolution[k] = pfVect[k]; for(i=(k+1); i(b)) {temp=(a);(a)=(b);(b)=temp;} } #define SQR(x) ((x)*(x)) // local variables int width=W, height=H; float (*Gtmp); Gtmp = (float (*)) calloc ((height)*(width), sizeof *Gtmp); int polyord=2, numpar=4, numblox[3]={0,0,0}; //static const int border=8; int rrmin, rrmax, ccmin, ccmax; int top, bottom, left, right, row, col; int rr, cc, rr1, cc1, c, indx, indx1, i, j, k, m, n, dir; int GRBdir[2][3], offset[2][3]; int shifthfloor[3], shiftvfloor[3], shifthceil[3], shiftvceil[3]; int vblsz, hblsz, vblock, hblock; //int verbose=1; int res; int v1=TS, v2=2*TS, v3=3*TS, v4=4*TS;//, p1=-TS+1, p2=-2*TS+2, p3=-3*TS+3, m1=TS+1, m2=2*TS+2, m3=3*TS+3; float eps=1e-10; //tolerance to avoid dividing by zero float wtu, wtd, wtl, wtr; float coeff[2][3][3], CAshift[2][3]; float polymat[3][2][1296], shiftmat[3][2][36], fitparams[3][2][36]; float shifthfrac[3], shiftvfrac[3], temp, p[9]; float gdiff, deltgrb, denom, Ginthfloor, Ginthceil, Gint, gradwt; float grbdiffinthfloor, grbdiffinthceil, grbdiffint, grbdiffold; float blockave[2][3]={{0,0,0},{0,0,0}}, blocksqave[2][3]={{0,0,0},{0,0,0}}, blockdenom[2][3]={{0,0,0},{0,0,0}}, blockvar[2][3]; static const float gaussg[5] = {0.171582, 0.15839, 0.124594, 0.083518, 0.0477063}; static const float gaussrb[3] = {0.332406, 0.241376, 0.0924212}; //char *buffer1; // vblsz*hblsz*3*2 //float (*blockshifts)[3][2]; // vblsz*hblsz*3*2 float blockshifts[10000][3][2]; //fixed memory allocation float blockwt[10000]; //fixed memory allocation char *buffer; // TS*TS*16 float (*rgb)[3]; // TS*TS*12 float (*grbdiff); // TS*TS*4 float (*gshift); // TS*TS*4 float (*ghpfh); // TS*TS*4 float (*ghpfv); // TS*TS*4 float (*rbhpfh); // TS*TS*4 float (*rbhpfv); // TS*TS*4 /* assign working space; this would not be necessary if the algorithm is part of the larger pre-interpolation processing */ buffer = (char *) malloc(36*TS*TS); //merror(buffer,"CA_correct()"); memset(buffer,0,36*TS*TS); // rgb array rgb = (float (*)[3]) buffer; grbdiff = (float (*)) (buffer + 12*TS*TS); gshift = (float (*)) (buffer + 16*TS*TS); ghpfh = (float (*)) (buffer + 20*TS*TS); ghpfv = (float (*)) (buffer + 24*TS*TS); rbhpfh = (float (*)) (buffer + 28*TS*TS); rbhpfv = (float (*)) (buffer + 32*TS*TS); vblsz=ceil((float)(height+border2)/(TS-border2))+2; hblsz=ceil((float)(width+border2)/(TS-border2))+2; /*buffer1 = (char *) malloc(4*vblsz*hblsz*3*2); merror(buffer1,"CA_correct()"); memset(buffer1,0,4*vblsz*hblsz*3*2); // block CA shifts blockshifts = (float (*)[3][2]) buffer1;*/ // Main algorithm: Tile loop //#pragma omp parallel for shared(image,height,width) private(top,left,indx,indx1) schedule(dynamic) for (top=-border, vblock=1; top < height; top += TS-border2, vblock++) for (left=-border, hblock=1; left < width; left += TS-border2, hblock++) { bottom = MIN( top+TS,height+border); right = MIN(left+TS, width+border); rr1 = bottom - top; cc1 = right - left; //t1_init = clock(); // rgb from input CFA data // rgb values should be floating point number between 0 and 1 // after white balance multipliers are applied if (top<0) {rrmin=border;} else {rrmin=0;} if (left<0) {ccmin=border;} else {ccmin=0;} if (bottom>height) {rrmax=height-top;} else {rrmax=rr1;} if (right>width) {ccmax=width-left;} else {ccmax=cc1;} for (rr=rrmin; rr < rrmax; rr++) for (row=rr+top, cc=ccmin; cc < ccmax; cc++) { col = cc+left; c = FC(rr,cc); indx=row*width+col; indx1=rr*TS+cc; rgb[indx1][c] = (ri->data[row][col])/65535.0f; } blockwt[vblock*hblsz+hblock]=0; //blockwt[vblock*hblsz+hblock]=1; // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //fill borders if (rrmin>0) { for (rr=0; rrdata[(height-rr-2)][left+cc])/65535.0f; } } if (ccmin>0) { for (rr=rrmin; rrdata[(top+rr)][(width-cc-2)])/65535.0f; } } //also, fill the image corners if (rrmin>0 && ccmin>0) { for (rr=0; rrdata[border2-rr][border2-cc])/65535.0f; } } if (rrmaxdata[(height-rr-2)][(width-cc-2)])/65535.0f; } } if (rrmin>0 && ccmaxdata[(border2-rr)][(width-cc-2)])/65535.0f; } } if (rrmax0) { for (rr=0; rrdata[(height-rr-2)][(border2-cc)])/65535.0f; } } //end of border fill // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for (j=0; j<2; j++) for (k=0; k<3; k++) for (c=0; c<3; c+=2) coeff[j][k][c]=0; //end of initialization for (rr=3; rr < rr1-3; rr++) for (row=rr+top, cc=3, indx=rr*TS+cc; cc < cc1-3; cc++, indx++) { col = cc+left; c = FC(rr,cc); if (c!=1) { //compute directional weights using image gradients wtu=1/SQR(eps+fabs(rgb[(rr+1)*TS+cc][1]-rgb[(rr-1)*TS+cc][1])+fabs(rgb[(rr)*TS+cc][c]-rgb[(rr-2)*TS+cc][c])+fabs(rgb[(rr-1)*TS+cc][1]-rgb[(rr-3)*TS+cc][1])); wtd=1/SQR(eps+fabs(rgb[(rr-1)*TS+cc][1]-rgb[(rr+1)*TS+cc][1])+fabs(rgb[(rr)*TS+cc][c]-rgb[(rr+2)*TS+cc][c])+fabs(rgb[(rr+1)*TS+cc][1]-rgb[(rr+3)*TS+cc][1])); wtl=1/SQR(eps+fabs(rgb[(rr)*TS+cc+1][1]-rgb[(rr)*TS+cc-1][1])+fabs(rgb[(rr)*TS+cc][c]-rgb[(rr)*TS+cc-2][c])+fabs(rgb[(rr)*TS+cc-1][1]-rgb[(rr)*TS+cc-3][1])); wtr=1/SQR(eps+fabs(rgb[(rr)*TS+cc-1][1]-rgb[(rr)*TS+cc+1][1])+fabs(rgb[(rr)*TS+cc][c]-rgb[(rr)*TS+cc+2][c])+fabs(rgb[(rr)*TS+cc+1][1]-rgb[(rr)*TS+cc+3][1])); //store in rgb array the interpolated G value at R/B grid points using directional weighted average rgb[indx][1]=(wtu*rgb[indx-v1][1]+wtd*rgb[indx+v1][1]+wtl*rgb[indx-1][1]+wtr*rgb[indx+1][1])/(wtu+wtd+wtl+wtr); } if (row>-1 && row-1 && col4*blockvar[0][c] || SQR(blockshifts[(vblock)*hblsz+hblock][c][1])>4*blockvar[1][c]) continue; numblox[c] += 1; for (dir=0; dir<2; dir++) { for (i=0; iheight) {rrmax=height-top;} else {rrmax=rr1;} if (right>width) {ccmax=width-left;} else {ccmax=cc1;} for (rr=rrmin; rr < rrmax; rr++) for (row=rr+top, cc=ccmin; cc < ccmax; cc++) { col = cc+left; c = FC(rr,cc); indx=row*width+col; indx1=rr*TS+cc; //rgb[indx1][c] = image[indx][c]/65535.0f; rgb[indx1][c] = (ri->data[row][col])/65535.0f; if ((c&1)==0) rgb[indx1][1] = Gtmp[indx]; } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //fill borders if (rrmin>0) { for (rr=0; rrdata[(height-rr-2)][left+cc])/65535.0f; rgb[(rrmax+rr)*TS+cc][1] = Gtmp[(height-rr-2)*width+left+cc]; } } if (ccmin>0) { for (rr=rrmin; rrdata[(top+rr)][(width-cc-2)])/65535.0f; rgb[rr*TS+ccmax+cc][1] = Gtmp[(top+rr)*width+(width-cc-2)]; } } //also, fill the image corners if (rrmin>0 && ccmin>0) { for (rr=0; rrdata[border2-rr][border2-cc])/65535.0f; rgb[(rr)*TS+cc][1] = Gtmp[(border2-rr)*width+border2-cc]; } } if (rrmaxdata[(height-rr-2)][(width-cc-2)])/65535.0f; rgb[(rrmax+rr)*TS+ccmax+cc][1] = Gtmp[(height-rr-2)*width+(width-cc-2)]; } } if (rrmin>0 && ccmaxdata[(border2-rr)][(width-cc-2)])/65535.0f; rgb[(rr)*TS+ccmax+cc][1] = Gtmp[(border2-rr)*width+(width-cc-2)]; } } if (rrmax0) { for (rr=0; rrdata[(height-rr-2)][(border2-cc)])/65535.0f; rgb[(rrmax+rr)*TS+cc][1] = Gtmp[(height-rr-2)*width+(border2-cc)]; } } //end of border fill // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% blockshifts[(vblock)*hblsz+hblock][0][0] = blockshifts[(vblock)*hblsz+hblock][0][1] = 0; blockshifts[(vblock)*hblsz+hblock][2][0] = blockshifts[(vblock)*hblsz+hblock][2][1] = 0; for (i=0; ifabs(grbdiffint) ) { rgb[(rr)*TS+cc][c]=rgb[(rr)*TS+cc][1]-grbdiffint; } if (grbdiffold*grbdiffint<0) { rgb[(rr)*TS+cc][c]=rgb[(rr)*TS+cc][1]; } } } // copy CA corrected results back to image matrix for (rr=border; rr < rr1-border; rr++) for (row=rr+top, cc=border+(FC(rr,2)&1); cc < cc1-border; cc+=2) { col = cc + left; indx = row*width + col; c = FC(row,col); ri->data[row][col] = CLIP((int)(65535.0f*rgb[(rr)*TS+cc][c] + 0.5f)); } } // clean up free(buffer); free(Gtmp); //free(buffer1); #undef TS #undef polyord #undef numpar #undef border #undef PIX_SORT #undef SQR }