/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #ifndef __CURVES_H__ #define __CURVES_H__ #include #include #include #include #include #define CURVES_MIN_POLY_POINTS 1000 #define SQR(x) ((x)*(x)) namespace rtengine { class CurveFactory { friend class Curve; protected: // look-up tables for the standard srgb gamma and its inverse (filled by init()) static int *igammatab_srgb; static int *gammatab_srgb; // look-up tables for the simple exponential gamma static int *gammatab; // functions calculating the parameters of the contrast curve based on the desired slope at the center static double solve_upper (double m, double c, double deriv); static double solve_lower (double m, double c, double deriv); static double dupper (const double b, const double m, const double c); static double dlower (const double b, const double m, const double c); // basic convex function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point static inline double basel (double x, double m1, double m2) { if (x==0.0) return 0.0; double k = sqrt ((m1-1.0)*(m1-m2)/2) / (1.0-m2); double l = (m1-m2) / (1.0-m2) + k; double lx = log(x); return m2*x + (1.0-m2)*(2.0 - exp(k*lx))*exp(l*lx); } // basic concave function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point static inline double baseu (double x, double m1, double m2) { return 1.0 - basel(1.0-x, m1, m2); } // convex curve between (0,0) and (1,1) with slope m at (0,0). hr controls the highlight recovery static inline double cupper (double x, double m, double hr) { if (hr>1.0) return baseu (x, m, 2.0*(hr-1.0)/m); double x1 = (1.0-hr)/m; double x2 = x1 + hr; if (x>=x2) return 1.0; if (x=x2) return 1.0; if (xx1 || sr<0.001) return 1-(1-x)*m; else return y1+m*(x-x1)-(1-m)*SQR(SQR(1-x/x1)); } // tone curve base. a: slope (from exp.comp.), b: black, D: max. x value (can be>1), hr,sr: highlight,shadow recovery static inline double basecurve (double x, double a, double b, double D, double hr, double sr) { if (b<0) { double m = 0.5; double slope = 1+b; double y = -b+m*slope; if (x>m) return y + (x - m)*slope; else return y*clower2(x/m, slope*m/y, 2.0-sr); } else { double slope = a/(1-b); double m = a*D>1 ? b/a+(0.25)/slope : b+(1-b)/4; double y = a*D>1 ? 0.25 : (m-b/a)*slope; if (x<=m) return b==0 ? x*slope : clower (x/m, slope*m/y, sr) * y; else if (a*D>1) return y+(1.0-y)*cupper2((x-m)/(D-m), slope*(D-m)/(1.0-y), hr); else return y+(x-m)*slope; } } // brightness curve at point x, only positive amount it supported static inline double brightnessbase (double x, double amount) { if (x<0.5) return x + amount*cupper(2.0*x, 4.5, 0.0)/3.0; else return x + amount*cupper(2.0-2.0*x, 1.5, 0.0)/3.0; } // brightness curve at point x, positive negative and zero amount are supported static inline double brightness (double x, double amount) { if (amount==0) return x; else if (amount>0) return brightnessbase (x, amount); else return 1.0 - brightnessbase (1.0-x, -amount); } public: static void init (); static void cleanup (); // standard srgb gamma and its inverse static inline double gamma2 (double x) { return x <= 0.00304 ? x*12.92 : 1.055*exp(log(x)/2.4)-0.055; } static inline double igamma2 (double x) { return x <= 0.03928 ? x/12.92 : exp(log((x+0.055)/1.055)*2.4); } // gamma function with adjustable parameters static inline double gamma (double x, double gamma, double start, double slope, double mul, double add){ return (x <= start ? x*slope : exp(log(x)/gamma)*mul-add); } // gamma functions on [0,65535] based on look-up tables static inline int gamma_srgb (int x) { return gammatab_srgb[x]; } static inline int gamma (int x) { return gammatab[x]; } static inline int igamma_srgb (int x) { return igammatab_srgb[x]; } public: // static void updateCurve3 (int* curve, int* ohistogram, const std::vector& cpoints, double defmul, double ecomp, int black, double hlcompr, double shcompr, double br, double contr, double gamma_, bool igamma, int skip=1); static void complexCurve (double ecomp, double black, double hlcompr, double hlcomprthresh, double shcompr, double br, double contr, double defmul, double gamma_, bool igamma, const std::vector& curvePoints, unsigned int* histogram, float* hlCurve, float* shCurve, int* outCurve, unsigned int* outBeforeCCurveHistogram, int skip=1); static void complexsgnCurve (double saturation, bool satlimit, double satlimthresh, const std::vector& curvePoints, float* outCurve, int skip=1); }; class Curve { protected: int N; int ppn; // targeted polyline point number double* x; double* y; std::vector poly_x; // X points of the faceted curve std::vector poly_y; // Y points of the faceted curve double* ypp; CurveType kind; protected: void spline_cubic_set (); void NURBS_set (); static inline double p00 (double x, double prot) { return CurveFactory::clower (x, 2.0, prot); } static inline double p11 (double x, double prot) { return CurveFactory::cupper (x, 2.0, prot); } static inline double p01 (double x, double prot) { return x<=0.5 ? CurveFactory::clower (x*2, 2.0, prot)/2.0 : 0.5 + CurveFactory::cupper ((x-0.5)*2, 2.0, prot)/2.0; } static inline double p10 (double x, double prot) { return x<=0.5 ? CurveFactory::cupper (x*2, 2.0, prot)/2.0 : 0.5 + CurveFactory::clower ((x-0.5)*2, 2.0, prot)/2.0; } static inline double pfull (double x, double prot, double sh, double hl) { return (1-sh)*(1-hl)*p00(x,prot) + sh*hl*p11(x,prot) + (1-sh)*hl*p01(x,prot) + sh*(1-hl)*p10(x,prot); } public: Curve (const std::vector& points, int ppn=CURVES_MIN_POLY_POINTS); ~Curve (); double getVal (double x); void getVal (const std::vector& t, std::vector& res); }; } #endif