/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * 2010 Ilya Popov * 2012 Emil Martinec */ #ifndef CPLX_WAVELET_LEVEL_H_INCLUDED #define CPLX_WAVELET_LEVEL_H_INCLUDED #include #include #include "array2D.h" #include "gauss.h" namespace rtengine { #define MAX(a,b) ((a) > (b) ? (a) : (b)) #define MIN(a,b) ((a) > (b) ? (b) : (a)) #define SQR(x) ((x)*(x)) ////////////////////////////////////////////////////////////////////////////// template class wavelet_level { // full size size_t m_w, m_h; // size of low frequency part size_t m_w2, m_h2; // size of padded border size_t m_pad; // level of decomposition int lvl; // spacing of filter taps size_t skip; // array of pointers to lines of coeffs // actually is a single contiguous data array pointed by m_coeffs[0] //T ** m_coeffs; //array2D wavcoeffs(4,1); //data structure: first label is output channel (LL,LH,HL,HH), second is pixel location in flattened array // weights storage //T ** m_weights_rows; //T ** m_weights_cols; // allocation and destruction of data storage T ** create(size_t n); void destroy(T ** subbands); // load a row/column of input data, possibly with padding template void loadbuffer(E * src, E * dst, int srclen, int pitch); //void dwt_2d(size_t w, size_t h); //void idwt_2d(size_t w, size_t h, int alpha); void AnalysisFilter (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int srclen); void SynthesisFilter (T * srcLo, T * srcHi, T * dst, T *bufferLo, T *bufferHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int dstlen); void imp_nr (T* src, int width, int height, double thresh); public: T ** wavcoeffs; template wavelet_level(E * src, int level, int padding, size_t w, size_t h, float *filterV, float *filterH, int len, int offset) : m_w(w), m_h(h), m_w2(w), m_h2(h), m_pad(padding), wavcoeffs(NULL), lvl(level), skip(1< void decompose_level(E *src, float *filterV, float *filterH, int len, int offset, int skip); template void reconstruct_level(E *dst, float *filterV, float *filterH, int len, int offset, int skip); }; ////////////////////////////////////////////////////////////////////////////// template T ** wavelet_level::create(size_t n) { T * data = new T[4*n]; T ** subbands = new T*[4]; for(size_t j = 0; j < 4; j++) { subbands[j] = data + n * j; } return subbands; } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% template void wavelet_level::destroy(T ** subbands) { if(subbands) { delete[] subbands[0]; delete[] subbands; } } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% template template void wavelet_level::loadbuffer(E * src, E * dst, int pitch, int srclen) { E * tmp = dst + m_pad; memset(dst, 0, (MAX(m_w2,m_h2))*sizeof(E)); /*int cosetlen = (srclen+1)/skip; //create buffer with 'skip' rows and 'cosetlen' columns from src data //'skip' is the spacing of taps on the wavelet filter to be applied to src rows/columns //therefore there are 'skip' cosets of the row/column data, each of length 'cosetlen' //'pitch' is 1 for rows, W for columns for (size_t i = 0, j = 0; i void wavelet_level::AnalysisFilter (T * srcbuffer, T * dstLo, T * dstHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int srclen) { /* Basic convolution code * Applies an FIR filter 'filter' with filter length 'taps', * aligning the 'offset' element of the filter * with the input pixel, and skipping 'pitch' pixels * between taps (eg pitch=1 for horizontal filtering, * pitch=W for vertical, pitch=W+1,W-1 for diagonals. * Currently diagonal filtering is not supported * for the full source array, until a more sophisticated * treatment of mirror BC's is implemented. * */ //input data is 'skip' rows and cosetlen=srclen/skip columns (which includes padding at either and) /*int cosetlen = srclen/skip; for (size_t coset=0; cosettaps && iskip*taps && i void wavelet_level::SynthesisFilter (T * srcLo, T * srcHi, T * dst, T *bufferLo, T *bufferHi, float *filterLo, float *filterHi, int taps, int offset, int pitch, int dstlen) { /* Basic convolution code * Applies an FIR filter 'filter' with 'len' taps, * aligning the 'offset' element of the filter * with the input pixel, and skipping 'pitch' pixels * between taps (eg pitch=1 for horizontal filtering, * pitch=W for vertical, pitch=W+1,W-1 for diagonals. * Currently diagonal filtering is not supported * for the full source array, until a more sophisticated * treatment of mirror BC's is implemented. * */ // load into buffer /* int srclen=(dstlen+(dstlen%skip)+2*m_pad); //length of row/col in src (coarser level) int cosetlen = srclen/skip; //length of coset (skip is spacing of taps in filter) for (size_t i=0, j=0; itaps && i<(cosetlen-taps)) {//bulk for (int j=0, l=-shift; jskip*taps && i<(srclen-skip*taps)) {//bulk for (int j=0, l=-skip*shift; j65535.0f) { float xxx=tot; float yyy=1.0f; } } } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% template template void wavelet_level::decompose_level(E *src, float *filterV, float *filterH, int taps, int offset, int skip) { T *tmpLo = new T[m_w*m_h2]; T *tmpHi = new T[m_w*m_h2]; T *buffer = new T[MAX(m_w2,m_h2)]; /* filter along columns */ for (int j=0; j template void wavelet_level::reconstruct_level(E *dst, float *filterV, float *filterH, int taps, int offset, int skip) { T *tmpLo = new T[m_w*m_h2]; T *tmpHi = new T[m_w*m_h2]; int buflen = MAX(m_w2,m_h2); float *bufferLo = new float[buflen]; float *bufferHi = new float[buflen]; /* filter along rows */ for (int i=0; i void wavelet_level::imp_nr (T* src, int width, int height, double thresh) { // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // impulse noise removal // local variables float hpfabs, hfnbrave; const float eps = 0.01; // buffer for the lowpass image float * lpf = new float[width*height]; // buffer for the highpass image float * impish = new float[width*height]; //The cleaning algorithm starts here //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // modified bilateral filter for lowpass image, omitting input pixel; or Gaussian blur /* static float eps = 1.0; float wtdsum[3], dirwt, norm; int i1, j1; AlignedBuffer* buffer = new AlignedBuffer (MAX(width,height)); gaussHorizontal (src, lpf, buffer, width, height, MAX(2.0,thresh-1.0), false); gaussVertical (lpf, lpf, buffer, width, height, MAX(2.0,thresh-1.0), false); delete buffer; */ boxblur(src, lpf, 2, 2, width, height); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% float impthr = MAX(1.0,5.5-thresh); for (int i=0; i < height; i++) for (int j=0; j < width; j++) { hpfabs = fabs(src[i*width+j]-lpf[i*width+j]); //block average of high pass data for (int i1=MAX(0,i-2), hfnbrave=0; i1<=MIN(i+2,height-1); i1++ ) for (int j1=MAX(0,j-2); j1<=MIN(j+2,width-1); j1++ ) { hfnbrave += fabs(src[i1*width+j1]-lpf[i1*width+j1]); } hfnbrave = (hfnbrave-hpfabs)/24; hpfabs>(hfnbrave*impthr) ? impish[i*width+j]=1 : impish[i*width+j]=0; }//now impulsive values have been identified for (int i=0; i < height; i++) for (int j=0; j < width; j++) { if (!impish[i*width+j]) continue; float norm=0.0; float wtdsum=0.0; for (int i1=MAX(0,i-2), hfnbrave=0; i1<=MIN(i+2,height-1); i1++ ) for (int j1=MAX(0,j-2); j1<=MIN(j+2,width-1); j1++ ) { if (i1==i && j1==j) continue; if (impish[i1*width+j1]) continue; float dirwt = 1/(SQR(src[i1*width+j1]-src[i*width+j])+eps);//use more sophisticated rangefn??? wtdsum += dirwt*src[i1*width+j1]; norm += dirwt; } //wtdsum /= norm; if (norm) { src[i*width+j]=wtdsum/norm;//low pass filter } }//now impulsive values have been corrected delete [] lpf; delete [] impish; } }; #endif