/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include "rtengine.h" #include "rawimagesource.h" #include "rawimagesource_i.h" #include "median.h" #include "rawimage.h" #include "mytime.h" #include "iccmatrices.h" #include "iccstore.h" #include "image8.h" #include "curves.h" #include "dfmanager.h" #include "ffmanager.h" #include "slicer.h" #include "../rtgui/options.h" #include "dcp.h" #include "rt_math.h" #include "improcfun.h" #ifdef _OPENMP #include #endif #include "opthelper.h" namespace rtengine { extern const Settings* settings; #undef ABS #undef DIST #define ABS(a) ((a)<0?-(a):(a)) #define DIST(a,b) (ABS(a-b)) #define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} } #define med3x3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \ p[0]=a0; p[1]=a1; p[2]=a2; p[3]=a3; p[4]=a4; p[5]=a5; p[6]=a6; p[7]=a7; p[8]=a8; \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[1]); PIX_SORT(p[3],p[4]); PIX_SORT(p[6],p[7]); \ PIX_SORT(p[1],p[2]); PIX_SORT(p[4],p[5]); PIX_SORT(p[7],p[8]); \ PIX_SORT(p[0],p[3]); PIX_SORT(p[5],p[8]); PIX_SORT(p[4],p[7]); \ PIX_SORT(p[3],p[6]); PIX_SORT(p[1],p[4]); PIX_SORT(p[2],p[5]); \ PIX_SORT(p[4],p[7]); PIX_SORT(p[4],p[2]); PIX_SORT(p[6],p[4]); \ PIX_SORT(p[4],p[2]); median=p[4];} //a4 is the median #define med5(a0,a1,a2,a3,a4,median) { \ p[0]=a0; p[1]=a1; p[2]=a2; p[3]=a3; p[4]=a4; \ PIX_SORT(p[0],p[1]) ; PIX_SORT(p[3],p[4]) ; PIX_SORT(p[0],p[3]) ; \ PIX_SORT(p[1],p[4]) ; PIX_SORT(p[1],p[2]) ; PIX_SORT(p[2],p[3]) ; \ PIX_SORT(p[1],p[2]) ; median=p[2] ;} RawImageSource::RawImageSource () : ImageSource() , plistener(NULL) , border(4) , ri(NULL) , cache(NULL) , rawData(0, 0) , green(0, 0) , red(0, 0) , blue(0, 0) { hrmap[0] = NULL; hrmap[1] = NULL; hrmap[2] = NULL; //needhr = NULL; //hpmap = NULL; camProfile = NULL; embProfile = NULL; rgbSourceModified = false; hlmax[0] = hlmax[1] = hlmax[2] = hlmax[3] = 0.f; clmax[0] = clmax[1] = clmax[2] = clmax[3] = 0.f; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% RawImageSource::~RawImageSource () { delete idata; if (ri) { delete ri; } flushRGB(); flushRawData(); if( cache ) { delete [] cache; } if (hrmap[0] != NULL) { int dh = H / HR_SCALE; freeArray(hrmap[0], dh); freeArray(hrmap[1], dh); freeArray(hrmap[2], dh); } //if (needhr) // freeArray(needhr, H); //if (hpmap) // freeArray(hpmap, H); if (camProfile) { cmsCloseProfile (camProfile); } if (embProfile) { cmsCloseProfile (embProfile); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transformRect (PreviewProps pp, int tran, int &ssx1, int &ssy1, int &width, int &height, int &fw) { pp.x += border; pp.y += border; if (d1x) { if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { pp.x /= 2; pp.w = pp.w / 2 + 1; } else { pp.y /= 2; pp.h = pp.h / 2 + 1; } } int w = W, h = H; if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } if( pp.w > sw - 2 * border) { pp.w = sw - 2 * border; } if( pp.h > sh - 2 * border) { pp.h = sh - 2 * border; } int ppx = pp.x, ppy = pp.y; if (tran & TR_HFLIP) { ppx = sw - pp.x - pp.w; } if (tran & TR_VFLIP) { ppy = sh - pp.y - pp.h; } int sx1 = ppx; // assuming it's >=0 int sy1 = ppy; // assuming it's >=0 int sx2 = max(ppx + pp.w, w - 1); int sy2 = max(ppy + pp.h, h - 1); if ((tran & TR_ROT) == TR_R180) { sx1 = max(w - ppx - pp.w, 0); sy1 = max(h - ppy - pp.h, 0); sx2 = min(sx1 + pp.w, w - 1); sy2 = min(sy1 + pp.h, h - 1); } else if ((tran & TR_ROT) == TR_R90) { sx1 = ppy; sy1 = max(h - ppx - pp.w, 0); sx2 = min(sx1 + pp.h, w - 1); sy2 = min(sy1 + pp.w, h - 1); } else if ((tran & TR_ROT) == TR_R270) { sx1 = max(w - ppy - pp.h, 0); sy1 = ppx; sx2 = min(sx1 + pp.h, w - 1); sy2 = min(sy1 + pp.w, h - 1); } if (fuji) { // atszamoljuk a koordinatakat fuji-ra: // recalculate the coordinates fuji-ra: ssx1 = (sx1 + sy1) / 2; ssy1 = (sy1 - sx2 ) / 2 + ri->get_FujiWidth(); int ssx2 = (sx2 + sy2) / 2 + 1; int ssy2 = (sy2 - sx1) / 2 + ri->get_FujiWidth(); fw = (sx2 - sx1) / 2 / pp.skip; width = (ssx2 - ssx1) / pp.skip + ((ssx2 - ssx1) % pp.skip > 0); height = (ssy2 - ssy1) / pp.skip + ((ssy2 - ssy1) % pp.skip > 0); } else { ssx1 = sx1; ssy1 = sy1; width = (sx2 - sx1) / pp.skip + ((sx2 - sx1) % pp.skip > 0); height = (sy2 - sy1) / pp.skip + ((sy2 - sy1) % pp.skip > 0); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% static float calculate_scale_mul(float scale_mul[4], const float pre_mul_[4], const float c_white[4], const float c_black[4], bool isMono, int colors) { if (isMono || colors == 1) { for (int c = 0; c < 4; c++) { scale_mul[c] = 65535.0 / (c_white[c] - c_black[c]); } } else { float pre_mul[4]; for (int c = 0; c < 4; c++) { pre_mul[c] = pre_mul_[c]; } if (pre_mul[3] == 0) { pre_mul[3] = pre_mul[1]; // G2 == G1 } float maxpremul = max(pre_mul[0], pre_mul[1], pre_mul[2], pre_mul[3]); for (int c = 0; c < 4; c++) { scale_mul[c] = (pre_mul[c] / maxpremul) * 65535.0 / (c_white[c] - c_black[c]); } } float gain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); return gain; } void RawImageSource::getImage (ColorTemp ctemp, int tran, Imagefloat* image, PreviewProps pp, ToneCurveParams hrp, ColorManagementParams cmp, RAWParams raw ) { MyMutex::MyLock lock(getImageMutex); tran = defTransform (tran); // compute channel multipliers double r, g, b; float rm, gm, bm; if (ctemp.getTemp() < 0) { // no white balance, ie revert the pre-process white balance to restore original unbalanced raw camera color rm = ri->get_pre_mul(0); gm = ri->get_pre_mul(1); bm = ri->get_pre_mul(2); } else { ctemp.getMultipliers (r, g, b); rm = imatrices.cam_rgb[0][0] * r + imatrices.cam_rgb[0][1] * g + imatrices.cam_rgb[0][2] * b; gm = imatrices.cam_rgb[1][0] * r + imatrices.cam_rgb[1][1] * g + imatrices.cam_rgb[1][2] * b; bm = imatrices.cam_rgb[2][0] * r + imatrices.cam_rgb[2][1] * g + imatrices.cam_rgb[2][2] * b; } if (true) { // adjust gain so the maximum raw value of the least scaled channel just hits max const float new_pre_mul[4] = { ri->get_pre_mul(0) / rm, ri->get_pre_mul(1) / gm, ri->get_pre_mul(2) / bm, ri->get_pre_mul(3) / gm }; float new_scale_mul[4]; bool isMono = (ri->getSensorType() == ST_FUJI_XTRANS && raw.xtranssensor.method == RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::mono]) || (ri->getSensorType() == ST_BAYER && raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::mono]); float gain = calculate_scale_mul(new_scale_mul, new_pre_mul, c_white, cblacksom, isMono, ri->get_colors()); rm = new_scale_mul[0] / scale_mul[0] * gain; gm = new_scale_mul[1] / scale_mul[1] * gain; bm = new_scale_mul[2] / scale_mul[2] * gain; //fprintf(stderr, "camera gain: %f, current wb gain: %f, diff in stops %f\n", camInitialGain, gain, log2(camInitialGain) - log2(gain)); } else { // old scaling: used a fixed reference gain based on camera (as-shot) white balance // how much we need to scale each channel to get our new white balance rm = refwb_red / rm; gm = refwb_green / gm; bm = refwb_blue / bm; // normalize so larger multiplier becomes 1.0 float minval = min(rm, gm, bm); rm /= minval; gm /= minval; bm /= minval; // multiply with reference gain, ie as-shot WB rm *= camInitialGain; gm *= camInitialGain; bm *= camInitialGain; } defGain = 0.0; // compute image area to render in order to provide the requested part of the image int sx1, sy1, imwidth, imheight, fw; transformRect (pp, tran, sx1, sy1, imwidth, imheight, fw); // check possible overflows int maximwidth, maximheight; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { maximwidth = image->height; maximheight = image->width; } else { maximwidth = image->width; maximheight = image->height; } if (d1x) { maximheight /= 2; } // correct if overflow (very rare), but not fuji because it is corrected in transline if (!fuji && imwidth > maximwidth) { imwidth = maximwidth; } if (!fuji && imheight > maximheight) { imheight = maximheight; } int maxx = this->W, maxy = this->H, skip = pp.skip; // raw clip levels after white balance hlmax[0] = clmax[0] * rm; hlmax[1] = clmax[1] * gm; hlmax[2] = clmax[2] * bm; const bool has_clipping = (chmax[0] >= clmax[0] || chmax[1] >= clmax[1] || chmax[2] >= clmax[2]); //if (sx1+skip*imwidth>maxx) imwidth --; // very hard to fix this situation without an 'if' in the loop. float area = skip * skip; rm /= area; gm /= area; bm /= area; #ifdef _OPENMP #pragma omp parallel if(!d1x) // omp disabled for D1x to avoid race conditions (see Issue 1088 http://code.google.com/p/rawtherapee/issues/detail?id=1088) { #endif // render the requested image part float* line_red = new float[imwidth]; float* line_grn = new float[imwidth]; float* line_blue = new float[imwidth]; //printf("clip[0]=%f clip[1]=%f clip[2]=%f\n",hlmax[0],hlmax[1],hlmax[2]); #ifdef _OPENMP #pragma omp for #endif for (int ix = 0; ix < imheight; ix++) { int i = sy1 + skip * ix; if (i >= maxy - skip) { i = maxy - skip - 1; // avoid trouble } if (ri->getSensorType() == ST_BAYER || ri->getSensorType() == ST_FUJI_XTRANS || ri->get_colors() == 1) { for (int j = 0, jx = sx1; j < imwidth; j++, jx += skip) { if (jx >= maxx - skip) { jx = maxx - skip - 1; // avoid trouble } float rtot, gtot, btot; rtot = gtot = btot = 0; for (int m = 0; m < skip; m++) for (int n = 0; n < skip; n++) { rtot += red[i + m][jx + n]; gtot += green[i + m][jx + n]; btot += blue[i + m][jx + n]; } rtot *= rm; gtot *= gm; btot *= bm; if (!hrp.hrenabled && has_clipping) { // note: as hlmax[] can be larger than CLIP and we can later apply negative // exposure this means that we can clip away local highlights which actually // are not clipped. We have to do that though as we only check pixel by pixel // and don't know if this will transition into a clipped area, if so we need // to clip also surrounding to make a good color transition rtot = CLIP(rtot); gtot = CLIP(gtot); btot = CLIP(btot); } line_red[j] = rtot; line_grn[j] = gtot; line_blue[j] = btot; } } else { for (int j = 0, jx = sx1; j < imwidth; j++, jx += skip) { if (jx > maxx - skip) { jx = maxx - skip - 1; } float rtot, gtot, btot; rtot = gtot = btot = 0; for (int m = 0; m < skip; m++) for (int n = 0; n < skip; n++) { rtot += rawData[i + m][(jx + n) * 3 + 0]; gtot += rawData[i + m][(jx + n) * 3 + 1]; btot += rawData[i + m][(jx + n) * 3 + 2]; } rtot *= rm; gtot *= gm; btot *= bm; if (!hrp.hrenabled && has_clipping) { rtot = CLIP(rtot); gtot = CLIP(gtot); btot = CLIP(btot); } line_red[j] = rtot; line_grn[j] = gtot; line_blue[j] = btot; } } //process all highlight recovery other than "Color" if (hrp.hrenabled && hrp.method != "Color") { hlRecovery (hrp.method, line_red, line_grn, line_blue, i, sx1, imwidth, skip, raw, hlmax); } transLine (line_red, line_grn, line_blue, ix, image, tran, imwidth, imheight, fw); } delete [] line_red; delete [] line_grn; delete [] line_blue; #ifdef _OPENMP } #endif if (fuji) { int a = ((tran & TR_ROT) == TR_R90 && image->width % 2 == 0) || ((tran & TR_ROT) == TR_R180 && image->height % 2 + image->width % 2 == 1) || ((tran & TR_ROT) == TR_R270 && image->height % 2 == 0); // first row for (int j = 1 + a; j < image->width - 1; j += 2) { image->r(0, j) = (image->r(1, j) + image->r(0, j + 1) + image->r(0, j - 1)) / 3; image->g(0, j) = (image->g(1, j) + image->g(0, j + 1) + image->g(0, j - 1)) / 3; image->b(0, j) = (image->b(1, j) + image->b(0, j + 1) + image->b(0, j - 1)) / 3; } // other rows for (int i = 1; i < image->height - 1; i++) { for (int j = 2 - (a + i + 1) % 2; j < image->width - 1; j += 2) { // edge-adaptive interpolation double dh = (ABS(image->r(i, j + 1) - image->r(i, j - 1)) + ABS(image->g(i, j + 1) - image->g(i, j - 1)) + ABS(image->b(i, j + 1) - image->b(i, j - 1))) / 1.0; double dv = (ABS(image->r(i + 1, j) - image->r(i - 1, j)) + ABS(image->g(i + 1, j) - image->g(i - 1, j)) + ABS(image->b(i + 1, j) - image->b(i - 1, j))) / 1.0; double eh = 1.0 / (1.0 + dh); double ev = 1.0 / (1.0 + dv); image->r(i, j) = (eh * (image->r(i, j + 1) + image->r(i, j - 1)) + ev * (image->r(i + 1, j) + image->r(i - 1, j))) / (2.0 * (eh + ev)); image->g(i, j) = (eh * (image->g(i, j + 1) + image->g(i, j - 1)) + ev * (image->g(i + 1, j) + image->g(i - 1, j))) / (2.0 * (eh + ev)); image->b(i, j) = (eh * (image->b(i, j + 1) + image->b(i, j - 1)) + ev * (image->b(i + 1, j) + image->b(i - 1, j))) / (2.0 * (eh + ev)); } // first pixel if (2 - (a + i + 1) % 2 == 2) { image->r(i, 0) = (image->r(i + 1, 0) + image->r(i - 1, 0) + image->r(i, 1)) / 3; image->g(i, 0) = (image->g(i + 1, 0) + image->g(i - 1, 0) + image->g(i, 1)) / 3; image->b(i, 0) = (image->b(i + 1, 0) + image->b(i - 1, 0) + image->b(i, 1)) / 3; } // last pixel if (2 - (a + i + image->width) % 2 == 2) { image->r(i, image->width - 1) = (image->r(i + 1, image->width - 1) + image->r(i - 1, image->width - 1) + image->r(i, image->width - 2)) / 3; image->g(i, image->width - 1) = (image->g(i + 1, image->width - 1) + image->g(i - 1, image->width - 1) + image->g(i, image->width - 2)) / 3; image->b(i, image->width - 1) = (image->b(i + 1, image->width - 1) + image->b(i - 1, image->width - 1) + image->b(i, image->width - 2)) / 3; } } // last row int b = (a == 1 && image->height % 2) || (a == 0 && image->height % 2 == 0); for (int j = 1 + b; j < image->width - 1; j += 2) { image->r(image->height - 1, j) = (image->r(image->height - 2, j) + image->r(image->height - 1, j + 1) + image->r(image->height - 1, j - 1)) / 3; image->g(image->height - 1, j) = (image->g(image->height - 2, j) + image->g(image->height - 1, j + 1) + image->g(image->height - 1, j - 1)) / 3; image->b(image->height - 1, j) = (image->b(image->height - 2, j) + image->b(image->height - 1, j + 1) + image->b(image->height - 1, j - 1)) / 3; } } // Flip if needed if (tran & TR_HFLIP) { hflip (image); } if (tran & TR_VFLIP) { vflip (image); } // Color correction (only when running on full resolution) if (ri->getSensorType() != ST_NONE && pp.skip == 1) { if (ri->getSensorType() == ST_BAYER) { processFalseColorCorrection (image, raw.bayersensor.ccSteps); } else if (ri->getSensorType() == ST_FUJI_XTRANS) { processFalseColorCorrection (image, raw.xtranssensor.ccSteps); } } } DCPProfile *RawImageSource::getDCP(ColorManagementParams cmp, ColorTemp &wb) { DCPProfile *dcpProf = NULL; cmsHPROFILE dummy; findInputProfile(cmp.input, NULL, (static_cast(getMetaData()))->getCamera(), &dcpProf, dummy); if (dcpProf == NULL) { return NULL; } dcpProf->setStep2ApplyState(cmp.working, cmp.toneCurve, cmp.applyLookTable, cmp.applyBaselineExposureOffset); return dcpProf; } void RawImageSource::convertColorSpace(Imagefloat* image, ColorManagementParams cmp, ColorTemp &wb) { double pre_mul[3] = { ri->get_pre_mul(0), ri->get_pre_mul(1), ri->get_pre_mul(2) }; colorSpaceConversion (image, cmp, wb, pre_mul, embProfile, camProfile, imatrices.xyz_cam, (static_cast(getMetaData()))->getCamera()); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* interpolateBadPixelsBayer: correct raw pixels looking at the bitmap * takes into consideration if there are multiple bad pixels in the neighborhood */ int RawImageSource::interpolateBadPixelsBayer( PixelsMap &bitmapBads ) { static const float eps = 1.f; int counter = 0; #pragma omp parallel for reduction(+:counter) schedule(dynamic,16) for( int row = 2; row < H - 2; row++ ) { for(int col = 2; col < W - 2; col++ ) { int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero if( sk ) { col += sk - 1; //-1 is because of col++ in cycle continue; } if(!bitmapBads.get(col, row)) { continue; } float wtdsum = 0.f, norm = 0.f; // diagonal interpolation if(FC(row, col) == 1) { // green channel. We can use closer pixels than for red or blue channel. Distance to center pixel is sqrt(2) => weighting is 0.70710678 // For green channel following pixels will be used for interpolation. Pixel to be interpolated is in center. // 1 means that pixel is used in this step, if itself and his counterpart are not marked bad // 0 0 0 0 0 // 0 1 0 1 0 // 0 0 0 0 0 // 0 1 0 1 0 // 0 0 0 0 0 for( int dx = -1; dx <= 1; dx += 2) { if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) { continue; } float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps); wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]); norm += dirwt; } } else { // red and blue channel. Distance to center pixel is sqrt(8) => weighting is 0.35355339 // For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center. // 1 means that pixel is used in this step, if itself and his counterpart are not marked bad // 1 0 0 0 1 // 0 0 0 0 0 // 0 0 0 0 0 // 0 0 0 0 0 // 1 0 0 0 1 for( int dx = -2; dx <= 2; dx += 4) { if( bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) { continue; } float dirwt = 0.35355339f / ( fabsf( rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps); wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]); norm += dirwt; } } // channel independent. Distance to center pixel is 2 => weighting is 0.5 // Additionally for all channel following pixels will be used for interpolation. Pixel to be interpolated is in center. // 1 means that pixel is used in this step, if itself and his counterpart are not marked bad // 0 0 1 0 0 // 0 0 0 0 0 // 1 0 0 0 1 // 0 0 0 0 0 // 0 0 1 0 0 // horizontal interpolation if(!(bitmapBads.get(col - 2, row) || bitmapBads.get(col + 2, row))) { float dirwt = 0.5f / ( fabsf( rawData[row][col - 2] - rawData[row][col + 2]) + eps); wtdsum += dirwt * (rawData[row][col - 2] + rawData[row][col + 2]); norm += dirwt; } // vertical interpolation if(!(bitmapBads.get(col, row - 2) || bitmapBads.get(col, row + 2))) { float dirwt = 0.5f / ( fabsf( rawData[row - 2][col] - rawData[row + 2][col]) + eps); wtdsum += dirwt * (rawData[row - 2][col] + rawData[row + 2][col]); norm += dirwt; } if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelyhood of this case is about 99.999% rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps counter++; } else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens int tot = 0; float sum = 0; for( int dy = -2; dy <= 2; dy += 2) { for( int dx = -2; dx <= 2; dx += 2) { if(bitmapBads.get(col + dx, row + dy)) { continue; } sum += rawData[row + dy][col + dx]; tot++; } } if (tot > 0) { rawData[row][col] = sum / tot; counter ++; } } } } return counter; // Number of interpolated pixels. } /* interpolateBadPixels3Colours: correct raw pixels looking at the bitmap * takes into consideration if there are multiple bad pixels in the neighborhood */ int RawImageSource::interpolateBadPixelsNColours( PixelsMap &bitmapBads, const int colours ) { static const float eps = 1.f; int counter = 0; #pragma omp parallel for reduction(+:counter) schedule(dynamic,16) for( int row = 2; row < H - 2; row++ ) { for(int col = 2; col < W - 2; col++ ) { int sk = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero if( sk ) { col += sk - 1; //-1 is because of col++ in cycle continue; } if(!bitmapBads.get(col, row)) { continue; } float wtdsum[colours], norm[colours]; for (int i = 0; i < colours; ++i) { wtdsum[i] = norm[i] = 0.f; } // diagonal interpolation for( int dx = -1; dx <= 1; dx += 2) { if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) { continue; } for(int c = 0; c < colours; c++) { float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][(col + dx) * colours + c] - rawData[row + 1][(col - dx) * colours + c]) + eps); wtdsum[c] += dirwt * (rawData[row - 1][(col + dx) * colours + c] + rawData[row + 1][(col - dx) * colours + c]); norm[c] += dirwt; } } // horizontal interpolation if(!(bitmapBads.get(col - 1, row) || bitmapBads.get(col + 1, row))) { for(int c = 0; c < colours; c++) { float dirwt = 1.f / ( fabsf( rawData[row][(col - 1) * colours + c] - rawData[row][(col + 1) * colours + c]) + eps); wtdsum[c] += dirwt * (rawData[row][(col - 1) * colours + c] + rawData[row][(col + 1) * colours + c]); norm[c] += dirwt; } } // vertical interpolation if(!(bitmapBads.get(col, row - 1) || bitmapBads.get(col, row + 1))) { for(int c = 0; c < colours; c++) { float dirwt = 1.f / ( fabsf( rawData[row - 1][col * colours + c] - rawData[row + 1][col * colours + c]) + eps); wtdsum[c] += dirwt * (rawData[row - 1][col * colours + c] + rawData[row + 1][col * colours + c]); norm[c] += dirwt; } } if (LIKELY(norm[0] > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelyhood of this case is about 99.999% for(int c = 0; c < colours; c++) { rawData[row][col * colours + c] = wtdsum[c] / (2.f * norm[c]); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps } counter++; } else { //backup plan -- simple average. Same method for all channels. We could improve this, but it's really unlikely that this case happens int tot = 0; float sum[colours]; for (int i = 0; i < colours; ++i) { sum[i] = 0.f; } for( int dy = -2; dy <= 2; dy += 2) { for( int dx = -2; dx <= 2; dx += 2) { if(bitmapBads.get(col + dx, row + dy)) { continue; } for(int c = 0; c < colours; c++) { sum[c] += rawData[row + dy][(col + dx) * colours + c]; } tot++; } } if (tot > 0) { for(int c = 0; c < colours; c++) { rawData[row][col * colours + c] = sum[c] / tot; } counter ++; } } } } return counter; // Number of interpolated pixels. } /* interpolateBadPixelsXtrans: correct raw pixels looking at the bitmap * takes into consideration if there are multiple bad pixels in the neighborhood */ int RawImageSource::interpolateBadPixelsXtrans( PixelsMap &bitmapBads ) { static const float eps = 1.f; int counter = 0; #pragma omp parallel for reduction(+:counter) schedule(dynamic,16) for( int row = 2; row < H - 2; row++ ) { for(int col = 2; col < W - 2; col++ ) { int skip = bitmapBads.skipIfZero(col, row); //optimization for a stripe all zero if( skip ) { col += skip - 1; //-1 is because of col++ in cycle continue; } if(!bitmapBads.get(col, row)) { continue; } float wtdsum = 0.f, norm = 0.f; int pixelColor = ri->XTRANSFC(row, col); float oldval = rawData[row][col]; if(pixelColor == 1) { // green channel. A green pixel can either be a solitary green pixel or a member of a 2x2 square of green pixels if(ri->XTRANSFC(row, col - 1) == ri->XTRANSFC(row, col + 1)) { // If left and right neighbour have same color, then this is a solitary green pixel // For these the following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P. // Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad // 0 means, the pixel has a different color and will not be used // 0 1 0 2 0 // 3 5 0 6 4 // 0 0 P 0 0 // 4 6 0 5 3 // 0 2 0 1 0 for( int dx = -1; dx <= 1; dx += 2) { // pixels marked 5 or 6 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) { continue; } float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps); wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]); norm += dirwt; } for( int dx = -1; dx <= 1; dx += 2) { // pixels marked 1 or 2 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f if( bitmapBads.get(col + dx, row - 2) || bitmapBads.get(col - dx, row + 2)) { continue; } float dirwt = 0.44721359f / ( fabsf( rawData[row - 2][col + dx] - rawData[row + 2][col - dx]) + eps); wtdsum += dirwt * (rawData[row - 2][col + dx] + rawData[row + 2][col - dx]); norm += dirwt; } for( int dx = -2; dx <= 2; dx += 4) { // pixels marked 3 or 4 on above example. Distance to P is sqrt(5) => weighting is 0.44721359f if( bitmapBads.get(col + dx, row - 1) || bitmapBads.get(col - dx, row + 1)) { continue; } float dirwt = 0.44721359f / ( fabsf( rawData[row - 1][col + dx] - rawData[row + 1][col - dx]) + eps); wtdsum += dirwt * (rawData[row - 1][col + dx] + rawData[row + 1][col - dx]); norm += dirwt; } } else { // this is a member of a 2x2 square of green pixels // For these the following pixels will be used for interpolation. Pixel to be interpolated is at position P in the example. // Pairs of pixels used in this step are numbered. A pair will be used if none of the pixels of the pair is marked bad // 0 means, the pixel has a different color and will not be used // 1 0 0 3 // 0 P 2 0 // 0 2 1 0 // 3 0 0 0 int offset1 = ri->XTRANSFC(row - 1, col - 1) == ri->XTRANSFC(row + 1, col + 1) ? 1 : -1; // pixels marked 1 in above example. Distance to P is sqrt(2) => weighting is 0.70710678f if( !(bitmapBads.get(col - offset1, row - 1) || bitmapBads.get(col + offset1, row + 1))) { float dirwt = 0.70710678f / ( fabsf( rawData[row - 1][col - offset1] - rawData[row + 1][col + offset1]) + eps); wtdsum += dirwt * (rawData[row - 1][col - offset1] + rawData[row + 1][col + offset1]); norm += dirwt; } int offsety = (ri->XTRANSFC(row - 1, col) != 1 ? 1 : -1); int offsetx = offset1 * offsety; if( !(bitmapBads.get(col + offsetx, row) || bitmapBads.get(col, row + offsety))) { float dirwt = 1.f / ( fabsf( rawData[row][col + offsetx] - rawData[row + offsety][col]) + eps); wtdsum += dirwt * (rawData[row][col + offsetx] + rawData[row + offsety][col]); norm += dirwt; } int offsety2 = -offsety; int offsetx2 = -offsetx; offsetx *= 2; offsety *= 2; // pixels marked 3 in above example. Distance to P is sqrt(5) => weighting is 0.44721359f if( !(bitmapBads.get(col + offsetx, row + offsety2) || bitmapBads.get(col + offsetx2, row + offsety))) { float dirwt = 0.44721359f / ( fabsf( rawData[row + offsety2][col + offsetx] - rawData[row + offsety][col + offsetx2]) + eps); wtdsum += dirwt * (rawData[row + offsety2][col + offsetx] + rawData[row + offsety][col + offsetx2]); norm += dirwt; } } } else { // red and blue channel. // Each red or blue pixel has exactly one neigbour of same color in distance 2 and four neighbours of same color which can be reached by a move of a knight in chess. // For the distance 2 pixel (marked with an X) we generate a virtual counterpart (marked with a V) // For red and blue channel following pixels will be used for interpolation. Pixel to be interpolated is in center and marked with a P. // Pairs of pixels used in this step are numbered except for distance 2 pixels which are marked X and V. A pair will be used if none of the pixels of the pair is marked bad // 0 1 0 0 0 0 0 X 0 0 remaining cases are symmetric // 0 0 0 0 2 1 0 0 0 2 // X 0 P 0 V 0 0 P 0 0 // 0 0 0 0 1 0 0 0 0 0 // 0 2 0 0 0 0 2 V 1 0 // Find two knight moves landing on a pixel of same color as the pixel to be interpolated. // If we look at first and last row of 5x5 square, we will find exactly two knight pixels. // Additionally we know that the column of this pixel has 1 or -1 horizontal distance to the center pixel // When we find a knight pixel, we get its counterpart, which has distance (+-3,+-3), where the signs of distance depend on the corner of the found knight pixel. // These pixels are marked 1 or 2 in above examples. Distance to P is sqrt(5) => weighting is 0.44721359f // The following loop simply scans the four possible places. To keep things simple, it doesn't stop after finding two knight pixels, because it will not find more than two for(int d1 = -2, offsety = 3; d1 <= 2; d1 += 4, offsety -= 6) { for(int d2 = -1, offsetx = 3; d2 < 1; d2 += 2, offsetx -= 6) { if(ri->XTRANSFC(row + d1, col + d2) == pixelColor) { if( !(bitmapBads.get(col + d2, row + d1) || bitmapBads.get(col + d2 + offsetx, row + d1 + offsety))) { float dirwt = 0.44721359f / ( fabsf( rawData[row + d1][col + d2] - rawData[row + d1 + offsety][col + d2 + offsetx]) + eps); wtdsum += dirwt * (rawData[row + d1][col + d2] + rawData[row + d1 + offsety][col + d2 + offsetx]); norm += dirwt; } } } } // now scan for the pixel of same colour in distance 2 in each direction (marked with an X in above examples). bool distance2PixelFound = false; int dx, dy; // check horizontal for(dx = -2, dy = 0; dx <= 2 && !distance2PixelFound; dx += 4) if(ri->XTRANSFC(row, col + dx) == pixelColor) { distance2PixelFound = true; } if(!distance2PixelFound) // no distance 2 pixel on horizontal, check vertical for(dx = 0, dy = -2; dy <= 2 && !distance2PixelFound; dy += 4) if(ri->XTRANSFC(row + dy, col) == pixelColor) { distance2PixelFound = true; } // calculate the value of its virtual counterpart (marked with a V in above examples) float virtualPixel; if(dy == 0) { virtualPixel = 0.5f * (rawData[row - 1][col - dx] + rawData[row + 1][col - dx]); } else { virtualPixel = 0.5f * (rawData[row - dy][col - 1] + rawData[row - dy][col + 1]); } // and weight as usual. Distance to P is 2 => weighting is 0.5f float dirwt = 0.5f / ( fabsf( virtualPixel - rawData[row + dy][col + dx]) + eps); wtdsum += dirwt * (virtualPixel + rawData[row + dy][col + dx]); norm += dirwt; } if (LIKELY(norm > 0.f)) { // This means, we found at least one pair of valid pixels in the steps above, likelyhood of this case is about 99.999% rawData[row][col] = wtdsum / (2.f * norm); //gradient weighted average, Factor of 2.f is an optimization to avoid multiplications in former steps //#pragma omp critical // printf("%s Pixel at (col/row) : (%4d/%4d) : Original : %f, interpolated: %f\n",pixelColor == 0 ? "Red " : pixelColor==1 ? "Green" : "Blue ", col-7,row-7,oldval, rawData[row][col]); counter++; } } } return counter; // Number of interpolated pixels. } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Search for hot or dead pixels in the image and update the map * For each pixel compare its value to the average of similar color surrounding * (Taken from Emil Martinec idea) * (Optimized by Ingo Weyrich 2013) */ int RawImageSource::findHotDeadPixels( PixelsMap &bpMap, float thresh, bool findHotPixels, bool findDeadPixels ) { float varthresh = (20.0 * (thresh / 100.0) + 1.0 ); // counter for dead or hot pixels int counter = 0; // allocate temporary buffer float (*cfablur); cfablur = (float (*)) malloc (H * W * sizeof * cfablur); #pragma omp parallel { #pragma omp for for (int i = 0; i < H; i++) { int iprev, inext, jprev, jnext; float p[9], temp; if (i < 2) { iprev = i + 2; } else { iprev = i - 2; } if (i > H - 3) { inext = i - 2; } else { inext = i + 2; } for (int j = 0; j < W; j++) { if (j < 2) { jprev = j + 2; } else { jprev = j - 2; } if (j > W - 3) { jnext = j - 2; } else { jnext = j + 2; } med3x3(rawData[iprev][jprev], rawData[iprev][j], rawData[iprev][jnext], rawData[i][jprev], rawData[i][j], rawData[i][jnext], rawData[inext][jprev], rawData[inext][j], rawData[inext][jnext], temp); cfablur[i * W + j] = rawData[i][j] - temp; } } #pragma omp for reduction(+:counter) schedule (dynamic,16) //cfa pixel heat/death evaluation for (int rr = 0; rr < H; rr++) { int top = max(0, rr - 2); int bottom = min(H - 1, rr + 2); int rrmWpcc = rr * W; for (int cc = 0; cc < W; cc++, rrmWpcc++) { //evaluate pixel for heat/death float pixdev = cfablur[rrmWpcc]; if((!findDeadPixels) && pixdev <= 0) { continue; } if((!findHotPixels) && pixdev >= 0) { continue; } pixdev = fabsf(pixdev); float hfnbrave = -pixdev; int left = max(0, cc - 2); int right = min(W - 1, cc + 2); for (int mm = top; mm <= bottom; mm++) { int mmmWpnn = mm * W + left; for (int nn = left; nn <= right; nn++, mmmWpnn++) { hfnbrave += fabsf(cfablur[mmmWpnn]); } } if (pixdev * ((bottom - top + 1) * (right - left + 1) - 1) > varthresh * hfnbrave) { // mark the pixel as "bad" bpMap.set(cc, rr); counter++; } }//end of pixel evaluation } }//end of parallel processing free (cfablur); return counter; } void RawImageSource::rotateLine (float* line, PlanarPtr &channel, int tran, int i, int w, int h) { if ((tran & TR_ROT) == TR_R180) for (int j = 0; j < w; j++) { channel(h - 1 - i, w - 1 - j) = line[j]; } else if ((tran & TR_ROT) == TR_R90) for (int j = 0; j < w; j++) { channel(j, h - 1 - i) = line[j]; } else if ((tran & TR_ROT) == TR_R270) for (int j = 0; j < w; j++) { channel(w - 1 - j, i) = line[j]; } else for (int j = 0; j < w; j++) { channel(i, j) = line[j]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transLine (float* red, float* green, float* blue, int i, Imagefloat* image, int tran, int imwidth, int imheight, int fw) { // Fuji SuperCCD rotation + coarse rotation if (fuji) { int start = ABS(fw - i); int w = fw * 2 + 1; int h = (imheight - fw) * 2 + 1; if ((tran & TR_ROT) == TR_R180) { int end = min(h + fw - i, w - fw + i); for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->height && y >= 0 && x < image->width) { image->r(image->height - 1 - y, image->width - 1 - x) = red[j]; image->g(image->height - 1 - y, image->width - 1 - x) = green[j]; image->b(image->height - 1 - y, image->width - 1 - x) = blue[j]; } } } else if ((tran & TR_ROT) == TR_R270) { int end = min(h + fw - i, w - fw + i); for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && x < image->height && y >= 0 && y < image->width) { image->r(image->height - 1 - x, y) = red[j]; image->g(image->height - 1 - x, y) = green[j]; image->b(image->height - 1 - x, y) = blue[j]; } } } else if ((tran & TR_ROT) == TR_R90) { int end = min(h + fw - i, w - fw + i); for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->width && y >= 0 && x < image->height) { image->r(x, image->width - 1 - y) = red[j]; image->g(x, image->width - 1 - y) = green[j]; image->b(x, image->width - 1 - y) = blue[j]; } } } else { int end = min(h + fw - i, w - fw + i); for (int j = start; j < end; j++) { int y = i + j - fw; int x = fw - i + j; if (x >= 0 && y < image->height && y >= 0 && x < image->width) { image->r(y, x) = red[j]; image->g(y, x) = green[j]; image->b(y, x) = blue[j]; } } } } // Nikon D1X vertical interpolation + coarse rotation else if (d1x) { // copy new pixels if ((tran & TR_ROT) == TR_R180) { for (int j = 0; j < imwidth; j++) { image->r(2 * imheight - 2 - 2 * i, imwidth - 1 - j) = red[j]; image->g(2 * imheight - 2 - 2 * i, imwidth - 1 - j) = green[j]; image->b(2 * imheight - 2 - 2 * i, imwidth - 1 - j) = blue[j]; } if (i == 1 || i == 2) { // linear interpolation int row = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } } else if (i == imheight - 1) { int row = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } row = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = (red[j] + image->r(row + 1, col)) / 2; image->g(row, col) = (green[j] + image->g(row + 1, col)) / 2; image->b(row, col) = (blue[j] + image->b(row + 1, col)) / 2; } } else if (i > 2 && i < imheight - 1) { // vertical bicubic interpolation int row = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { int col = imwidth - 1 - j; image->r(row, col) = CLIP((int)(-0.0625 * red[j] + 0.5625 * image->r(row - 1, col) + 0.5625 * image->r(row + 1, col) - 0.0625 * image->r(row + 3, col))); image->g(row, col) = CLIP((int)(-0.0625 * green[j] + 0.5625 * image->g(row - 1, col) + 0.5625 * image->g(row + 1, col) - 0.0625 * image->g(row + 3, col))); image->b(row, col) = CLIP((int)(-0.0625 * blue[j] + 0.5625 * image->b(row - 1, col) + 0.5625 * image->b(row + 1, col) - 0.0625 * image->b(row + 3, col))); } } } else if ((tran & TR_ROT) == TR_R90) { for (int j = 0; j < imwidth; j++) { image->r(j, 2 * imheight - 2 - 2 * i) = red[j]; image->g(j, 2 * imheight - 2 - 2 * i) = green[j]; image->b(j, 2 * imheight - 2 - 2 * i) = blue[j]; } if (i == 1 || i == 2) { // linear interpolation int col = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; } } else if (i == imheight - 1) { int col = 2 * imheight - 1 - 2 * i; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; } col = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { image->r(j, col) = (red[j] + image->r(j, col + 1)) / 2; image->g(j, col) = (green[j] + image->g(j, col + 1)) / 2; image->b(j, col) = (blue[j] + image->b(j, col + 1)) / 2; } } else if (i > 2 && i < imheight - 1) { // vertical bicubic interpolation int col = 2 * imheight - 1 - 2 * i + 2; for (int j = 0; j < imwidth; j++) { image->r(j, col) = CLIP((int)(-0.0625 * red[j] + 0.5625 * image->r(j, col - 1) + 0.5625 * image->r(j, col + 1) - 0.0625 * image->r(j, col + 3))); image->g(j, col) = CLIP((int)(-0.0625 * green[j] + 0.5625 * image->g(j, col - 1) + 0.5625 * image->g(j, col + 1) - 0.0625 * image->g(j, col + 3))); image->b(j, col) = CLIP((int)(-0.0625 * blue[j] + 0.5625 * image->b(j, col - 1) + 0.5625 * image->b(j, col + 1) - 0.0625 * image->b(j, col + 3))); } } } else if ((tran & TR_ROT) == TR_R270) { for (int j = 0; j < imwidth; j++) { image->r(imwidth - 1 - j, 2 * i) = red[j]; image->g(imwidth - 1 - j, 2 * i) = green[j]; image->b(imwidth - 1 - j, 2 * i) = blue[j]; } if (i == 1 || i == 2) { // linear interpolation for (int j = 0; j < imwidth; j++) { int row = imwidth - 1 - j; image->r(row, 2 * i - 1) = (red[j] + image->r(row, 2 * i - 2)) * 0.5f; image->g(row, 2 * i - 1) = (green[j] + image->g(row, 2 * i - 2)) * 0.5f; image->b(row, 2 * i - 1) = (blue[j] + image->b(row, 2 * i - 2)) * 0.5f; } } else if (i == imheight - 1) { for (int j = 0; j < imwidth; j++) { int row = imwidth - 1 - j; image->r(row, 2 * i - 1) = (red[j] + image->r(row, 2 * i - 2)) * 0.5f; image->g(row, 2 * i - 1) = (green[j] + image->g(row, 2 * i - 2)) * 0.5f; image->b(row, 2 * i - 1) = (blue[j] + image->b(row, 2 * i - 2)) * 0.5f; image->r(row, 2 * i - 3) = (image->r(row, 2 * i - 2) + image->r(row, 2 * i - 4)) * 0.5f; image->g(row, 2 * i - 3) = (image->g(row, 2 * i - 2) + image->g(row, 2 * i - 4)) * 0.5f; image->b(row, 2 * i - 3) = (image->b(row, 2 * i - 2) + image->b(row, 2 * i - 4)) * 0.5f; } } else if (i > 0 && i < imheight - 1) { // vertical bicubic interpolationi for (int j = 0; j < imwidth; j++) { int row = imwidth - 1 - j; image->r(row, 2 * i - 3) = CLIP((int)(-0.0625 * red[j] + 0.5625 * image->r(row, 2 * i - 2) + 0.5625 * image->r(row, 2 * i - 4) - 0.0625 * image->r(row, 2 * i - 6))); image->g(row, 2 * i - 3) = CLIP((int)(-0.0625 * green[j] + 0.5625 * image->g(row, 2 * i - 2) + 0.5625 * image->g(row, 2 * i - 4) - 0.0625 * image->g(row, 2 * i - 6))); image->b(row, 2 * i - 3) = CLIP((int)(-0.0625 * blue[j] + 0.5625 * image->b(row, 2 * i - 2) + 0.5625 * image->b(row, 2 * i - 4) - 0.0625 * image->b(row, 2 * i - 6))); } } } else { rotateLine (red, image->r, tran, 2 * i, imwidth, imheight); rotateLine (green, image->g, tran, 2 * i, imwidth, imheight); rotateLine (blue, image->b, tran, 2 * i, imwidth, imheight); if (i == 1 || i == 2) { // linear interpolation for (int j = 0; j < imwidth; j++) { image->r(2 * i - 1, j) = (red[j] + image->r(2 * i - 2, j)) / 2; image->g(2 * i - 1, j) = (green[j] + image->g(2 * i - 2, j)) / 2; image->b(2 * i - 1, j) = (blue[j] + image->b(2 * i - 2, j)) / 2; } } else if (i == imheight - 1) { for (int j = 0; j < imwidth; j++) { image->r(2 * i - 3, j) = (image->r(2 * i - 4, j) + image->r(2 * i - 2, j)) / 2; image->g(2 * i - 3, j) = (image->g(2 * i - 4, j) + image->g(2 * i - 2, j)) / 2; image->b(2 * i - 3, j) = (image->b(2 * i - 4, j) + image->b(2 * i - 2, j)) / 2; image->r(2 * i - 1, j) = (red[j] + image->r(2 * i - 2, j)) / 2; image->g(2 * i - 1, j) = (green[j] + image->g(2 * i - 2, j)) / 2; image->b(2 * i - 1, j) = (blue[j] + image->b(2 * i - 2, j)) / 2; } } else if (i > 2 && i < imheight - 1) { // vertical bicubic interpolationi for (int j = 0; j < imwidth; j++) { image->r(2 * i - 3, j) = CLIP((int)(-0.0625 * red[j] + 0.5625 * image->r(2 * i - 2, j) + 0.5625 * image->r(2 * i - 4, j) - 0.0625 * image->r(2 * i - 6, j))); image->g(2 * i - 3, j) = CLIP((int)(-0.0625 * green[j] + 0.5625 * image->g(2 * i - 2, j) + 0.5625 * image->g(2 * i - 4, j) - 0.0625 * image->g(2 * i - 6, j))); image->b(2 * i - 3, j) = CLIP((int)(-0.0625 * blue[j] + 0.5625 * image->b(2 * i - 2, j) + 0.5625 * image->b(2 * i - 4, j) - 0.0625 * image->b(2 * i - 6, j))); } } } } // if nikon dx1 // other (conventional) CCD coarse rotation else { rotateLine (red, image->r, tran, i, imwidth, imheight); rotateLine (green, image->g, tran, i, imwidth, imheight); rotateLine (blue, image->b, tran, i, imwidth, imheight); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getFullSize (int& w, int& h, int tr) { tr = defTransform (tr); if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } else if (d1x) { w = W; h = 2 * H - 1; } else { w = W; h = H; } if ((tr & TR_ROT) == TR_R90 || (tr & TR_ROT) == TR_R270) { int tmp = w; w = h; h = tmp; } w -= 2 * border; h -= 2 * border; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getSize (int tran, PreviewProps pp, int& w, int& h) { tran = defTransform (tran); // if (fuji) { // return; // } // else if (d1x) { // return; // } // else { w = pp.w / pp.skip + (pp.w % pp.skip > 0); h = pp.h / pp.skip + (pp.h % pp.skip > 0); // } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hflip (Imagefloat* image) { image->hflip(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::vflip (Imagefloat* image) { image->vflip(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::load (Glib::ustring fname, bool batch) { MyTime t1, t2; t1.set(); fileName = fname; if (plistener) { plistener->setProgressStr ("Decoding..."); plistener->setProgress (0.0); } ri = new RawImage(fname); int errCode = ri->loadRaw (true, true, plistener, 0.8); if (errCode) { return errCode; } ri->compress_image(); if (plistener) { plistener->setProgress (0.9); } /***** Copy once constant data extracted from raw *******/ W = ri->get_width(); H = ri->get_height(); fuji = ri->get_FujiWidth() != 0; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { imatrices.rgb_cam[i][j] = ri->get_rgb_cam(i, j); } // compute inverse of the color transformation matrix // first arg is matrix, second arg is inverse inverse33 (imatrices.rgb_cam, imatrices.cam_rgb); d1x = ! ri->get_model().compare("D1X"); if (d1x) { border = 8; } if(ri->getSensorType() == ST_FUJI_XTRANS) { border = 7; } else if(ri->getSensorType() == ST_FOVEON) { border = 0; } if ( ri->get_profile() ) { embProfile = cmsOpenProfileFromMem (ri->get_profile(), ri->get_profileLen()); } // create profile memset (imatrices.xyz_cam, 0, sizeof(imatrices.xyz_cam)); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { imatrices.xyz_cam[i][j] += xyz_sRGB[i][k] * imatrices.rgb_cam[k][j]; } camProfile = iccStore->createFromMatrix (imatrices.xyz_cam, false, "Camera"); inverse33 (imatrices.xyz_cam, imatrices.cam_xyz); for (int c = 0; c < 4; c++) { c_white[c] = ri->get_white(c); } // First we get the "as shot" ("Camera") white balance and store it float pre_mul[4]; // FIXME: get_colorsCoeff not so much used nowadays, when we have calculate_scale_mul() function here ri->get_colorsCoeff( pre_mul, scale_mul, c_black, false);//modify for black level camInitialGain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); double camwb_red = ri->get_pre_mul(0) / pre_mul[0]; double camwb_green = ri->get_pre_mul(1) / pre_mul[1]; double camwb_blue = ri->get_pre_mul(2) / pre_mul[2]; double cam_r = imatrices.rgb_cam[0][0] * camwb_red + imatrices.rgb_cam[0][1] * camwb_green + imatrices.rgb_cam[0][2] * camwb_blue; double cam_g = imatrices.rgb_cam[1][0] * camwb_red + imatrices.rgb_cam[1][1] * camwb_green + imatrices.rgb_cam[1][2] * camwb_blue; double cam_b = imatrices.rgb_cam[2][0] * camwb_red + imatrices.rgb_cam[2][1] * camwb_green + imatrices.rgb_cam[2][2] * camwb_blue; camera_wb = ColorTemp (cam_r, cam_g, cam_b, 1.); // as shot WB ColorTemp ReferenceWB; double ref_r, ref_g, ref_b; { // ...then we re-get the constants but now with auto which gives us better demosaicing and CA auto-correct // performance for strange white balance settings (such as UniWB) ri->get_colorsCoeff( ref_pre_mul, scale_mul, c_black, true); refwb_red = ri->get_pre_mul(0) / ref_pre_mul[0]; refwb_green = ri->get_pre_mul(1) / ref_pre_mul[1]; refwb_blue = ri->get_pre_mul(2) / ref_pre_mul[2]; initialGain = max(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]) / min(scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); ref_r = imatrices.rgb_cam[0][0] * refwb_red + imatrices.rgb_cam[0][1] * refwb_green + imatrices.rgb_cam[0][2] * refwb_blue; ref_g = imatrices.rgb_cam[1][0] * refwb_red + imatrices.rgb_cam[1][1] * refwb_green + imatrices.rgb_cam[1][2] * refwb_blue; ref_b = imatrices.rgb_cam[2][0] * refwb_red + imatrices.rgb_cam[2][1] * refwb_green + imatrices.rgb_cam[2][2] * refwb_blue; ReferenceWB = ColorTemp (ref_r, ref_g, ref_b, 1.); } if (settings->verbose) { printf("Raw As Shot White balance: temp %f, tint %f\n", camera_wb.getTemp(), camera_wb.getGreen()); printf("Raw Reference (auto) white balance: temp %f, tint %f, multipliers [%f %f %f | %f %f %f]\n", ReferenceWB.getTemp(), ReferenceWB.getGreen(), ref_r, ref_g, ref_b, refwb_red, refwb_blue, refwb_green); } /*{ // Test code: if you want to test a specific white balance ColorTemp d50wb = ColorTemp(5000.0, 1.0, 1.0, "Custom"); double rm,gm,bm,r,g,b; d50wb.getMultipliers(r, g, b); camwb_red = imatrices.cam_rgb[0][0]*r + imatrices.cam_rgb[0][1]*g + imatrices.cam_rgb[0][2]*b; camwb_green = imatrices.cam_rgb[1][0]*r + imatrices.cam_rgb[1][1]*g + imatrices.cam_rgb[1][2]*b; camwb_blue = imatrices.cam_rgb[2][0]*r + imatrices.cam_rgb[2][1]*g + imatrices.cam_rgb[2][2]*b; double pre_mul[3], dmax = 0; pre_mul[0] = ri->get_pre_mul(0) / camwb_red; pre_mul[1] = ri->get_pre_mul(1) / camwb_green; pre_mul[2] = ri->get_pre_mul(2) / camwb_blue; for (int c = 0; c < 3; c++) { if (dmax < pre_mul[c]) dmax = pre_mul[c]; } for (int c = 0; c < 3; c++) { pre_mul[c] /= dmax; } camwb_red *= dmax; camwb_green *= dmax; camwb_blue *= dmax; for (int c = 0; c < 3; c++) { int sat = ri->get_white(c) - ri->get_cblack(c); scale_mul[c] = pre_mul[c] * 65535.0 / sat; } scale_mul[3] = pre_mul[1] * 65535.0 / (ri->get_white(3) - ri->get_cblack(3)); initialGain = 1.0 / min(pre_mul[0], pre_mul[1], pre_mul[2]); }*/ ri->set_prefilters(); //Load complete Exif informations RawMetaDataLocation rml; rml.exifBase = ri->get_exifBase(); rml.ciffBase = ri->get_ciffBase(); rml.ciffLength = ri->get_ciffLen(); idata = new ImageData (fname, &rml); green(W, H); red(W, H); blue(W, H); //hpmap = allocArray(W, H); if (plistener) { plistener->setProgress (1.0); } plistener = NULL; // This must be reset, because only load() is called through progressConnector t2.set(); if( settings->verbose ) { printf("Load %s: %d usec\n", fname.c_str(), t2.etime(t1)); } return 0; // OK! } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::preprocess (const RAWParams &raw, const LensProfParams &lensProf, const CoarseTransformParams& coarse) { MyTime t1, t2; t1.set(); Glib::ustring newDF = raw.dark_frame; RawImage *rid = NULL; if (!raw.df_autoselect) { if( !raw.dark_frame.empty()) { rid = dfm.searchDarkFrame( raw.dark_frame ); } } else { rid = dfm.searchDarkFrame( ri->get_maker(), ri->get_model(), ri->get_ISOspeed(), ri->get_shutter(), ri->get_timestamp()); } if( rid && settings->verbose) { printf( "Subtracting Darkframe:%s\n", rid->get_filename().c_str()); } PixelsMap bitmapBads(W, H); int totBP = 0; // Hold count of bad pixels to correct if(ri->zeroIsBad()) { // mark all pixels with value zero as bad, has to be called before FF and DF. dcraw sets this flag only for some cameras (mainly Panasonic and Leica) #pragma omp parallel for reduction(+:totBP) for(int i = 0; i < H; i++) for(int j = 0; j < W; j++) { if(ri->data[i][j] == 0.f) { bitmapBads.set(j, i); totBP++; } } if( settings->verbose) { printf( "%d pixels with value zero marked as bad pixels\n", totBP); } } //FLATFIELD start Glib::ustring newFF = raw.ff_file; RawImage *rif = NULL; if (!raw.ff_AutoSelect) { if( !raw.ff_file.empty()) { rif = ffm.searchFlatField( raw.ff_file ); } } else { rif = ffm.searchFlatField( idata->getMake(), idata->getModel(), idata->getLens(), idata->getFocalLen(), idata->getFNumber(), idata->getDateTimeAsTS()); } bool hasFlatField = (rif != NULL); if( hasFlatField && settings->verbose) { printf( "Flat Field Correction:%s\n", rif->get_filename().c_str()); } copyOriginalPixels(raw, ri, rid, rif); //FLATFIELD end // Always correct camera badpixels from .badpixels file std::vector *bp = dfm.getBadPixels( ri->get_maker(), ri->get_model(), idata->getSerialNumber() ); if( bp ) { totBP += bitmapBads.set( *bp ); if( settings->verbose ) { std::cout << "Correcting " << bp->size() << " pixels from .badpixels" << std::endl; } } // If darkframe selected, correct hotpixels found on darkframe bp = 0; if( raw.df_autoselect ) { bp = dfm.getHotPixels( ri->get_maker(), ri->get_model(), ri->get_ISOspeed(), ri->get_shutter(), ri->get_timestamp()); } else if( !raw.dark_frame.empty() ) { bp = dfm.getHotPixels( raw.dark_frame ); } if(bp) { totBP += bitmapBads.set( *bp ); if( settings->verbose && !bp->empty()) { std::cout << "Correcting " << bp->size() << " hotpixels from darkframe" << std::endl; } } scaleColors( 0, 0, W, H, raw); //+ + raw parameters for black level(raw.blackxx) // Correct vignetting of lens profile if (!hasFlatField && lensProf.useVign) { LCPProfile *pLCPProf = lcpStore->getProfile(lensProf.lcpFile); if (pLCPProf && idata->getFocalLen() > 0.f) { LCPMapper map(pLCPProf, idata->getFocalLen(), idata->getFocalLen35mm(), idata->getFocusDist(), idata->getFNumber(), true, false, W, H, coarse, -1); #pragma omp parallel for for (int y = 0; y < H; y++) { for (int x = 0; x < W; x++) { if (rawData[y][x] > 0) { rawData[y][x] *= map.calcVignetteFac(x, y); } } } } } defGain = 0.0;//log(initialGain) / log(2.0); if ( ri->getSensorType() == ST_BAYER && (raw.hotPixelFilter > 0 || raw.deadPixelFilter > 0)) { if (plistener) { plistener->setProgressStr ("Hot/Dead Pixel Filter..."); plistener->setProgress (0.0); } int nFound = findHotDeadPixels( bitmapBads, raw.hotdeadpix_thresh, raw.hotPixelFilter, raw.deadPixelFilter ); totBP += nFound; if( settings->verbose && nFound > 0) { printf( "Correcting %d hot/dead pixels found inside image\n", nFound ); } } // check if it is an olympus E camera, if yes, compute G channel pre-compensation factors if ( ri->getSensorType() == ST_BAYER && (raw.bayersensor.greenthresh || (((idata->getMake().size() >= 7 && idata->getMake().substr(0, 7) == "OLYMPUS" && idata->getModel()[0] == 'E') || (idata->getMake().size() >= 9 && idata->getMake().substr(0, 9) == "Panasonic")) && raw.bayersensor.method != RAWParams::BayerSensor::methodstring[ RAWParams::BayerSensor::vng4])) ) { // global correction int ng1 = 0, ng2 = 0, i = 0; double avgg1 = 0., avgg2 = 0.; #pragma omp parallel for default(shared) private(i) reduction(+: ng1, ng2, avgg1, avgg2) for (i = border; i < H - border; i++) for (int j = border; j < W - border; j++) if (ri->ISGREEN(i, j)) { if (i & 1) { avgg2 += rawData[i][j]; ng2++; } else { avgg1 += rawData[i][j]; ng1++; } } double corrg1 = ((double)avgg1 / ng1 + (double)avgg2 / ng2) / 2.0 / ((double)avgg1 / ng1); double corrg2 = ((double)avgg1 / ng1 + (double)avgg2 / ng2) / 2.0 / ((double)avgg2 / ng2); #pragma omp parallel for default(shared) for (int i = border; i < H - border; i++) for (int j = border; j < W - border; j++) if (ri->ISGREEN(i, j)) { float currData; currData = (float)(rawData[i][j] * ((i & 1) ? corrg2 : corrg1)); rawData[i][j] = (currData); } } if ( ri->getSensorType() == ST_BAYER && raw.bayersensor.greenthresh > 0) { if (plistener) { plistener->setProgressStr ("Green equilibrate..."); plistener->setProgress (0.0); } green_equilibrate(0.01 * (raw.bayersensor.greenthresh)); } if( totBP ) if ( ri->getSensorType() == ST_BAYER ) { interpolateBadPixelsBayer( bitmapBads ); } else if ( ri->getSensorType() == ST_FUJI_XTRANS ) { interpolateBadPixelsXtrans( bitmapBads ); } else { interpolateBadPixelsNColours( bitmapBads, ri->get_colors() ); } if ( ri->getSensorType() == ST_BAYER && raw.bayersensor.linenoise > 0 ) { if (plistener) { plistener->setProgressStr ("Line Denoise..."); plistener->setProgress (0.0); } cfa_linedn(0.00002 * (raw.bayersensor.linenoise)); } if ( (raw.ca_autocorrect || fabs(raw.cared) > 0.001 || fabs(raw.cablue) > 0.001) && ri->getSensorType() == ST_BAYER ) { // Auto CA correction disabled for X-Trans, for now... if (plistener) { plistener->setProgressStr ("CA Auto Correction..."); plistener->setProgress (0.0); } CA_correct_RT(raw.cared, raw.cablue); } if ( raw.expos != 1 ) { processRawWhitepoint(raw.expos, raw.preser); } if(dirpyrdenoiseExpComp == INFINITY) { LUTu aehist; int aehistcompr; double clip = 0; int brightness, contrast, black, hlcompr, hlcomprthresh; getAutoExpHistogram (aehist, aehistcompr); ImProcFunctions::getAutoExp (aehist, aehistcompr, getDefGain(), clip, dirpyrdenoiseExpComp, brightness, contrast, black, hlcompr, hlcomprthresh); } t2.set(); if( settings->verbose ) { printf("Preprocessing: %d usec\n", t2.etime(t1)); } return; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::demosaic(const RAWParams &raw) { MyTime t1, t2; t1.set(); if (ri->getSensorType() == ST_BAYER) { if ( raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::hphd] ) { hphd_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::vng4] ) { vng4_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::ahd] ) { ahd_demosaic (0, 0, W, H); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::amaze] ) { amaze_demosaic_RT (0, 0, W, H); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::dcb] ) { dcb_demosaic(raw.bayersensor.dcb_iterations, raw.bayersensor.dcb_enhance); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::eahd]) { eahd_demosaic (); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::igv]) { igv_interpolate(W, H); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::lmmse]) { lmmse_interpolate_omp(W, H, raw.bayersensor.lmmse_iterations); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::fast] ) { fast_demosaic (0, 0, W, H); } else if (raw.bayersensor.method == RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::mono] ) { nodemosaic(true); } else { nodemosaic(false); } //if (raw.all_enhance) refinement_lassus(); } else if (ri->getSensorType() == ST_FUJI_XTRANS) { if (raw.xtranssensor.method == RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::fast] ) { fast_xtrans_interpolate(); } else if (raw.xtranssensor.method == RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::onePass]) { xtrans_interpolate(1, false); } else if (raw.xtranssensor.method == RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::threePass] ) { xtrans_interpolate(3, true); } else if(raw.xtranssensor.method == RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::mono] ) { nodemosaic(true); } else { nodemosaic(false); } } else if (ri->get_colors() == 1) { // Monochrome nodemosaic(true); } t2.set(); rgbSourceModified = false; if( settings->verbose ) { if (getSensorType() == ST_BAYER) { printf("Demosaicing Bayer data: %s - %d usec\n", raw.bayersensor.method.c_str(), t2.etime(t1)); } else if (getSensorType() == ST_FUJI_XTRANS) { printf("Demosaicing X-Trans data: %s - %d usec\n", raw.xtranssensor.method.c_str(), t2.etime(t1)); } } } void RawImageSource::flushRawData() { if(cache) { delete [] cache; cache = 0; } if (rawData) { rawData(0, 0); } } void RawImageSource::flushRGB() { if (green) { green(0, 0); } if (red) { red(0, 0); } if (blue) { blue(0, 0); } } void RawImageSource::HLRecovery_Global(ToneCurveParams hrp ) { if (hrp.hrenabled && hrp.method == "Color") { if(!rgbSourceModified) { if (settings->verbose) { printf ("Applying Highlight Recovery: Color propagation...\n"); } HLRecovery_inpaint (red, green, blue); rgbSourceModified = true; } } } void RawImageSource::processFlatField(const RAWParams &raw, RawImage *riFlatFile, unsigned short black[4]) { float (*cfablur); cfablur = (float (*)) calloc (H * W, sizeof * cfablur); int BS = raw.ff_BlurRadius; BS += BS & 1; //function call to cfabloxblur if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::v_ff]) { cfaboxblur(riFlatFile, cfablur, 2 * BS, 0); } else if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::h_ff]) { cfaboxblur(riFlatFile, cfablur, 0, 2 * BS); } else if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::vh_ff]) //slightly more complicated blur if trying to correct both vertical and horizontal anomalies { cfaboxblur(riFlatFile, cfablur, BS, BS); //first do area blur to correct vignette } else { //(raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::area_ff]) cfaboxblur(riFlatFile, cfablur, BS, BS); } if(ri->getSensorType() == ST_BAYER) { float refcolor[2][2]; //find center ave values by channel for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { int row = 2 * (H >> 2) + m; int col = 2 * (W >> 2) + n; int c = FC(row, col); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; refcolor[m][n] = max(0.0f, cfablur[row * W + col] - black[c4]); } float limitFactor = 1.f; if(raw.ff_AutoClipControl) { int clipControlGui = 0; for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { float maxval = 0.f; int c = FC(m, n); int c4 = ( c == 1 && !(m & 1) ) ? 3 : c; #pragma omp parallel { float maxvalthr = 0.f; #pragma omp for for (int row = 0; row < H - m; row += 2) { for (int col = 0; col < W - n; col += 2) { float tempval = (rawData[row + m][col + n] - black[c4]) * ( refcolor[m][n] / max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) ); if(tempval > maxvalthr) { maxvalthr = tempval; } } } #pragma omp critical { if(maxvalthr > maxval) { maxval = maxvalthr; } } } // now we have the max value for the channel // if it clips, calculate factor to avoid clipping if(maxval + black[c4] >= ri->get_white(c4)) { limitFactor = min(limitFactor, ri->get_white(c4) / (maxval + black[c4])); } } clipControlGui = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui } else { limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f); } for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { refcolor[m][n] *= limitFactor; } for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { #pragma omp parallel { int c = FC(m, n); int c4 = ( c == 1 && !(m & 1) ) ? 3 : c; #pragma omp for for (int row = 0; row < H - m; row += 2) { for (int col = 0; col < W - n; col += 2) { float vignettecorr = ( refcolor[m][n] / max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) ); rawData[row + m][col + n] = (rawData[row + m][col + n] - black[c4]) * vignettecorr + black[c4]; } } } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { float refcolor[3] = {0.f}; int cCount[3] = {0}; //find center ave values by channel for (int m = -3; m < 3; m++) for (int n = -3; n < 3; n++) { int row = 2 * (H >> 2) + m; int col = 2 * (W >> 2) + n; int c = riFlatFile->XTRANSFC(row, col); refcolor[c] += max(0.0f, cfablur[row * W + col] - black[c]); cCount[c] ++; } for(int c = 0; c < 3; c++) { refcolor[c] = refcolor[c] / cCount[c]; } float limitFactor = 1.f; if(raw.ff_AutoClipControl) { // determine maximum calculated value to avoid clipping int clipControlGui = 0; float maxval = 0.f; // xtrans files have only one black level actually, so we can simplify the code a bit #pragma omp parallel { float maxvalthr = 0.f; #pragma omp for schedule(dynamic,16) nowait for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { float tempval = (rawData[row][col] - black[0]) * ( refcolor[ri->XTRANSFC(row, col)] / max(1e-5f, cfablur[(row) * W + col] - black[0]) ); if(tempval > maxvalthr) { maxvalthr = tempval; } } } #pragma omp critical { if(maxvalthr > maxval) { maxval = maxvalthr; } } } // there's only one white level for xtrans if(maxval + black[0] > ri->get_white(0)) { limitFactor = ri->get_white(0) / (maxval + black[0]); clipControlGui = (1.f - limitFactor) * 100.f; // this value can be used to set the clip control slider in gui } } else { limitFactor = max((float)(100 - raw.ff_clipControl) / 100.f, 0.01f); } for(int c = 0; c < 3; c++) { refcolor[c] *= limitFactor; } #pragma omp parallel for for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = ri->XTRANSFC(row, col); float vignettecorr = ( refcolor[c] / max(1e-5f, cfablur[(row) * W + col] - black[c]) ); rawData[row][col] = (rawData[row][col] - black[c]) * vignettecorr + black[c]; } } } if (raw.ff_BlurType == RAWParams::ff_BlurTypestring[RAWParams::vh_ff]) { float (*cfablur1); cfablur1 = (float (*)) calloc (H * W, sizeof * cfablur1); float (*cfablur2); cfablur2 = (float (*)) calloc (H * W, sizeof * cfablur2); //slightly more complicated blur if trying to correct both vertical and horizontal anomalies cfaboxblur(riFlatFile, cfablur1, 0, 2 * BS); //now do horizontal blur cfaboxblur(riFlatFile, cfablur2, 2 * BS, 0); //now do vertical blur if(ri->getSensorType() == ST_BAYER) { for (int m = 0; m < 2; m++) for (int n = 0; n < 2; n++) { #pragma omp parallel for for (int row = 0; row < H - m; row += 2) { int c = FC(row, 0); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; for (int col = 0; col < W - n; col += 2) { float hlinecorr = (max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) / max(1e-5f, cfablur1[(row + m) * W + col + n] - black[c4]) ); float vlinecorr = (max(1e-5f, cfablur[(row + m) * W + col + n] - black[c4]) / max(1e-5f, cfablur2[(row + m) * W + col + n] - black[c4]) ); rawData[row + m][col + n] = ((rawData[row + m][col + n] - black[c4]) * hlinecorr * vlinecorr + black[c4]); } } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { #pragma omp parallel for for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = ri->XTRANSFC(row, col); float hlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur1[(row) * W + col] - black[c]) ); float vlinecorr = (max(1e-5f, cfablur[(row) * W + col] - black[c]) / max(1e-5f, cfablur2[(row) * W + col] - black[c]) ); rawData[row][col] = ((rawData[row][col] - black[c]) * hlinecorr * vlinecorr + black[c]); } } } free (cfablur1); free (cfablur2); } free (cfablur); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* Copy original pixel data and * subtract dark frame (if present) from current image and apply flat field correction (if present) */ void RawImageSource::copyOriginalPixels(const RAWParams &raw, RawImage *src, RawImage *riDark, RawImage *riFlatFile ) { unsigned short black[4] = {ri->get_cblack(0), ri->get_cblack(1), ri->get_cblack(2), ri->get_cblack(3)}; if (ri->getSensorType() == ST_BAYER || ri->getSensorType() == ST_FUJI_XTRANS) { if (!rawData) { rawData(W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { // This works also for xtrans-sensors, because black[0] to black[4] are equal for these for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = FC(row, col); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; rawData[row][col] = max(src->data[row][col] + black[c4] - riDark->data[row][col], 0.0f); } } } else { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = src->data[row][col]; } } } if (riFlatFile && W == riFlatFile->get_width() && H == riFlatFile->get_height()) { processFlatField(raw, riFlatFile, black); } // flatfield } else if (ri->get_colors() == 1) { // Monochrome if (!rawData) { rawData(W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = max(src->data[row][col] + black[0] - riDark->data[row][col], 0.0f); } } } else { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][col] = src->data[row][col]; } } } } else { // No bayer pattern // TODO: Is there a flat field correction possible? if (!rawData) { rawData(3 * W, H); } if (riDark && W == riDark->get_width() && H == riDark->get_height()) { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { int c = FC(row, col); int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; rawData[row][3 * col + 0] = max(src->data[row][3 * col + 0] + black[c4] - riDark->data[row][3 * col + 0], 0.0f); rawData[row][3 * col + 1] = max(src->data[row][3 * col + 1] + black[c4] - riDark->data[row][3 * col + 1], 0.0f); rawData[row][3 * col + 2] = max(src->data[row][3 * col + 2] + black[c4] - riDark->data[row][3 * col + 2], 0.0f); } } } else { for (int row = 0; row < H; row++) { for (int col = 0; col < W; col++) { rawData[row][3 * col + 0] = src->data[row][3 * col + 0]; rawData[row][3 * col + 1] = src->data[row][3 * col + 1]; rawData[row][3 * col + 2] = src->data[row][3 * col + 2]; } } } } } SSEFUNCTION void RawImageSource::cfaboxblur(RawImage *riFlatFile, float* cfablur, const int boxH, const int boxW ) { float (*cfatmp); cfatmp = (float (*)) calloc (H * W, sizeof * cfatmp); // const float hotdeadthresh = 0.5; #pragma omp parallel { #pragma omp for for (int i = 0; i < H; i++) { int iprev, inext, jprev, jnext; int p[5], temp, median; if (i < 2) { iprev = i + 2; } else { iprev = i - 2; } if (i > H - 3) { inext = i - 2; } else { inext = i + 2; } for (int j = 0; j < W; j++) { if (j < 2) { jprev = j + 2; } else { jprev = j - 2; } if (j > W - 3) { jnext = j - 2; } else { jnext = j + 2; } //med3x3(riFlatFile->data[iprev][jprev], riFlatFile->data[iprev][j], riFlatFile->data[iprev][jnext], // riFlatFile->data[i][jprev], riFlatFile->data[i][j], riFlatFile->data[i][jnext], // riFlatFile->data[inext][jprev], riFlatFile->data[inext][j], riFlatFile->data[inext][jnext], cfatmp[i*W+j]); med5(riFlatFile->data[iprev][j], riFlatFile->data[i][jprev], riFlatFile->data[i][j], riFlatFile->data[i][jnext], riFlatFile->data[inext][j], median); // if (riFlatFile->data[i][j]>hotdeadthresh*median || median>hotdeadthresh*riFlatFile->data[i][j]) { if (((int)riFlatFile->data[i][j] << 1) > median || (median << 1) > riFlatFile->data[i][j]) { cfatmp[i * W + j] = median; } else { cfatmp[i * W + j] = riFlatFile->data[i][j]; } } } //box blur cfa image; box size = BS //horizontal blur #pragma omp for for (int row = 0; row < H; row++) { int len = boxW / 2 + 1; cfatmp[row * W + 0] = cfatmp[row * W + 0] / len; cfatmp[row * W + 1] = cfatmp[row * W + 1] / len; for (int j = 2; j <= boxW; j += 2) { cfatmp[row * W + 0] += cfatmp[row * W + j] / len; cfatmp[row * W + 1] += cfatmp[row * W + j + 1] / len; } for (int col = 2; col <= boxW; col += 2) { cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len + cfatmp[row * W + boxW + col]) / (len + 1); cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len + cfatmp[row * W + boxW + col + 1]) / (len + 1); len ++; } for (int col = boxW + 2; col < W - boxW; col++) { cfatmp[row * W + col] = cfatmp[row * W + col - 2] + (cfatmp[row * W + boxW + col] - cfatmp[row * W + col - boxW - 2]) / len; } for (int col = W - boxW; col < W; col += 2) { cfatmp[row * W + col] = (cfatmp[row * W + col - 2] * len - cfatmp[row * W + col - boxW - 2]) / (len - 1); if (col + 1 < W) { cfatmp[row * W + col + 1] = (cfatmp[row * W + col - 1] * len - cfatmp[row * W + col - boxW - 1]) / (len - 1); } len --; } } //vertical blur #ifdef __SSE2__ __m128 leninitv = _mm_set1_ps( (float)((int)(boxH / 2 + 1))); __m128 onev = _mm_set1_ps( 1.0f ); __m128 temp1v, temp2v, lenv, lenp1v, lenm1v; int row; #pragma omp for for (int col = 0; col < W - 3; col += 4) { lenv = leninitv; temp1v = LVFU(cfatmp[0 * W + col]) / lenv; temp2v = LVFU(cfatmp[1 * W + col]) / lenv; for (int i = 2; i < boxH + 2; i += 2) { temp1v += LVFU(cfatmp[i * W + col]) / lenv; temp2v += LVFU(cfatmp[(i + 1) * W + col]) / lenv; } _mm_storeu_ps(&cfablur[0 * W + col], temp1v); _mm_storeu_ps(&cfablur[1 * W + col], temp2v); for (row = 2; row < boxH + 2; row += 2) { lenp1v = lenv + onev; temp1v = (temp1v * lenv + LVFU(cfatmp[(row + boxH) * W + col])) / lenp1v; temp2v = (temp2v * lenv + LVFU(cfatmp[(row + boxH + 1) * W + col])) / lenp1v; _mm_storeu_ps( &cfablur[row * W + col], temp1v); _mm_storeu_ps( &cfablur[(row + 1)*W + col], temp2v); lenv = lenp1v; } for (; row < H - boxH - 1; row += 2) { temp1v = temp1v + (LVFU(cfatmp[(row + boxH) * W + col]) - LVFU(cfatmp[(row - boxH - 2) * W + col])) / lenv; temp2v = temp2v + (LVFU(cfatmp[(row + 1 + boxH) * W + col]) - LVFU(cfatmp[(row + 1 - boxH - 2) * W + col])) / lenv; _mm_storeu_ps(&cfablur[row * W + col], temp1v); _mm_storeu_ps(&cfablur[(row + 1)*W + col], temp2v); } for(; row < H - boxH; row++) { temp1v = temp1v + (LVFU(cfatmp[(row + boxH) * W + col]) - LVFU(cfatmp[(row - boxH - 2) * W + col])) / lenv; _mm_storeu_ps(&cfablur[row * W + col], temp1v); __m128 swapv = temp1v; temp1v = temp2v; temp2v = swapv; } for (; row < H - 1; row += 2) { lenm1v = lenv - onev; temp1v = (temp1v * lenv - LVFU(cfatmp[(row - boxH - 2) * W + col])) / lenm1v; temp2v = (temp2v * lenv - LVFU(cfatmp[(row - boxH - 1) * W + col])) / lenm1v; _mm_storeu_ps(&cfablur[row * W + col], temp1v); _mm_storeu_ps(&cfablur[(row + 1)*W + col], temp2v); lenv = lenm1v; } for(; row < H; row++) { lenm1v = lenv - onev; temp1v = (temp1v * lenv - LVFU(cfatmp[(row - boxH - 2) * W + col])) / lenm1v; _mm_storeu_ps(&cfablur[(row)*W + col], temp1v); } } for (int col = W - (W % 4); col < W; col++) { int len = boxH / 2 + 1; cfablur[0 * W + col] = cfatmp[0 * W + col] / len; cfablur[1 * W + col] = cfatmp[1 * W + col] / len; for (int i = 2; i < boxH + 2; i += 2) { cfablur[0 * W + col] += cfatmp[i * W + col] / len; cfablur[1 * W + col] += cfatmp[(i + 1) * W + col] / len; } for (int row = 2; row < boxH + 2; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + cfatmp[(row + boxH) * W + col]) / (len + 1); cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + cfatmp[(row + boxH + 1) * W + col]) / (len + 1); len ++; } for (int row = boxH + 2; row < H - boxH; row++) { cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (cfatmp[(row + boxH) * W + col] - cfatmp[(row - boxH - 2) * W + col]) / len; } for (int row = H - boxH; row < H; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - cfatmp[(row - boxH - 2) * W + col]) / (len - 1); if (row + 1 < H) { cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - cfatmp[(row - boxH - 1) * W + col]) / (len - 1); } len --; } } #else #pragma omp for for (int col = 0; col < W; col++) { int len = boxH / 2 + 1; cfablur[0 * W + col] = cfatmp[0 * W + col] / len; cfablur[1 * W + col] = cfatmp[1 * W + col] / len; for (int i = 2; i < boxH + 2; i += 2) { cfablur[0 * W + col] += cfatmp[i * W + col] / len; cfablur[1 * W + col] += cfatmp[(i + 1) * W + col] / len; } for (int row = 2; row < boxH + 2; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len + cfatmp[(row + boxH) * W + col]) / (len + 1); cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len + cfatmp[(row + boxH + 1) * W + col]) / (len + 1); len ++; } for (int row = boxH + 2; row < H - boxH; row++) { cfablur[row * W + col] = cfablur[(row - 2) * W + col] + (cfatmp[(row + boxH) * W + col] - cfatmp[(row - boxH - 2) * W + col]) / len; } for (int row = H - boxH; row < H; row += 2) { cfablur[row * W + col] = (cfablur[(row - 2) * W + col] * len - cfatmp[(row - boxH - 2) * W + col]) / (len - 1); if (row + 1 < H) { cfablur[(row + 1)*W + col] = (cfablur[(row - 1) * W + col] * len - cfatmp[(row - boxH - 1) * W + col]) / (len - 1); } len --; } } #endif } free (cfatmp); } // Scale original pixels into the range 0 65535 using black offsets and multipliers void RawImageSource::scaleColors(int winx, int winy, int winw, int winh, const RAWParams &raw) { chmax[0] = chmax[1] = chmax[2] = chmax[3] = 0; //channel maxima float black_lev[4] = {0.f};//black level //adjust black level (eg Canon) bool isMono = false; if (getSensorType() == ST_BAYER || getSensorType() == ST_FOVEON ) { black_lev[0] = raw.bayersensor.black1; //R black_lev[1] = raw.bayersensor.black0; //G1 black_lev[2] = raw.bayersensor.black2; //B black_lev[3] = raw.bayersensor.black3; //G2 isMono = RAWParams::BayerSensor::methodstring[RAWParams::BayerSensor::mono] == raw.bayersensor.method; } else if (getSensorType() == ST_FUJI_XTRANS) { black_lev[0] = raw.xtranssensor.blackred; //R black_lev[1] = raw.xtranssensor.blackgreen; //G1 black_lev[2] = raw.xtranssensor.blackblue; //B black_lev[3] = raw.xtranssensor.blackgreen; //G2 (set, only used with a Bayer filter) isMono = RAWParams::XTransSensor::methodstring[RAWParams::XTransSensor::mono] == raw.xtranssensor.method; } for(int i = 0; i < 4 ; i++) { cblacksom[i] = max( c_black[i] + black_lev[i], 0.0f ); // adjust black level } initialGain = calculate_scale_mul(scale_mul, ref_pre_mul, c_white, cblacksom, isMono, ri->get_colors()); // recalculate scale colors with adjusted levels //fprintf(stderr, "recalc: %f [%f %f %f %f]\n", initialGain, scale_mul[0], scale_mul[1], scale_mul[2], scale_mul[3]); for(int i = 0; i < 4 ; i++) { clmax[i] = (c_white[i] - cblacksom[i]) * scale_mul[i]; // raw clip level } // this seems strange, but it works // scale image colors if( ri->getSensorType() == ST_BAYER) { #pragma omp parallel { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #pragma omp for nowait for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; int c = FC(row, col); // three colors, 0=R, 1=G, 2=B int c4 = ( c == 1 && !(row & 1) ) ? 3 : c; // four colors, 0=R, 1=G1, 2=B, 3=G2 val -= cblacksom[c4]; val *= scale_mul[c4]; rawData[row][col] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } #pragma omp critical { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } } else if ( ri->get_colors() == 1 ) { #pragma omp parallel { float tmpchmax = 0.0f; #pragma omp for nowait for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; val -= cblacksom[0]; val *= scale_mul[0]; rawData[row][col] = (val); tmpchmax = max(tmpchmax, val); } } #pragma omp critical { chmax[0] = chmax[1] = chmax[2] = chmax[3] = max(tmpchmax, chmax[0]); } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { #pragma omp parallel { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #pragma omp for nowait for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { float val = rawData[row][col]; int c = ri->XTRANSFC(row, col); val -= cblacksom[c]; val *= scale_mul[c]; rawData[row][col] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } #pragma omp critical { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } } else { #pragma omp parallel { float tmpchmax[3]; tmpchmax[0] = tmpchmax[1] = tmpchmax[2] = 0.0f; #pragma omp for nowait for (int row = winy; row < winy + winh; row ++) { for (int col = winx; col < winx + winw; col++) { for (int c = 0; c < 3; c++) { // three colors, 0=R, 1=G, 2=B float val = rawData[row][3 * col + c]; val -= cblacksom[c]; val *= scale_mul[c]; rawData[row][3 * col + c] = (val); tmpchmax[c] = max(tmpchmax[c], val); } } } #pragma omp critical { chmax[0] = max(tmpchmax[0], chmax[0]); chmax[1] = max(tmpchmax[1], chmax[1]); chmax[2] = max(tmpchmax[2], chmax[2]); } } chmax[3] = chmax[1]; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int RawImageSource::defTransform (int tran) { int deg = ri->get_rotateDegree(); if ((tran & TR_ROT) == TR_R180) { deg += 180; } else if ((tran & TR_ROT) == TR_R90) { deg += 90; } else if ((tran & TR_ROT) == TR_R270) { deg += 270; } deg %= 360; int ret = 0; if (deg == 90) { ret |= TR_R90; } else if (deg == 180) { ret |= TR_R180; } else if (deg == 270) { ret |= TR_R270; } if (tran & TR_HFLIP) { ret |= TR_HFLIP; } if (tran & TR_VFLIP) { ret |= TR_VFLIP; } return ret; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Thread called part void RawImageSource::processFalseColorCorrectionThread (Imagefloat* im, int row_from, int row_to) { int W = im->width; array2D rbconv_Y (W, 3); array2D rbconv_I (W, 3); array2D rbconv_Q (W, 3); array2D rbout_I (W, 3); array2D rbout_Q (W, 3); float* row_I = new float[W]; float* row_Q = new float[W]; float* pre1_I = new float[3]; float* pre2_I = new float[3]; float* post1_I = new float[3]; float* post2_I = new float[3]; float middle_I[6]; float* pre1_Q = new float[3]; float* pre2_Q = new float[3]; float* post1_Q = new float[3]; float* post2_Q = new float[3]; float middle_Q[6]; float* tmp; int px = (row_from - 1) % 3, cx = row_from % 3, nx = 0; convert_row_to_YIQ (im->r(row_from - 1), im->g(row_from - 1), im->b(row_from - 1), rbconv_Y[px], rbconv_I[px], rbconv_Q[px], W); convert_row_to_YIQ (im->r(row_from), im->g(row_from), im->b(row_from), rbconv_Y[cx], rbconv_I[cx], rbconv_Q[cx], W); for (int j = 0; j < W; j++) { rbout_I[px][j] = rbconv_I[px][j]; rbout_Q[px][j] = rbconv_Q[px][j]; } for (int i = row_from; i < row_to; i++) { px = (i - 1) % 3; cx = i % 3; nx = (i + 1) % 3; convert_row_to_YIQ (im->r(i + 1), im->g(i + 1), im->b(i + 1), rbconv_Y[nx], rbconv_I[nx], rbconv_Q[nx], W); SORT3(rbconv_I[px][0], rbconv_I[cx][0], rbconv_I[nx][0], pre1_I[0], pre1_I[1], pre1_I[2]); SORT3(rbconv_I[px][1], rbconv_I[cx][1], rbconv_I[nx][1], pre2_I[0], pre2_I[1], pre2_I[2]); SORT3(rbconv_Q[px][0], rbconv_Q[cx][0], rbconv_Q[nx][0], pre1_Q[0], pre1_Q[1], pre1_Q[2]); SORT3(rbconv_Q[px][1], rbconv_Q[cx][1], rbconv_Q[nx][1], pre2_Q[0], pre2_Q[1], pre2_Q[2]); // median I channel for (int j = 1; j < W - 2; j += 2) { SORT3(rbconv_I[px][j + 1], rbconv_I[cx][j + 1], rbconv_I[nx][j + 1], post1_I[0], post1_I[1], post1_I[2]); SORT3(rbconv_I[px][j + 2], rbconv_I[cx][j + 2], rbconv_I[nx][j + 2], post2_I[0], post2_I[1], post2_I[2]); MERGESORT(pre2_I[0], pre2_I[1], pre2_I[2], post1_I[0], post1_I[1], post1_I[2], middle_I[0], middle_I[1], middle_I[2], middle_I[3], middle_I[4], middle_I[5]); MEDIAN7(pre1_I[0], pre1_I[1], pre1_I[2], middle_I[1], middle_I[2], middle_I[3], middle_I[4], rbout_I[cx][j]); MEDIAN7(post2_I[0], post2_I[1], post2_I[2], middle_I[1], middle_I[2], middle_I[3], middle_I[4], rbout_I[cx][j + 1]); tmp = pre1_I; pre1_I = post1_I; post1_I = tmp; tmp = pre2_I; pre2_I = post2_I; post2_I = tmp; } // median Q channel for (int j = 1; j < W - 2; j += 2) { SORT3(rbconv_Q[px][j + 1], rbconv_Q[cx][j + 1], rbconv_Q[nx][j + 1], post1_Q[0], post1_Q[1], post1_Q[2]); SORT3(rbconv_Q[px][j + 2], rbconv_Q[cx][j + 2], rbconv_Q[nx][j + 2], post2_Q[0], post2_Q[1], post2_Q[2]); MERGESORT(pre2_Q[0], pre2_Q[1], pre2_Q[2], post1_Q[0], post1_Q[1], post1_Q[2], middle_Q[0], middle_Q[1], middle_Q[2], middle_Q[3], middle_Q[4], middle_Q[5]); MEDIAN7(pre1_Q[0], pre1_Q[1], pre1_Q[2], middle_Q[1], middle_Q[2], middle_Q[3], middle_Q[4], rbout_Q[cx][j]); MEDIAN7(post2_Q[0], post2_Q[1], post2_Q[2], middle_Q[1], middle_Q[2], middle_Q[3], middle_Q[4], rbout_Q[cx][j + 1]); tmp = pre1_Q; pre1_Q = post1_Q; post1_Q = tmp; tmp = pre2_Q; pre2_Q = post2_Q; post2_Q = tmp; } // fill first and last element in rbout rbout_I[cx][0] = rbconv_I[cx][0]; rbout_I[cx][W - 1] = rbconv_I[cx][W - 1]; rbout_I[cx][W - 2] = rbconv_I[cx][W - 2]; rbout_Q[cx][0] = rbconv_Q[cx][0]; rbout_Q[cx][W - 1] = rbconv_Q[cx][W - 1]; rbout_Q[cx][W - 2] = rbconv_Q[cx][W - 2]; // blur i-1th row if (i > row_from) { for (int j = 1; j < W - 1; j++) { row_I[j] = (rbout_I[px][j - 1] + rbout_I[px][j] + rbout_I[px][j + 1] + rbout_I[cx][j - 1] + rbout_I[cx][j] + rbout_I[cx][j + 1] + rbout_I[nx][j - 1] + rbout_I[nx][j] + rbout_I[nx][j + 1]) / 9; row_Q[j] = (rbout_Q[px][j - 1] + rbout_Q[px][j] + rbout_Q[px][j + 1] + rbout_Q[cx][j - 1] + rbout_Q[cx][j] + rbout_Q[cx][j + 1] + rbout_Q[nx][j - 1] + rbout_Q[nx][j] + rbout_Q[nx][j + 1]) / 9; } row_I[0] = rbout_I[px][0]; row_Q[0] = rbout_Q[px][0]; row_I[W - 1] = rbout_I[px][W - 1]; row_Q[W - 1] = rbout_Q[px][W - 1]; convert_row_to_RGB (im->r(i - 1), im->g(i - 1), im->b(i - 1), rbconv_Y[px], row_I, row_Q, W); } } // blur last 3 row and finalize H-1th row for (int j = 1; j < W - 1; j++) { row_I[j] = (rbout_I[px][j - 1] + rbout_I[px][j] + rbout_I[px][j + 1] + rbout_I[cx][j - 1] + rbout_I[cx][j] + rbout_I[cx][j + 1] + rbconv_I[nx][j - 1] + rbconv_I[nx][j] + rbconv_I[nx][j + 1]) / 9; row_Q[j] = (rbout_Q[px][j - 1] + rbout_Q[px][j] + rbout_Q[px][j + 1] + rbout_Q[cx][j - 1] + rbout_Q[cx][j] + rbout_Q[cx][j + 1] + rbconv_Q[nx][j - 1] + rbconv_Q[nx][j] + rbconv_Q[nx][j + 1]) / 9; } row_I[0] = rbout_I[cx][0]; row_Q[0] = rbout_Q[cx][0]; row_I[W - 1] = rbout_I[cx][W - 1]; row_Q[W - 1] = rbout_Q[cx][W - 1]; convert_row_to_RGB (im->r(row_to - 1), im->g(row_to - 1), im->b(row_to - 1), rbconv_Y[cx], row_I, row_Q, W); delete [] row_I; delete [] row_Q; delete [] pre1_I; delete [] pre2_I; delete [] post1_I; delete [] post2_I; delete [] pre1_Q; delete [] pre2_Q; delete [] post1_Q; delete [] post2_Q; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // correction_YIQ_LQ void RawImageSource::processFalseColorCorrection (Imagefloat* im, int steps) { if (im->height < 4) { return; } for (int t = 0; t < steps; t++) { #ifdef _OPENMP #pragma omp parallel { int tid = omp_get_thread_num(); int nthreads = omp_get_num_threads(); int blk = (im->height - 2) / nthreads; if (tid < nthreads - 1) { processFalseColorCorrectionThread (im, 1 + tid * blk, 1 + (tid + 1)*blk); } else { processFalseColorCorrectionThread (im, 1 + tid * blk, im->height - 1); } } #else processFalseColorCorrectionThread (im, 1 , im->height - 1); #endif } } // Some camera input profiles need gamma preprocessing // gamma is applied before the CMS, correct line fac=lineFac*rawPixel+LineSum after the CMS void RawImageSource::getProfilePreprocParams(cmsHPROFILE in, float& gammaFac, float& lineFac, float& lineSum) { gammaFac = 0; lineFac = 1; lineSum = 0; char copyright[256]; copyright[0] = 0; if (cmsGetProfileInfoASCII(in, cmsInfoCopyright, cmsNoLanguage, cmsNoCountry, copyright, 256) > 0) { if (strstr(copyright, "Phase One") != NULL) { gammaFac = 0.55556; // 1.8 } else if (strstr(copyright, "Nikon Corporation") != NULL) { gammaFac = 0.5; lineFac = -0.4; lineSum = 1.35; // determined in reverse by measuring NX an RT developed colorchecker PNGs } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% static void lab2ProphotoRgbD50(float L, float A, float B, float& r, float& g, float& b) { float X; float Y; float Z; #define CLIP01(a) ((a)>0?((a)<1?(a):1):0) { // convert from Lab to XYZ float x, y, z, fx, fy, fz; fy = (L + 16.0f) / 116.0f; fx = A / 500.0f + fy; fz = fy - B / 200.0f; if (fy > 24.0f / 116.0f) { y = fy * fy * fy; } else { y = (fy - 16.0f / 116.0f) / 7.787036979f; } if (fx > 24.0f / 116.0f) { x = fx * fx * fx; } else { x = (fx - 16.0 / 116.0) / 7.787036979f; } if (fz > 24.0f / 116.0f) { z = fz * fz * fz; } else { z = (fz - 16.0f / 116.0f) / 7.787036979f; } //0.9642, 1.0000, 0.8249 D50 X = x * 0.9642; Y = y; Z = z * 0.8249; } r = prophoto_xyz[0][0] * X + prophoto_xyz[0][1] * Y + prophoto_xyz[0][2] * Z; g = prophoto_xyz[1][0] * X + prophoto_xyz[1][1] * Y + prophoto_xyz[1][2] * Z; b = prophoto_xyz[2][0] * X + prophoto_xyz[2][1] * Y + prophoto_xyz[2][2] * Z; r = CLIP01(r); g = CLIP01(g); b = CLIP01(b); } // Converts raw image including ICC input profile to working space - floating point version void RawImageSource::colorSpaceConversion_ (Imagefloat* im, ColorManagementParams &cmp, ColorTemp &wb, double pre_mul[3], cmsHPROFILE embedded, cmsHPROFILE camprofile, double camMatrix[3][3], const std::string &camName) { // MyTime t1, t2, t3; // t1.set (); cmsHPROFILE in; DCPProfile *dcpProf; if (!findInputProfile(cmp.input, embedded, camName, &dcpProf, in)) { return; } if (dcpProf != NULL) { // DCP processing dcpProf->Apply(im, cmp.dcpIlluminant, cmp.working, wb, pre_mul, camMatrix, false, cmp.applyHueSatMap, false); return; } if (in == NULL) { // use default camprofile, supplied by dcraw // in this case we avoid using the slllllooooooowwww lcms // Calculate matrix for direct conversion raw>working space TMatrix work = iccStore->workingSpaceInverseMatrix (cmp.working); double mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) { mat[i][j] += work[i][k] * camMatrix[k][j]; // rgb_xyz * imatrices.xyz_cam } #pragma omp parallel for for (int i = 0; i < im->height; i++) for (int j = 0; j < im->width; j++) { float newr = mat[0][0] * im->r(i, j) + mat[0][1] * im->g(i, j) + mat[0][2] * im->b(i, j); float newg = mat[1][0] * im->r(i, j) + mat[1][1] * im->g(i, j) + mat[1][2] * im->b(i, j); float newb = mat[2][0] * im->r(i, j) + mat[2][1] * im->g(i, j) + mat[2][2] * im->b(i, j); im->r(i, j) = newr; im->g(i, j) = newg; im->b(i, j) = newb; } } else { const bool working_space_is_prophoto = (cmp.working == "ProPhoto"); // use supplied input profile /* The goal here is to in addition to user-made custom ICC profiles also support profiles supplied with other popular raw converters. As curves affect color rendering and different raw converters deal with them differently (and few if any is as flexible as RawTherapee) we cannot really expect to get the *exact* same color rendering here. However we try hard to make the best out of it. Third-party input profiles that contain a LUT (usually A2B0 tag) often needs some preprocessing, as ICC LUTs are not really designed for dealing with linear camera data. Generally one must apply some sort of curve to get efficient use of the LUTs. Unfortunately how you should preprocess is not standardized so there are almost as many ways as there are software makers, and for each one we have to reverse engineer to find out how it has been done. (The ICC files made for RT has linear LUTs) ICC profiles which only contain the XYZ tags (ie only a color matrix) should (hopefully) not require any pre-processing. Some LUT ICC profiles apply a contrast curve and desaturate highlights (to give a "film-like" behavior. These will generally work with RawTherapee, but will not produce good results when you enable highlight recovery/reconstruction, as that data is added linearly on top of the original range. RawTherapee works best with linear ICC profiles. */ enum camera_icc_type { CAMERA_ICC_TYPE_GENERIC, // Generic, no special pre-processing required, RTs own is this way CAMERA_ICC_TYPE_PHASE_ONE, // Capture One profiles CAMERA_ICC_TYPE_LEAF, // Leaf profiles, former Leaf Capture now in Capture One, made for Leaf digital backs CAMERA_ICC_TYPE_NIKON // Nikon NX profiles } camera_icc_type = CAMERA_ICC_TYPE_GENERIC; float leaf_prophoto_mat[3][3]; { // identify ICC type char copyright[256] = ""; char description[256] = ""; cmsGetProfileInfoASCII(in, cmsInfoCopyright, cmsNoLanguage, cmsNoCountry, copyright, 256); cmsGetProfileInfoASCII(in, cmsInfoDescription, cmsNoLanguage, cmsNoCountry, description, 256); camera_icc_type = CAMERA_ICC_TYPE_GENERIC; // Note: order the identification with the most detailed matching first since the more general ones may also match the more detailed if ((strstr(copyright, "Leaf") != NULL || strstr(copyright, "Phase One A/S") != NULL || strstr(copyright, "Kodak") != NULL || strstr(copyright, "Creo") != NULL) && (strstr(description, "LF2 ") == description || strstr(description, "LF3 ") == description || strstr(description, "LeafLF2") == description || strstr(description, "LeafLF3") == description || strstr(description, "LeafLF4") == description || strstr(description, "MamiyaLF2") == description || strstr(description, "MamiyaLF3") == description)) { camera_icc_type = CAMERA_ICC_TYPE_LEAF; } else if (strstr(copyright, "Phase One A/S") != NULL) { camera_icc_type = CAMERA_ICC_TYPE_PHASE_ONE; } else if (strstr(copyright, "Nikon Corporation") != NULL) { camera_icc_type = CAMERA_ICC_TYPE_NIKON; } } // Initialize transform cmsHTRANSFORM hTransform; cmsHPROFILE prophoto = iccStore->workingSpace("ProPhoto"); // We always use Prophoto to apply the ICC profile to minimize problems with clipping in LUT conversion. bool transform_via_pcs_lab = false; bool separate_pcs_lab_highlights = false; lcmsMutex->lock (); switch (camera_icc_type) { case CAMERA_ICC_TYPE_PHASE_ONE: case CAMERA_ICC_TYPE_LEAF: { // These profiles have a RGB to Lab cLUT, gives gamma 1.8 output, and expects a "film-like" curve on input transform_via_pcs_lab = true; separate_pcs_lab_highlights = true; // We transform to Lab because we can and that we avoid getting an unnecessary unmatched gamma conversion which we would need to revert. hTransform = cmsCreateTransform (in, TYPE_RGB_FLT, NULL, TYPE_Lab_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { leaf_prophoto_mat[i][j] = 0; for (int k = 0; k < 3; k++) { leaf_prophoto_mat[i][j] += prophoto_xyz[i][k] * camMatrix[k][j]; } } } break; } case CAMERA_ICC_TYPE_NIKON: case CAMERA_ICC_TYPE_GENERIC: default: hTransform = cmsCreateTransform (in, TYPE_RGB_FLT, prophoto, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); // NOCACHE is important for thread safety break; } lcmsMutex->unlock (); if (hTransform == NULL) { // Fallback: create transform from camera profile. Should not happen normally. lcmsMutex->lock (); hTransform = cmsCreateTransform (camprofile, TYPE_RGB_FLT, prophoto, TYPE_RGB_FLT, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE | cmsFLAGS_NOCACHE ); lcmsMutex->unlock (); } TMatrix toxyz, torgb; if (!working_space_is_prophoto) { toxyz = iccStore->workingSpaceMatrix ("ProPhoto"); torgb = iccStore->workingSpaceInverseMatrix (cmp.working); //sRGB .. Adobe...Wide... } #ifdef _OPENMP #pragma omp parallel #endif { AlignedBuffer buffer(im->width * 3); AlignedBuffer hl_buffer(im->width * 3); AlignedBuffer hl_scale(im->width); #ifdef _OPENMP #pragma omp for schedule(static) #endif for ( int h = 0; h < im->height; ++h ) { float *p = buffer.data, *pR = im->r(h), *pG = im->g(h), *pB = im->b(h); // Apply pre-processing for ( int w = 0; w < im->width; ++w ) { float r = *(pR++); float g = *(pG++); float b = *(pB++); // convert to 0-1 range as LCMS expects that r /= 65535.0f; g /= 65535.0f; b /= 65535.0f; float maxc = max(r, g, b); if (maxc <= 1.0) { hl_scale.data[w] = 1.0; } else { // highlight recovery extend the range past the clip point, which means we can get values larger than 1.0 here. // LUT ICC profiles only work in the 0-1 range so we scale down to fit and restore after conversion. hl_scale.data[w] = 1.0 / maxc; r *= hl_scale.data[w]; g *= hl_scale.data[w]; b *= hl_scale.data[w]; } switch (camera_icc_type) { case CAMERA_ICC_TYPE_PHASE_ONE: // Here we apply a curve similar to Capture One's "Film Standard" + gamma, the reason is that the LUTs embedded in the // ICCs are designed to work on such input, and if you provide it with a different curve you don't get as good result. // We will revert this curve after we've made the color transform. However when we revert the curve, we'll notice that // highlight rendering suffers due to that the LUT transform don't expand well, therefore we do a less compressed // conversion too and mix them, this gives us the highest quality and most flexible result. hl_buffer.data[3 * w + 0] = pow_F(r, 1.0 / 1.8); hl_buffer.data[3 * w + 1] = pow_F(g, 1.0 / 1.8); hl_buffer.data[3 * w + 2] = pow_F(b, 1.0 / 1.8); r = phaseOneIccCurveInv->getVal(r); g = phaseOneIccCurveInv->getVal(g); b = phaseOneIccCurveInv->getVal(b); break; case CAMERA_ICC_TYPE_LEAF: { // Leaf profiles expect that the camera native RGB has been converted to Prophoto RGB float newr = leaf_prophoto_mat[0][0] * r + leaf_prophoto_mat[0][1] * g + leaf_prophoto_mat[0][2] * b; float newg = leaf_prophoto_mat[1][0] * r + leaf_prophoto_mat[1][1] * g + leaf_prophoto_mat[1][2] * b; float newb = leaf_prophoto_mat[2][0] * r + leaf_prophoto_mat[2][1] * g + leaf_prophoto_mat[2][2] * b; hl_buffer.data[3 * w + 0] = pow_F(newr, 1.0 / 1.8); hl_buffer.data[3 * w + 1] = pow_F(newg, 1.0 / 1.8); hl_buffer.data[3 * w + 2] = pow_F(newb, 1.0 / 1.8); r = phaseOneIccCurveInv->getVal(newr); g = phaseOneIccCurveInv->getVal(newg); b = phaseOneIccCurveInv->getVal(newb); break; } case CAMERA_ICC_TYPE_NIKON: // gamma 0.5 r = sqrtf(r); g = sqrtf(g); b = sqrtf(b); break; case CAMERA_ICC_TYPE_GENERIC: default: // do nothing break; } *(p++) = r; *(p++) = g; *(p++) = b; } // Run icc transform cmsDoTransform (hTransform, buffer.data, buffer.data, im->width); if (separate_pcs_lab_highlights) { cmsDoTransform (hTransform, hl_buffer.data, hl_buffer.data, im->width); } // Apply post-processing p = buffer.data; pR = im->r(h); pG = im->g(h); pB = im->b(h); for ( int w = 0; w < im->width; ++w ) { float r, g, b, hr, hg, hb; if (transform_via_pcs_lab) { float L = *(p++); float A = *(p++); float B = *(p++); // profile connection space CIELAB should have D50 illuminant lab2ProphotoRgbD50(L, A, B, r, g, b); if (separate_pcs_lab_highlights) { lab2ProphotoRgbD50(hl_buffer.data[3 * w + 0], hl_buffer.data[3 * w + 1], hl_buffer.data[3 * w + 2], hr, hg, hb); } } else { r = *(p++); g = *(p++); b = *(p++); } // restore pre-processing and/or add post-processing for the various ICC types switch (camera_icc_type) { default: break; case CAMERA_ICC_TYPE_PHASE_ONE: case CAMERA_ICC_TYPE_LEAF: { // note the 1/1.8 gamma, it's the gamma that the profile has applied, which we must revert before we can revert the curve r = phaseOneIccCurve->getVal(pow_F(r, 1.0 / 1.8)); g = phaseOneIccCurve->getVal(pow_F(g, 1.0 / 1.8)); b = phaseOneIccCurve->getVal(pow_F(b, 1.0 / 1.8)); const float mix = 0.25; // may seem a low number, but remember this is linear space, mixing starts 2 stops from clipping const float maxc = max(r, g, b); if (maxc > mix) { float fac = (maxc - mix) / (1.0 - mix); fac = sqrtf(sqrtf(fac)); // gamma 0.25 to mix in highlight render relatively quick r = (1.0 - fac) * r + fac * hr; g = (1.0 - fac) * g + fac * hg; b = (1.0 - fac) * b + fac * hb; } break; } case CAMERA_ICC_TYPE_NIKON: { const float lineFac = -0.4; const float lineSum = 1.35; r *= r * lineFac + lineSum; g *= g * lineFac + lineSum; b *= b * lineFac + lineSum; break; } } // restore highlight scaling if any if (hl_scale.data[w] != 1.0) { float fac = 1.0 / hl_scale.data[w]; r *= fac; g *= fac; b *= fac; } // If we don't have ProPhoto as chosen working profile, convert. This conversion is clipless, ie if we convert // to a small space such as sRGB we may end up with negative values and values larger than max. if (!working_space_is_prophoto) { //convert from Prophoto to XYZ float x = (toxyz[0][0] * r + toxyz[0][1] * g + toxyz[0][2] * b ) ; float y = (toxyz[1][0] * r + toxyz[1][1] * g + toxyz[1][2] * b ) ; float z = (toxyz[2][0] * r + toxyz[2][1] * g + toxyz[2][2] * b ) ; //convert from XYZ to cmp.working (sRGB...Adobe...Wide..) r = ((torgb[0][0] * x + torgb[0][1] * y + torgb[0][2] * z)) ; g = ((torgb[1][0] * x + torgb[1][1] * y + torgb[1][2] * z)) ; b = ((torgb[2][0] * x + torgb[2][1] * y + torgb[2][2] * z)) ; } // return to the 0.0 - 65535.0 range (with possible negative and > max values present) r *= 65535.0; g *= 65535.0; b *= 65535.0; *(pR++) = r; *(pG++) = g; *(pB++) = b; } } } // End of parallelization cmsDeleteTransform(hTransform); } //t3.set (); // printf ("ICM TIME: %d usec\n", t3.etime(t1)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Converts raw image including ICC input profile to working space - 16bit int version /*void RawImageSource::colorSpaceConversion16 (Image16* im, ColorManagementParams cmp, cmsHPROFILE embedded, cmsHPROFILE camprofile, double camMatrix[3][3], std::string camName) { cmsHPROFILE in; DCPProfile *dcpProf; if (!findInputProfile(cmp.input, embedded, camName, &dcpProf, in)) return; if (dcpProf!=NULL) { dcpProf->Apply(im, (DCPLightType)cmp.preferredProfile, cmp.working, cmp.toneCurve); } else { if (in==NULL) { // Take camprofile from DCRAW // in this case we avoid using the slllllooooooowwww lcms TMatrix work = iccStore->workingSpaceInverseMatrix (cmp.working); double mat[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) mat[i][j] += work[i][k] * camMatrix[k][j]; // rgb_xyz * imatrices.xyz_cam #pragma omp parallel for for (int i=0; iheight; i++) for (int j=0; jwidth; j++) { float newr = mat[0][0]*im->r(i,j) + mat[0][1]*im->g(i,j) + mat[0][2]*im->b(i,j); float newg = mat[1][0]*im->r(i,j) + mat[1][1]*im->g(i,j) + mat[1][2]*im->b(i,j); float newb = mat[2][0]*im->r(i,j) + mat[2][1]*im->g(i,j) + mat[2][2]*im->b(i,j); im->r(i,j) = CLIP((int)newr); im->g(i,j) = CLIP((int)newg); im->b(i,j) = CLIP((int)newb); } } else { // Gamma preprocessing float gammaFac, lineFac, lineSum; getProfilePreprocParams(in, gammaFac, lineFac, lineSum); if (gammaFac>0) { #pragma omp parallel for for ( int h = 0; h < im->height; ++h ) for ( int w = 0; w < im->width; ++w ) { im->r(h,w)= (int) (pow ((double)(im->r(h,w) / 65535.0), (double)gammaFac) * 65535.0); im->g(h,w)= (int) (pow ((double)(im->g(h,w) / 65535.0), (double)gammaFac) * 65535.0); im->b(h,w)= (int) (pow ((double)(im->b(h,w) / 65535.0), (double)gammaFac) * 65535.0); } } cmsHPROFILE out = iccStore->workingSpace (cmp.working); //out = iccStore->workingSpaceGamma (wProfile); lcmsMutex->lock (); cmsHTRANSFORM hTransform = cmsCreateTransform (in, TYPE_RGB_16, out, TYPE_RGB_16, settings->colorimetricIntent, cmsFLAGS_NOCACHE); // NOCACHE is important for thread safety lcmsMutex->unlock (); if (hTransform) { im->ExecCMSTransform(hTransform); // There might be Nikon postprocessings if (lineSum>0) { #pragma omp parallel for for ( int h = 0; h < im->height; ++h ) for ( int w = 0; w < im->width; ++w ) { im->r(h,w) *= im->r(h,w) * lineFac / 65535.0 + lineSum; im->g(h,w) *= im->g(h,w) * lineFac / 65535.0 + lineSum; im->b(h,w) *= im->b(h,w) * lineFac / 65535.0 + lineSum; } } } else { lcmsMutex->lock (); hTransform = cmsCreateTransform (camprofile, TYPE_RGB_16, out, TYPE_RGB_16, settings->colorimetricIntent, cmsFLAGS_NOCACHE); lcmsMutex->unlock (); im->ExecCMSTransform(hTransform); } cmsDeleteTransform(hTransform); } } //t3.set (); //printf ("ICM TIME: %d\n", t3.etime(t1)); }*/ // Determine RAW input and output profiles. Returns TRUE on success bool RawImageSource::findInputProfile(Glib::ustring inProfile, cmsHPROFILE embedded, std::string camName, DCPProfile **dcpProf, cmsHPROFILE& in) { in = NULL; // cam will be taken on NULL *dcpProf = NULL; if (inProfile == "(none)") { return false; } if (inProfile == "(embedded)" && embedded) { in = embedded; } else if (inProfile == "(cameraICC)") { // DCPs have higher quality, so use them first *dcpProf = dcpStore->getStdProfile(camName); if (*dcpProf == NULL) { in = iccStore->getStdProfile(camName); } } else if (inProfile != "(camera)" && inProfile != "") { Glib::ustring normalName = inProfile; if (!inProfile.compare (0, 5, "file:")) { normalName = inProfile.substr(5); } if (dcpStore->isValidDCPFileName(normalName)) { *dcpProf = dcpStore->getProfile(normalName); } if (*dcpProf == NULL) { in = iccStore->getProfile (inProfile); } } // "in" might be NULL because of "not found". That's ok, we take the cam profile then return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // derived from Dcraw "blend_highlights()" // very effective to reduce (or remove) the magenta, but with levels of grey ! void RawImageSource::HLRecovery_blend(float* rin, float* gin, float* bin, int width, float maxval, float* hlmax) { const int ColorCount = 3; // Transform matrixes rgb>lab and back static const float trans[2][ColorCount][ColorCount] = { { { 1, 1, 1 }, { 1.7320508, -1.7320508, 0 }, { -1, -1, 2 } }, { { 1, 1, 1 }, { 1, -1, 1 }, { 1, 1, -1 } } }; static const float itrans[2][ColorCount][ColorCount] = { { { 1, 0.8660254, -0.5 }, { 1, -0.8660254, -0.5 }, { 1, 0, 1 } }, { { 1, 1, 1 }, { 1, -1, 1 }, { 1, 1, -1 } } }; #define FOREACHCOLOR for (int c=0; c < ColorCount; c++) float minpt = min(hlmax[0], hlmax[1], hlmax[2]); //min of the raw clip points //float maxpt=max(hlmax[0],hlmax[1],hlmax[2]);//max of the raw clip points //float medpt=hlmax[0]+hlmax[1]+hlmax[2]-minpt-maxpt;//median of the raw clip points float maxave = (hlmax[0] + hlmax[1] + hlmax[2]) / 3; //ave of the raw clip points //some thresholds: const float clipthresh = 0.95; const float fixthresh = 0.5; const float satthresh = 0.5; float clip[3]; FOREACHCOLOR clip[c] = min(maxave, hlmax[c]); // Determine the maximum level (clip) of all channels const float clippt = clipthresh * maxval; const float fixpt = fixthresh * minpt; const float desatpt = satthresh * maxave + (1 - satthresh) * maxval; for (int col = 0; col < width; col++) { float rgb[ColorCount], cam[2][ColorCount], lab[2][ColorCount], sum[2], chratio, lratio = 0; float L, C, H, Lfrac; // Copy input pixel to rgb so it's easier to access in loops rgb[0] = rin[col]; rgb[1] = gin[col]; rgb[2] = bin[col]; // If no channel is clipped, do nothing on pixel int c; for (c = 0; c < ColorCount; c++) { if (rgb[c] > clippt) { break; } } if (c == ColorCount) { continue; } // Initialize cam with raw input [0] and potentially clipped input [1] FOREACHCOLOR { lratio += min(rgb[c], clip[c]); cam[0][c] = rgb[c]; cam[1][c] = min(cam[0][c], maxval); } // Calculate the lightness correction ratio (chratio) for (int i = 0; i < 2; i++) { FOREACHCOLOR { lab[i][c] = 0; for (int j = 0; j < ColorCount; j++) { lab[i][c] += trans[ColorCount - 3][c][j] * cam[i][j]; } } sum[i] = 0; for (int c = 1; c < ColorCount; c++) { sum[i] += SQR(lab[i][c]); } } chratio = (sqrt(sum[1] / sum[0])); // Apply ratio to lightness in LCH space for (int c = 1; c < ColorCount; c++) { lab[0][c] *= chratio; } // Transform back from LCH to RGB FOREACHCOLOR { cam[0][c] = 0; for (int j = 0; j < ColorCount; j++) { cam[0][c] += itrans[ColorCount - 3][c][j] * lab[0][j]; } } FOREACHCOLOR rgb[c] = cam[0][c] / ColorCount; // Copy converted pixel back if (rin[col] > fixpt) { float rfrac = SQR((min(clip[0], rin[col]) - fixpt) / (clip[0] - fixpt)); rin[col] = min(maxave, rfrac * rgb[0] + (1 - rfrac) * rin[col]); } if (gin[col] > fixpt) { float gfrac = SQR((min(clip[1], gin[col]) - fixpt) / (clip[1] - fixpt)); gin[col] = min(maxave, gfrac * rgb[1] + (1 - gfrac) * gin[col]); } if (bin[col] > fixpt) { float bfrac = SQR((min(clip[2], bin[col]) - fixpt) / (clip[2] - fixpt)); bin[col] = min(maxave, bfrac * rgb[2] + (1 - bfrac) * bin[col]); } lratio /= (rin[col] + gin[col] + bin[col]); L = (rin[col] + gin[col] + bin[col]) / 3; C = lratio * 1.732050808 * (rin[col] - gin[col]); H = lratio * (2 * bin[col] - rin[col] - gin[col]); rin[col] = L - H / 6.0 + C / 3.464101615; gin[col] = L - H / 6.0 - C / 3.464101615; bin[col] = L + H / 3.0; if ((L = (rin[col] + gin[col] + bin[col]) / 3) > desatpt) { Lfrac = max(0.0f, (maxave - L) / (maxave - desatpt)); C = Lfrac * 1.732050808 * (rin[col] - gin[col]); H = Lfrac * (2 * bin[col] - rin[col] - gin[col]); rin[col] = L - H / 6.0 + C / 3.464101615; gin[col] = L - H / 6.0 - C / 3.464101615; bin[col] = L + H / 3.0; } } } void RawImageSource::HLRecovery_Luminance (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, int width, float maxval) { for (int i = 0; i < width; i++) { float r = rin[i], g = gin[i], b = bin[i]; if (r > maxval || g > maxval || b > maxval) { float ro = min(r, maxval); float go = min(g, maxval); float bo = min(b, maxval); double L = r + g + b; double C = 1.732050808 * (r - g); double H = 2 * b - r - g; double Co = 1.732050808 * (ro - go); double Ho = 2 * bo - ro - go; if (r != g && g != b) { double ratio = sqrt ((Co * Co + Ho * Ho) / (C * C + H * H)); C *= ratio; H *= ratio; } float rr = L / 3.0 - H / 6.0 + C / 3.464101615; float gr = L / 3.0 - H / 6.0 - C / 3.464101615; float br = L / 3.0 + H / 3.0; rout[i] = rr; gout[i] = gr; bout[i] = br; } else { rout[i] = rin[i]; gout[i] = gin[i]; bout[i] = bin[i]; } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::HLRecovery_CIELab (float* rin, float* gin, float* bin, float* rout, float* gout, float* bout, int width, float maxval, double xyz_cam[3][3], double cam_xyz[3][3]) { //static bool crTableReady = false; // lookup table for Lab conversion // perhaps should be centralized, universally defined so we don't keep remaking it??? /*for (int ix=0; ix < 0x10000; ix++) { float rx = ix / 65535.0; fv[ix] = rx > 0.008856 ? exp(1.0/3 * log(rx)) : 7.787*rx + 16/116.0; }*/ //crTableReady = true; for (int i = 0; i < width; i++) { float r = rin[i], g = gin[i], b = bin[i]; if (r > maxval || g > maxval || b > maxval) { float ro = min(r, maxval); float go = min(g, maxval); float bo = min(b, maxval); float yy = xyz_cam[1][0] * r + xyz_cam[1][1] * g + xyz_cam[1][2] * b; float fy = (yy < 65535.0 ? ImProcFunctions::cachef[yy] / 327.68 : (exp(log(yy / MAXVALD) / 3.0 ))); // compute LCH decompostion of the clipped pixel (only color information, thus C and H will be used) float x = xyz_cam[0][0] * ro + xyz_cam[0][1] * go + xyz_cam[0][2] * bo; float y = xyz_cam[1][0] * ro + xyz_cam[1][1] * go + xyz_cam[1][2] * bo; float z = xyz_cam[2][0] * ro + xyz_cam[2][1] * go + xyz_cam[2][2] * bo; x = (x < 65535.0 ? ImProcFunctions::cachef[x] / 327.68 : (exp(log(x / MAXVALD) / 3.0 ))); y = (y < 65535.0 ? ImProcFunctions::cachef[y] / 327.68 : (exp(log(y / MAXVALD) / 3.0 ))); z = (z < 65535.0 ? ImProcFunctions::cachef[z] / 327.68 : (exp(log(z / MAXVALD) / 3.0 ))); // convert back to rgb double fz = fy - y + z; double fx = fy + x - y; double zr = Color::f2xyz(fz); double xr = Color::f2xyz(fx); x = xr * 65535.0 ; y = yy; z = zr * 65535.0 ; float rr = cam_xyz[0][0] * x + cam_xyz[0][1] * y + cam_xyz[0][2] * z; float gr = cam_xyz[1][0] * x + cam_xyz[1][1] * y + cam_xyz[1][2] * z; float br = cam_xyz[2][0] * x + cam_xyz[2][1] * y + cam_xyz[2][2] * z; rout[i] = (rr); gout[i] = (gr); bout[i] = (br); } else { rout[i] = (rin[i]); gout[i] = (gin[i]); bout[i] = (bin[i]); } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::hlRecovery (std::string method, float* red, float* green, float* blue, int i, int sx1, int width, int skip, const RAWParams &raw, float* hlmax ) { if (method == "Luminance") { HLRecovery_Luminance (red, green, blue, red, green, blue, width, 65535.0); } else if (method == "CIELab blending") { HLRecovery_CIELab (red, green, blue, red, green, blue, width, 65535.0, imatrices.xyz_cam, imatrices.cam_xyz); } /*else if (method=="Color") HLRecovery_ColorPropagation (red, green, blue, i, sx1, width, skip);*/ else if (method == "Blend") { // derived from Dcraw HLRecovery_blend(red, green, blue, width, 65535.0, hlmax); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getAutoExpHistogram (LUTu & histogram, int& histcompr) { histcompr = 3; histogram(65536 >> histcompr); histogram.clear(); #pragma omp parallel { LUTu tmphistogram(65536 >> histcompr); tmphistogram.clear(); #pragma omp for nowait for (int i = border; i < H - border; i++) { int start, end; getRowStartEnd (i, start, end); if (ri->getSensorType() == ST_BAYER) { for (int j = start; j < end; j++) { if (ri->ISGREEN(i, j)) { tmphistogram[CLIP((int)(refwb_green * rawData[i][j])) >> histcompr] += 4; } else if (ri->ISRED(i, j)) { tmphistogram[CLIP((int)(refwb_red * rawData[i][j])) >> histcompr] += 4; } else if (ri->ISBLUE(i, j)) { tmphistogram[CLIP((int)(refwb_blue * rawData[i][j])) >> histcompr] += 4; } } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { for (int j = start; j < end; j++) { if (ri->ISXTRANSGREEN(i, j)) { tmphistogram[CLIP((int)(refwb_green * rawData[i][j])) >> histcompr] += 4; } else if (ri->ISXTRANSRED(i, j)) { tmphistogram[CLIP((int)(refwb_red * rawData[i][j])) >> histcompr] += 4; } else if (ri->ISXTRANSBLUE(i, j)) { tmphistogram[CLIP((int)(refwb_blue * rawData[i][j])) >> histcompr] += 4; } } } else if (ri->get_colors() == 1) { for (int j = start; j < end; j++) { tmphistogram[CLIP((int)(refwb_red * rawData[i][j])) >> histcompr]++; } } else { for (int j = start; j < end; j++) { tmphistogram[CLIP((int)(refwb_red * rawData[i][3 * j + 0])) >> histcompr]++; tmphistogram[CLIP((int)(refwb_green * rawData[i][3 * j + 1])) >> histcompr] += 2; tmphistogram[CLIP((int)(refwb_blue * rawData[i][3 * j + 2])) >> histcompr]++; } } } #pragma omp critical { for(int i = 0; i < (65536 >> histcompr); i++) { histogram[i] += tmphistogram[i]; } } } } // Histogram MUST be 256 in size; gamma is applied, blackpoint and gain also void RawImageSource::getRAWHistogram (LUTu & histRedRaw, LUTu & histGreenRaw, LUTu & histBlueRaw) { histRedRaw.clear(); histGreenRaw.clear(); histBlueRaw.clear(); const float mult[4] = { 65535.0 / ri->get_white(0), 65535.0 / ri->get_white(1), 65535.0 / ri->get_white(2), 65535.0 / ri->get_white(3) }; #ifdef _OPENMP int numThreads; // reduce the number of threads under certain conditions to avoid overhaed of too many critical regions numThreads = sqrt((((H - 2 * border) * (W - 2 * border)) / 262144.f)); numThreads = std::min(std::max(numThreads, 1), omp_get_max_threads()); #pragma omp parallel num_threads(numThreads) #endif { // we need one LUT per color and thread, which corresponds to 1 MB per thread LUTu tmphist[4]; tmphist[0](65536); tmphist[0].clear(); tmphist[1](65536); tmphist[1].clear(); tmphist[2](65536); tmphist[2].clear(); tmphist[3](65536); tmphist[3].clear(); #ifdef _OPENMP #pragma omp for nowait #endif for (int i = border; i < H - border; i++) { int start, end; getRowStartEnd (i, start, end); if (ri->getSensorType() == ST_BAYER) { int j; int c1 = FC(i, start); c1 = ( c1 == 1 && !(i & 1) ) ? 3 : c1; int c2 = FC(i, start + 1); c2 = ( c2 == 1 && !(i & 1) ) ? 3 : c2; for (j = start; j < end - 1; j += 2) { tmphist[c1][(int)ri->data[i][j]]++; tmphist[c2][(int)ri->data[i][j + 1]]++; } if(j < end) { // last pixel of row if width is odd tmphist[c1][(int)ri->data[i][j]]++; } } else if (ri->get_colors() == 1) { for (int j = start; j < end; j++) { for (int c = 0; c < 3; c++) { tmphist[c][(int)ri->data[i][j]]++; } } } else if(ri->getSensorType() == ST_FUJI_XTRANS) { for (int j = start; j < end - 1; j += 2) { int c = ri->XTRANSFC(i, j); tmphist[c][(int)ri->data[i][j]]++; } } else { for (int j = start; j < end; j++) { for (int c = 0; c < 3; c++) { tmphist[c][(int)ri->data[i][3 * j + c]]++; } } } } #ifdef _OPENMP #pragma omp critical #endif { for(int i = 0; i < 65536; i++) { int idx; idx = CLIP((int)Color::gamma(mult[0] * (i - (cblacksom[0]/*+black_lev[0]*/)))); histRedRaw[idx >> 8] += tmphist[0][i]; idx = CLIP((int)Color::gamma(mult[1] * (i - (cblacksom[1]/*+black_lev[1]*/)))); histGreenRaw[idx >> 8] += tmphist[1][i]; idx = CLIP((int)Color::gamma(mult[3] * (i - (cblacksom[3]/*+black_lev[3]*/)))); histGreenRaw[idx >> 8] += tmphist[3][i]; idx = CLIP((int)Color::gamma(mult[2] * (i - (cblacksom[2]/*+black_lev[2]*/)))); histBlueRaw[idx >> 8] += tmphist[2][i]; } } // end of critical region } // end of parallel region if (ri->getSensorType() == ST_BAYER) // since there are twice as many greens, correct for it for (int i = 0; i < 256; i++) { histGreenRaw[i] >>= 1; } else if(ri->getSensorType() == ST_FUJI_XTRANS) // since Xtrans has 2.5 as many greens, correct for it for (int i = 0; i < 256; i++) { histGreenRaw[i] = (histGreenRaw[i] * 2) / 5; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getRowStartEnd (int x, int &start, int &end) { if (fuji) { int fw = ri->get_FujiWidth(); start = ABS(fw - x) + border; end = min(H + W - fw - x, fw + x) - border; } else { start = border; end = W - border; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::getAutoWBMultipliers (double &rm, double &gm, double &bm) { if (ri->get_colors() == 1) { rm = gm = bm = 1; return; } if (redAWBMul != -1.) { rm = redAWBMul; gm = greenAWBMul; bm = blueAWBMul; return; } if (!isWBProviderReady()) { rm = -1.0; gm = -1.0; bm = -1.0; return; } double avg_r = 0; double avg_g = 0; double avg_b = 0; int rn = 0, gn = 0, bn = 0; if (fuji) { for (int i = 32; i < H - 32; i++) { int fw = ri->get_FujiWidth(); int start = ABS(fw - i) + 32; int end = min(H + W - fw - i, fw + i) - 32; for (int j = start; j < end; j++) { if (ri->getSensorType() != ST_BAYER) { double dr = CLIP(initialGain * (rawData[i][3 * j] )); double dg = CLIP(initialGain * (rawData[i][3 * j + 1])); double db = CLIP(initialGain * (rawData[i][3 * j + 2])); if (dr > 64000. || dg > 64000. || db > 64000.) { continue; } avg_r += dr; avg_g += dg; avg_b += db; rn = gn = ++bn; } else { int c = FC( i, j); double d = CLIP(initialGain * (rawData[i][j])); if (d > 64000.) { continue; } // Let's test green first, because they are more numerous if (c == 1) { avg_g += d; gn++; } else if (c == 0) { avg_r += d; rn++; } else { /*if (c==2)*/ avg_b += d; bn++; } } } } } else { if (ri->getSensorType() != ST_BAYER) { if(ri->getSensorType() == ST_FUJI_XTRANS) { for (int i = 32; i < H - 32; i++) for (int j = 32; j < W - 32; j++) { // each loop read 1 rgb triplet value if(ri->ISXTRANSRED(i, j)) { float dr = CLIP(initialGain * (rawData[i][j])); if (dr > 64000.f) { continue; } avg_r += dr; rn ++; } if(ri->ISXTRANSGREEN(i, j)) { float dg = CLIP(initialGain * (rawData[i][j])); if (dg > 64000.f) { continue; } avg_g += dg; gn ++; } if(ri->ISXTRANSBLUE(i, j)) { float db = CLIP(initialGain * (rawData[i][j])); if (db > 64000.f) { continue; } avg_b += db; bn ++; } } } else { for (int i = 32; i < H - 32; i++) for (int j = 32; j < W - 32; j++) { // each loop read 1 rgb triplet value double dr = CLIP(initialGain * (rawData[i][3 * j] )); double dg = CLIP(initialGain * (rawData[i][3 * j + 1])); double db = CLIP(initialGain * (rawData[i][3 * j + 2])); if (dr > 64000. || dg > 64000. || db > 64000.) { continue; } avg_r += dr; rn++; avg_g += dg; avg_b += db; } gn = rn; bn = rn; } } else { //determine GRBG coset; (ey,ex) is the offset of the R subarray int ey, ex; if (ri->ISGREEN(0, 0)) { //first pixel is G if (ri->ISRED(0, 1)) { ey = 0; ex = 1; } else { ey = 1; ex = 0; } } else {//first pixel is R or B if (ri->ISRED(0, 0)) { ey = 0; ex = 0; } else { ey = 1; ex = 1; } } double d[2][2]; for (int i = 32; i < H - 32; i += 2) for (int j = 32; j < W - 32; j += 2) { //average each Bayer quartet component individually if non-clipped d[0][0] = CLIP(initialGain * (rawData[i][j] )); d[0][1] = CLIP(initialGain * (rawData[i][j + 1] )); d[1][0] = CLIP(initialGain * (rawData[i + 1][j] )); d[1][1] = CLIP(initialGain * (rawData[i + 1][j + 1])); if (d[ey][ex] <= 64000.) { avg_r += d[ey][ex]; rn++; } if (d[1 - ey][ex] <= 64000.) { avg_g += d[1 - ey][ex]; gn++; } if (d[ey][1 - ex] <= 64000.) { avg_g += d[ey][1 - ex]; gn++; } if (d[1 - ey][1 - ex] <= 64000.) { avg_b += d[1 - ey][1 - ex]; bn++; } } } } if( settings->verbose ) { printf ("AVG: %g %g %g\n", avg_r / rn, avg_g / gn, avg_b / bn); } // return ColorTemp (pow(avg_r/rn, 1.0/6.0)*img_r, pow(avg_g/gn, 1.0/6.0)*img_g, pow(avg_b/bn, 1.0/6.0)*img_b); double reds = avg_r / rn * refwb_red; double greens = avg_g / gn * refwb_green; double blues = avg_b / bn * refwb_blue; redAWBMul = rm = imatrices.rgb_cam[0][0] * reds + imatrices.rgb_cam[0][1] * greens + imatrices.rgb_cam[0][2] * blues; greenAWBMul = gm = imatrices.rgb_cam[1][0] * reds + imatrices.rgb_cam[1][1] * greens + imatrices.rgb_cam[1][2] * blues; blueAWBMul = bm = imatrices.rgb_cam[2][0] * reds + imatrices.rgb_cam[2][1] * greens + imatrices.rgb_cam[2][2] * blues; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ColorTemp RawImageSource::getSpotWB (std::vector &red, std::vector &green, std::vector &blue, int tran, double equal) { int x; int y; double reds = 0, greens = 0, blues = 0; int rn = 0; if (ri->getSensorType() != ST_BAYER) { if(ri->getSensorType() == ST_FUJI_XTRANS) { int d[9][2] = {{0, 0}, { -1, -1}, { -1, 0}, { -1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}}; double rloc, gloc, bloc; int rnbrs, gnbrs, bnbrs; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, x, y); rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (ri->ISXTRANSRED(yv, xv)) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (ri->ISXTRANSBLUE(yv, xv)) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= rnbrs; gloc /= gnbrs; bloc /= bnbrs; if (rloc * initialGain < 64000. && gloc * initialGain < 64000. && bloc * initialGain < 64000.) { reds += rloc; greens += gloc; blues += bloc; rn++; } } } else { int xmin, xmax, ymin, ymax; int xr, xg, xb, yr, yg, yb; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, xr, yr); transformPosition (green[i].x, green[i].y, tran, xg, yg); transformPosition (blue[i].x, blue[i].y, tran, xb, yb); if (initialGain * (rawData[yr][3 * xr] ) > 52500 || initialGain * (rawData[yg][3 * xg + 1]) > 52500 || initialGain * (rawData[yb][3 * xb + 2]) > 52500) { continue; } xmin = min(xr, xg, xb); xmax = max(xr, xg, xb); ymin = min(yr, yg, yb); ymax = max(yr, yg, yb); if (xmin >= 0 && ymin >= 0 && xmax < W && ymax < H) { reds += (rawData[yr][3 * xr] ); greens += (rawData[yg][3 * xg + 1]); blues += (rawData[yb][3 * xb + 2]); rn++; } } } } else { int d[9][2] = {{0, 0}, { -1, -1}, { -1, 0}, { -1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}}; double rloc, gloc, bloc; int rnbrs, gnbrs, bnbrs; for (size_t i = 0; i < red.size(); i++) { transformPosition (red[i].x, red[i].y, tran, x, y); rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= rnbrs; gloc /= gnbrs; bloc /= bnbrs; if (rloc * initialGain < 64000. && gloc * initialGain < 64000. && bloc * initialGain < 64000.) { reds += rloc; greens += gloc; blues += bloc; rn++; } transformPosition (green[i].x, green[i].y, tran, x, y);//these are redundant now ??? if not, repeat for these blocks same as for red[] rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= rnbrs; gloc /= gnbrs; bloc /= bnbrs; if (rloc * initialGain < 64000. && gloc * initialGain < 64000. && bloc * initialGain < 64000.) { reds += rloc; greens += gloc; blues += bloc; rn++; } transformPosition (blue[i].x, blue[i].y, tran, x, y); rloc = gloc = bloc = rnbrs = gnbrs = bnbrs = 0; for (int k = 0; k < 9; k++) { int xv = x + d[k][0]; int yv = y + d[k][1]; int c = FC(yv, xv); if(xv >= 0 && yv >= 0 && xv < W && yv < H) { if (c == 0) { //RED rloc += (rawData[yv][xv]); rnbrs++; continue; } else if (c == 2) { //BLUE bloc += (rawData[yv][xv]); bnbrs++; continue; } else { // GREEN gloc += (rawData[yv][xv]); gnbrs++; continue; } } } rloc /= rnbrs; gloc /= gnbrs; bloc /= bnbrs; if (rloc * initialGain < 64000. && gloc * initialGain < 64000. && bloc * initialGain < 64000.) { reds += rloc; greens += gloc; blues += bloc; rn++; } } } if (2 * rn < red.size()) { return ColorTemp (equal); } else { reds = reds / rn * refwb_red; greens = greens / rn * refwb_green; blues = blues / rn * refwb_blue; double rm = imatrices.rgb_cam[0][0] * reds + imatrices.rgb_cam[0][1] * greens + imatrices.rgb_cam[0][2] * blues; double gm = imatrices.rgb_cam[1][0] * reds + imatrices.rgb_cam[1][1] * greens + imatrices.rgb_cam[1][2] * blues; double bm = imatrices.rgb_cam[2][0] * reds + imatrices.rgb_cam[2][1] * greens + imatrices.rgb_cam[2][2] * blues; return ColorTemp (rm, gm, bm, equal); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::transformPosition (int x, int y, int tran, int& ttx, int& tty) { tran = defTransform (tran); x += border; y += border; if (d1x) { if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { x /= 2; } else { y /= 2; } } int w = W, h = H; if (fuji) { w = ri->get_FujiWidth() * 2 + 1; h = (H - ri->get_FujiWidth()) * 2 + 1; } int sw = w, sh = h; if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) { sw = h; sh = w; } int ppx = x, ppy = y; if (tran & TR_HFLIP) { ppx = sw - 1 - x ; } if (tran & TR_VFLIP) { ppy = sh - 1 - y; } int tx = ppx; int ty = ppy; if ((tran & TR_ROT) == TR_R180) { tx = w - 1 - ppx; ty = h - 1 - ppy; } else if ((tran & TR_ROT) == TR_R90) { tx = ppy; ty = h - 1 - ppx; } else if ((tran & TR_ROT) == TR_R270) { tx = w - 1 - ppy; ty = ppx; } if (fuji) { ttx = (tx + ty) / 2; tty = (ty - tx) / 2 + ri->get_FujiWidth(); } else { ttx = tx; tty = ty; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void RawImageSource::inverse33 (const double (*rgb_cam)[3], double (*cam_rgb)[3]) { double nom = (rgb_cam[0][2] * rgb_cam[1][1] * rgb_cam[2][0] - rgb_cam[0][1] * rgb_cam[1][2] * rgb_cam[2][0] - rgb_cam[0][2] * rgb_cam[1][0] * rgb_cam[2][1] + rgb_cam[0][0] * rgb_cam[1][2] * rgb_cam[2][1] + rgb_cam[0][1] * rgb_cam[1][0] * rgb_cam[2][2] - rgb_cam[0][0] * rgb_cam[1][1] * rgb_cam[2][2] ); cam_rgb[0][0] = (rgb_cam[1][2] * rgb_cam[2][1] - rgb_cam[1][1] * rgb_cam[2][2]) / nom; cam_rgb[0][1] = -(rgb_cam[0][2] * rgb_cam[2][1] - rgb_cam[0][1] * rgb_cam[2][2]) / nom; cam_rgb[0][2] = (rgb_cam[0][2] * rgb_cam[1][1] - rgb_cam[0][1] * rgb_cam[1][2]) / nom; cam_rgb[1][0] = -(rgb_cam[1][2] * rgb_cam[2][0] - rgb_cam[1][0] * rgb_cam[2][2]) / nom; cam_rgb[1][1] = (rgb_cam[0][2] * rgb_cam[2][0] - rgb_cam[0][0] * rgb_cam[2][2]) / nom; cam_rgb[1][2] = -(rgb_cam[0][2] * rgb_cam[1][0] - rgb_cam[0][0] * rgb_cam[1][2]) / nom; cam_rgb[2][0] = (rgb_cam[1][1] * rgb_cam[2][0] - rgb_cam[1][0] * rgb_cam[2][1]) / nom; cam_rgb[2][1] = -(rgb_cam[0][1] * rgb_cam[2][0] - rgb_cam[0][0] * rgb_cam[2][1]) / nom; cam_rgb[2][2] = (rgb_cam[0][1] * rgb_cam[1][0] - rgb_cam[0][0] * rgb_cam[1][1]) / nom; } DiagonalCurve* RawImageSource::phaseOneIccCurve; DiagonalCurve* RawImageSource::phaseOneIccCurveInv; void RawImageSource::init () { { // Initialize Phase One ICC curves /* This curve is derived from TIFFTAG_TRANSFERFUNCTION of a Capture One P25+ image with applied film curve, exported to TIFF with embedded camera ICC. It's assumed to be similar to most standard curves in Capture One. It's not necessary to be exactly the same, it's just to be close to a typical curve to give the Phase One ICC files a good working space. */ const double phase_one_forward[] = { 0.0000000000, 0.0000000000, 0.0152590219, 0.0029602502, 0.0305180438, 0.0058899825, 0.0457770657, 0.0087739376, 0.0610360876, 0.0115968566, 0.0762951095, 0.0143587396, 0.0915541314, 0.0171969177, 0.1068131533, 0.0201876860, 0.1220721752, 0.0232852674, 0.1373311971, 0.0264744030, 0.1525902190, 0.0297245747, 0.1678492409, 0.0330205234, 0.1831082628, 0.0363775082, 0.1983672847, 0.0397802701, 0.2136263066, 0.0432593271, 0.2288853285, 0.0467841611, 0.2441443503, 0.0503700313, 0.2594033722, 0.0540474556, 0.2746623941, 0.0577859159, 0.2899214160, 0.0616159304, 0.3051804379, 0.0655222400, 0.3204394598, 0.0695353628, 0.3356984817, 0.0736552987, 0.3509575036, 0.0778973068, 0.3662165255, 0.0822461280, 0.3814755474, 0.0867170214, 0.3967345693, 0.0913252461, 0.4119935912, 0.0960860609, 0.4272526131, 0.1009994659, 0.4425116350, 0.1060654612, 0.4577706569, 0.1113298238, 0.4730296788, 0.1167925536, 0.4882887007, 0.1224841688, 0.5035477226, 0.1284046693, 0.5188067445, 0.1345540551, 0.5340657664, 0.1409781033, 0.5493247883, 0.1476615549, 0.5645838102, 0.1546501869, 0.5798428321, 0.1619287404, 0.5951018540, 0.1695277333, 0.6103608759, 0.1774776837, 0.6256198978, 0.1858091096, 0.6408789197, 0.1945525292, 0.6561379416, 0.2037384604, 0.6713969635, 0.2134279393, 0.6866559854, 0.2236667430, 0.7019150072, 0.2345159075, 0.7171740291, 0.2460517281, 0.7324330510, 0.2583047227, 0.7476920729, 0.2714122225, 0.7629510948, 0.2854352636, 0.7782101167, 0.3004959182, 0.7934691386, 0.3167620356, 0.8087281605, 0.3343862058, 0.8239871824, 0.3535820554, 0.8392462043, 0.3745937285, 0.8545052262, 0.3977111467, 0.8697642481, 0.4232547494, 0.8850232700, 0.4515754940, 0.9002822919, 0.4830701152, 0.9155413138, 0.5190966659, 0.9308003357, 0.5615320058, 0.9460593576, 0.6136263066, 0.9613183795, 0.6807965209, 0.9765774014, 0.7717402914, 0.9918364233, 0.9052109560, 1.0000000000, 1.0000000000 }; std::vector cForwardPoints; cForwardPoints.push_back(double(DCT_Spline)); // The first value is the curve type std::vector cInversePoints; cInversePoints.push_back(double(DCT_Spline)); // The first value is the curve type for (int i = 0; i < sizeof(phase_one_forward) / sizeof(phase_one_forward[0]); i += 2) { cForwardPoints.push_back(phase_one_forward[i + 0]); cForwardPoints.push_back(phase_one_forward[i + 1]); cInversePoints.push_back(phase_one_forward[i + 1]); cInversePoints.push_back(phase_one_forward[i + 0]); } phaseOneIccCurve = new DiagonalCurve(cForwardPoints, CURVES_MIN_POLY_POINTS); phaseOneIccCurveInv = new DiagonalCurve(cInversePoints, CURVES_MIN_POLY_POINTS); } } void RawImageSource::cleanup () { delete phaseOneIccCurve; delete phaseOneIccCurveInv; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //#include "demosaic_algos.cc" //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //Emil's code /* * Now compiled separately * #include "fast_demo.cc"//fast demosaic #include "amaze_demosaic_RT.cc"//AMaZE demosaic #include "CA_correct_RT.cc"//Emil's CA auto correction #include "cfa_linedn_RT.cc"//Emil's line denoise #include "green_equil_RT.cc"//Emil's green channel equilibration #include "hilite_recon.cc"//Emil's highlight reconstruction #include "expo_before_b.cc"//Jacques's exposure before interpolation */ //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #undef PIX_SORT #undef med3x3 } /* namespace */ #undef PIX_SORT #undef med3x3