//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 24, 2010 // optimized: September 2013, Ingo Weyrich // further optimized: February 2018, Ingo Weyrich // // Ingo Weyrich March 1028: The above comment 'Chromatic Aberration Auto-correction' sounds wrong // I guess it should have been 'Purple fringe correction' though it's not restricted to 'Purple' // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "../rtgui/myflatcurve.h" #include "rt_math.h" #include "opthelper.h" #include "median.h" #include "jaggedarray.h" #define BENCHMARK #include "StopWatch.h" namespace rtengine { // Defringe in Lab mode void ImProcFunctions::PF_correct_RT(LabImage * lab, double radius, int thresh) { BENCHFUN std::unique_ptr chCurve; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve.reset(new FlatCurve(params->defringe.huecurve)); } const int width = lab->W, height = lab->H; // temporary array to store chromaticity const std::unique_ptr fringe(new float[width * height]); JaggedArray tmpa(width, height); JaggedArray tmpb(width, height); double chromave = 0.0; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur(lab->a, tmpa, width, height, radius); gaussianBlur(lab->b, tmpb, width, height, radius); #ifdef _OPENMP #pragma omp for reduction(+:chromave) schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { #ifdef __SSE2__ // vectorized per row precalculation of the atan2 values if (chCurve) { int k = 0; for (; k < width - 3; k += 4) { STVFU(fringe[i * width + k], xatan2f(LVFU(lab->b[i][k]), LVFU(lab->a[i][k]))); } for (; k < width; k++) { fringe[i * width + k] = xatan2f(lab->b[i][k], lab->a[i][k]); } } #endif for (int j = 0; j < width; j++) { float chromaChfactor = 1.f; if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values const float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate const float HH = xatan2f(lab->b[i][j], lab->a[i][j]); #endif float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H) if (chparam < 0.f) { chparam *= 2.f; // increased action if chparam < 0 } chromaChfactor = SQR(1.f + chparam); } const float chroma = chromaChfactor * (SQR(lab->a[i][j] - tmpa[i][j]) + SQR(lab->b[i][j] - tmpb[i][j])); // modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= height * width; if (chromave > 0.0) { // now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel for simd #endif for (int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); const int halfwin = std::ceil(2 * radius) + 1; // Issue 1674: // often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < halfwin - 1; j++) { // test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } for (; j < width - halfwin + 1; j++) { // test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } for (; j < width; j++) { // test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } } // end of ab channel averaging } } // Defringe in CIECAM02 mode void ImProcFunctions::PF_correct_RTcam(CieImage * ncie, double radius, int thresh) { BENCHFUN std::unique_ptr chCurve; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve.reset(new FlatCurve(params->defringe.huecurve)); } const int width = ncie->W, height = ncie->H; // temporary array to store chromaticity const std::unique_ptr fringe(new float[width * height]); float** const sraa = ncie->h_p; // we use the ncie->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure float** const srbb = ncie->C_p; // we use the ncie->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure JaggedArray tmaa(width, height); JaggedArray tmbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ const vfloat piDiv180v = F2V(RT_PI_F_180); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j])); STVFU(sraa[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.y); STVFU(srbb[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.x); } #endif for (; j < width; j++) { const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]); sraa[i][j] = ncie->C_p[i][j] * sincosval.y; srbb[i][j] = ncie->C_p[i][j] * sincosval.x; } } } double chromave = 0.0; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur(sraa, tmaa, width, height, radius); gaussianBlur(srbb, tmbb, width, height, radius); float chromaChfactor = 1.f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { #ifdef __SSE2__ // vectorized per row precalculation of the atan2 values if (chCurve) { int j = 0; for (; j < width - 3; j += 4) { STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j]))); } for (; j < width; j++) { fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]); } } #endif for (int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan2 values const float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate const float HH = xatan2f(srbb[i][j], sraa[i][j]); #endif float chparam = chCurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f; //get C=f(H) if (chparam < 0.f) { chparam *= 2.f; // increase action if chparam < 0 } chromaChfactor = SQR(1.f + chparam); } const float chroma = chromaChfactor * (SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j])); //modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= height * width; if (chromave > 0.0) { // now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel for simd #endif for (int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); const int halfwin = std::ceil(2 * radius) + 1; // Issue 1674: // often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < halfwin - 1; j++) { if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = 0; j1 < j + halfwin; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } else { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; } } for (; j < width - halfwin + 1; j++) { if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } else { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; } } for (; j < width; j++) { if (fringe[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) { // neighbourhood average of pixels weighted by chrominance const float wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } else { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; } } } // end of ab channel averaging #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { const vfloat interav = LVFU(tmaa[i][j]); const vfloat interbv = LVFU(tmbb[i][j]); STVFU(ncie->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180)); STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav))); } #endif for (; j < width; j++) { const float intera = tmaa[i][j]; const float interb = tmbb[i][j]; ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } } } } // CIECAM02 hot/bad pixel filter void ImProcFunctions::Badpixelscam(CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad) { BENCHFUN if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here return; } const int width = ncie->W, height = ncie->H; constexpr float eps = 1.f; JaggedArray tmL(width, height); const std::unique_ptr badpix(new float[width * height]); if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here // luma badpixels // for bad pixels in sh channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure uint8_t *badpixb = reinterpret_cast(badpix.get()); constexpr float sh_thr = 4.5f; // low value for luma sh_p to avoid artifacts constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation #ifdef _OPENMP #pragma omp parallel #endif { //luma sh_p gaussianBlur(ncie->sh_p, tmL, width, height, radius / 2.0); // low value to avoid artifacts #ifdef __SSE2__ const vfloat shthrv = F2V(shthr); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { const vfloat shfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(tmL[i][j])); vfloat shmedv = ZEROV; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmedv += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(tmL[i1][j1])); } } uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv)); badpixb[i * width + j] = mask & 1; badpixb[i * width + j + 1] = mask & 2; badpixb[i * width + j + 2] = mask & 4; badpixb[i * width + j + 3] = mask & 8; } #endif for (; j < width - 2; j++) { const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } for (; j < width; j++) { const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { if (!badpixb[i1 * width + j1]) { sum += ncie->sh_p[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps); shsum += dirsh * ncie->sh_p[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { ncie->sh_p[i][j] = shsum / norm; } else if (tot > 0.f) { ncie->sh_p[i][j] = sum / tot; } } } for (; j < width - 2; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { if (!badpixb[i1 * width + j1]) { sum += ncie->sh_p[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps); shsum += dirsh * ncie->sh_p[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { ncie->sh_p[i][j] = shsum / norm; } else if (tot > 0.f) { ncie->sh_p[i][j] = sum / tot; } } } for (; j < width; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { if (!badpixb[i1 * width + j1]) { sum += ncie->sh_p[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps); shsum += dirsh * ncie->sh_p[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { ncie->sh_p[i][j] = shsum / norm; } else if (tot > 0.f) { ncie->sh_p[i][j] = sum / tot; } } } } } // end luma badpixels if (hotbad) { JaggedArray sraa(width, height); JaggedArray srbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ const vfloat piDiv180v = F2V(RT_PI_F_180); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j])); STVFU(sraa[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.y); STVFU(srbb[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.x); } #endif for (; j < width; j++) { const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]); sraa[i][j] = ncie->C_p[i][j] * sincosval.y; srbb[i][j] = ncie->C_p[i][j] * sincosval.x; } } } float** const tmaa = tmL; // reuse tmL buffer JaggedArray tmbb(width, height); if (mode == 2) { // choice of gaussian blur #ifdef _OPENMP #pragma omp parallel #endif { //chroma a and b gaussianBlur(sraa, tmaa, width, height, radius); gaussianBlur(srbb, tmbb, width, height, radius); } } else if (mode == 1) { // choice of median #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for nowait // nowait because next loop inside this parallel region is independent on this one #endif for (int i = 0; i < height; i++) { const int ip = i < 2 ? i + 2 : i - 2; const int in = i > height - 3 ? i - 2 : i + 2; for (int j = 0; j < width; j++) { const int jp = j < 2 ? j + 2 : j -2; const int jn = j > width - 3 ? j - 2 : j + 2; tmaa[i][j] = median(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn]); } } #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { const int ip = i < 2 ? i + 2 : i - 2; const int in = i > height - 3 ? i - 2 : i + 2; for (int j = 0; j < width; j++) { const int jp = j < 2 ? j + 2 : j -2; const int jn = j > width - 3 ? j - 2 : j + 2; tmbb[i][j] = median(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn]); } } } } // begin chroma badpixels double chrommed = 0.0; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { const float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= height * width; if (chrommed > 0.0) { // now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed); const int halfwin = std::ceil(2 * radius) + 1; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ const vfloat chrommedv = F2V(chrommed); const vfloat onev = F2V(1.f); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv)); } #endif for (; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed); } } #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = 0; j1 < j + halfwin; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } const float intera = atot / norm; const float interb = btot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if (CC < chrom) { ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->C_p[i][j] = CC; } } } #ifdef __SSE2__ const vfloat threshfactorv = F2V(threshfactor); const vfloat chromv = F2V(chrom); const vfloat piDiv180v = F2V(RT_PI_F_180); for (; j < width - halfwin - 3; j+=4) { vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv); if (_mm_movemask_ps((vfloat)selMask)) { vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { const vfloat wtv = LVFU(badpix[i1 * width + j1]); atotv += wtv * LVFU(sraa[i1][j1]); btotv += wtv * LVFU(srbb[i1][j1]); normv += wtv; } } const vfloat interav = atotv / normv; const vfloat interbv = btotv / normv; const vfloat CCv = vsqrtf(SQRV(interbv) + SQRV(interav)); selMask = vandm(selMask, vmaskf_lt(CCv, chromv)); if (_mm_movemask_ps((vfloat)selMask)) { STVFU(ncie->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(ncie->h_p[i][j]))); STVFU(ncie->C_p[i][j], vself(selMask, CCv, LVFU(ncie->C_p[i][j]))); } } } #endif for (; j < width - halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } const float intera = atot / norm; const float interb = btot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if (CC < chrom) { ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->C_p[i][j] = CC; } } } for (; j < width; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } } const float intera = atot / norm; const float interb = btot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if (CC < chrom) { ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; ncie->C_p[i][j] = CC; } } } } } } } } // CbDL reduce artifacts void ImProcFunctions::BadpixelsLab(LabImage * lab, double radius, int thresh, float chrom) { BENCHFUN if (radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here return; } const int halfwin = std::ceil(2 * radius) + 1; const int width = lab->W, height = lab->H; constexpr float eps = 1.f; JaggedArray tmL(width, height); const std::unique_ptr badpix(new float[width * height]); if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here //luma badpixels // for bad pixels in L channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure uint8_t *badpixb = reinterpret_cast(badpix.get()); constexpr float sh_thr = 4.5f; // low value for luma L to avoid artifacts constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation #ifdef _OPENMP #pragma omp parallel #endif { // blur L channel gaussianBlur(lab->L, tmL, width, height, radius / 2.0); // low value to avoid artifacts #ifdef __SSE2__ const vfloat shthrv = F2V(shthr); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { const vfloat shfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(tmL[i][j])); vfloat shmedv = ZEROV; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmedv += vabsf(LVFU(lab->L[i1][j1]) - LVFU(tmL[i1][j1])); } } uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv)); badpixb[i * width + j] = mask & 1; badpixb[i * width + j + 1] = mask & 2; badpixb[i * width + j + 2] = mask & 4; badpixb[i * width + j + 3] = mask & 8; } #endif for (; j < width - 2; j++) { const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } for (; j < width; j++) { const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]); float shmed = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]); } } badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr); } } } #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { if (!badpixb[i1 * width + j1]) { sum += lab->L[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps); shsum += dirsh * lab->L[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { lab->L[i][j] = shsum / norm; } else if (tot > 0.f) { lab->L[i][j] = sum / tot; } } } for (; j < width - 2; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { if (!badpixb[i1 * width + j1]) { sum += lab->L[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps); shsum += dirsh * lab->L[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { lab->L[i][j] = shsum / norm; } else if (tot > 0.f) { lab->L[i][j] = sum / tot; } } } for (; j < width; j++) { if (badpixb[i * width + j]) { float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f; for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { if (!badpixb[i1 * width + j1]) { sum += lab->L[i1][j1]; tot += 1.f; const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps); shsum += dirsh * lab->L[i1][j1]; norm += dirsh; } } } if (norm > 0.f) { lab->L[i][j] = shsum / norm; } else if (tot > 0.f) { lab->L[i][j] = sum / tot; } } } } } // end luma badpixels float** const tmaa = tmL; // reuse tmL buffer JaggedArray tmbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { // blur chroma a and b gaussianBlur(lab->a, tmaa, width, height, radius); gaussianBlur(lab->b, tmbb, width, height, radius); } // begin chroma badpixels double chrommed = 0.0; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { const float chroma = SQR(lab->a[i][j] - tmaa[i][j]) + SQR(lab->b[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= height * width; if (chrommed > 0.0) { // now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ const vfloat chrommedv = F2V(chrommed); const vfloat onev = F2V(1.f); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv)); } #endif for (; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed); } } } const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed); chrom *= 327.68f; chrom *= chrom; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = 0; j1 < j + halfwin; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } } if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } } #ifdef __SSE2__ const vfloat chromv = F2V(chrom); const vfloat threshfactorv = F2V(threshfactor); for (; j < width - halfwin - 3; j += 4) { vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv); if (_mm_movemask_ps(reinterpret_cast(selMask))) { vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { const vfloat wtv = LVFU(badpix[i1 * width + j1]); atotv += wtv * LVFU(lab->a[i1][j1]); btotv += wtv * LVFU(lab->b[i1][j1]); normv += wtv; } } selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv))); if (_mm_movemask_ps(reinterpret_cast(selMask))) { const vfloat aOrig = LVFU(lab->a[i][j]); const vfloat bOrig = LVFU(lab->b[i][j]); STVFU(lab->a[i][j], vself(selMask, atotv / normv, aOrig)); STVFU(lab->b[i][j], vself(selMask, btotv / normv, bOrig)); } } } #endif for (; j < width - halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } } if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } } for (; j < width; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f, btot = 0.f, norm = 0.f; for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) { const float wt = badpix[i1 * width + j1]; atot += wt * lab->a[i1][j1]; btot += wt * lab->b[i1][j1]; norm += wt; } } if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) { lab->a[i][j] = atot / norm; lab->b[i][j] = btot / norm; } } } } } } }