//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 26, 2010 // // CA_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #include "rtengine.h" #include "rawimagesource.h" #include "rt_math.h" using namespace std; using namespace rtengine; int RawImageSource::LinEqSolve(int nDim, double* pfMatr, double* pfVect, double* pfSolution) { //============================================================================== // return 1 if system not solving, 0 if system solved // nDim - system dimension // pfMatr - matrix with coefficients // pfVect - vector with free members // pfSolution - vector with system solution // pfMatr becames trianglular after function call // pfVect changes after function call // // Developer: Henry Guennadi Levkin // //============================================================================== double fMaxElem; double fAcc; int i, j, k, m; for(k=0; k<(nDim-1); k++) {// base row of matrix // search of line with max element fMaxElem = fabsf( pfMatr[k*nDim + k] ); m = k; for (i=k+1; i=0; k--) { pfSolution[k] = pfVect[k]; for(i=(k+1); i(b)) {temp=(a);(a)=(b);(b)=temp;} } // Test for RGB cfa for(int i=0;i<2;i++) for(int j=0;j<2;j++) if(FC(i,j) == 3) { printf("CA correction supports only RGB Color filter arrays\n"); return; } volatile double progress = 0.0; if(plistener) plistener->setProgress (progress); bool autoCA = (cared==0 && cablue==0); // local variables int width=W, height=H; //temporary array to store simple interpolation of G float (*Gtmp); Gtmp = (float (*)) calloc ((height)*(width), sizeof *Gtmp); // temporary array to avoid race conflicts, only every second pixel needs to be saved here float (*RawDataTmp); RawDataTmp = (float*) malloc( height * width * sizeof(float)/2); float blockave[2][3]={{0,0,0},{0,0,0}}, blocksqave[2][3]={{0,0,0},{0,0,0}}, blockdenom[2][3]={{0,0,0},{0,0,0}}, blockvar[2][3]; // Because we can't break parallel processing, we need a switch do handle the errors bool processpasstwo = true; //block CA shift values and weight assigned to block char *buffer1; // vblsz*hblsz*(3*2+1) float (*blockwt); // vblsz*hblsz float (*blockshifts)[3][2]; // vblsz*hblsz*3*2 const int border=8; const int border2=16; int vz1, hz1; if((height+border2)%(TS-border2)==0) vz1=1; else vz1=0; if((width+border2)%(TS-border2)==0) hz1=1; else hz1=0; int vblsz, hblsz; vblsz=ceil((float)(height+border2)/(TS-border2)+2+vz1); hblsz=ceil((float)(width+border2)/(TS-border2)+2+hz1); buffer1 = (char *) malloc(vblsz*hblsz*(3*2+1)*sizeof(float)); //merror(buffer1,"CA_correct()"); memset(buffer1,0,vblsz*hblsz*(3*2+1)*sizeof(float)); // block CA shifts blockwt = (float (*)) (buffer1); blockshifts = (float (*)[3][2]) (buffer1+(vblsz*hblsz*sizeof(float))); double fitparams[3][2][16]; //order of 2d polynomial fit (polyord), and numpar=polyord^2 int polyord=4, numpar=16; #pragma omp parallel shared(Gtmp,width,height,blockave,blocksqave,blockdenom,blockvar,blockwt,blockshifts,fitparams,polyord,numpar) { int progresscounter = 0; int rrmin, rrmax, ccmin, ccmax; int top, left, row, col; int rr, cc, c, indx, indx1, i, j, k, m, n, dir; //number of pixels in a tile contributing to the CA shift diagnostic int areawt[2][3]; //direction of the CA shift in a tile int GRBdir[2][3]; //offset data of the plaquette where the optical R/B data are sampled int offset[2][3]; int shifthfloor[3], shiftvfloor[3], shifthceil[3], shiftvceil[3]; //number of tiles in the image int vblock, hblock; //int verbose=1; //flag indicating success or failure of polynomial fit int res; //shifts to location of vertical and diagonal neighbors const int v1=TS, v2=2*TS, v3=3*TS, v4=4*TS;//, p1=-TS+1, p2=-2*TS+2, p3=-3*TS+3, m1=TS+1, m2=2*TS+2, m3=3*TS+3; float eps=1e-5f, eps2=1e-10f; //tolerance to avoid dividing by zero //adaptive weights for green interpolation float wtu, wtd, wtl, wtr; //local quadratic fit to shift data within a tile float coeff[2][3][3]; //measured CA shift parameters for a tile float CAshift[2][3]; //polynomial fit coefficients //residual CA shift amount within a plaquette float shifthfrac[3], shiftvfrac[3]; //temporary storage for median filter float temp, p[9]; //temporary parameters for tile CA evaluation float gdiff, deltgrb; //interpolated G at edge of plaquette float Ginthfloor, Ginthceil, Gint, RBint, gradwt; //interpolated color difference at edge of plaquette float grbdiffinthfloor, grbdiffinthceil, grbdiffint, grbdiffold; //per thread data for evaluation of block CA shift variance float blockavethr[2][3]={{0,0,0},{0,0,0}}, blocksqavethr[2][3]={{0,0,0},{0,0,0}}, blockdenomthr[2][3]={{0,0,0},{0,0,0}};//, blockvarthr[2][3]; //low and high pass 1D filters of G in vertical/horizontal directions float glpfh, glpfv; //max allowed CA shift const float bslim = 3.99; //gaussians for low pass filtering of G and R/B //static const float gaussg[5] = {0.171582, 0.15839, 0.124594, 0.083518, 0.0477063};//sig=2.5 //static const float gaussrb[3] = {0.332406, 0.241376, 0.0924212};//sig=1.25 //block CA shift values and weight assigned to block char *buffer; // TS*TS*16 //rgb data in a tile float* rgb[3]; //color differences float (*grbdiff); // TS*TS*4 //green interpolated to optical sample points for R/B float (*gshift); // TS*TS*4 //high pass filter for R/B in vertical direction float (*rbhpfh); // TS*TS*4 //high pass filter for R/B in horizontal direction float (*rbhpfv); // TS*TS*4 //low pass filter for R/B in horizontal direction float (*rblpfh); // TS*TS*4 //low pass filter for R/B in vertical direction float (*rblpfv); // TS*TS*4 //low pass filter for color differences in horizontal direction float (*grblpfh); // TS*TS*4 //low pass filter for color differences in vertical direction float (*grblpfv); // TS*TS*4 /* assign working space; this would not be necessary if the algorithm is part of the larger pre-interpolation processing */ buffer = (char *) malloc(3*sizeof(float)*TS*TS + 8*sizeof(float)*TS*TSH + 10*64 + 64); //merror(buffer,"CA_correct()"); memset(buffer,0,3*sizeof(float)*TS*TS + 8*sizeof(float)*TS*TSH + 10*64 + 64); char *data; data = buffer; // buffers aligned to size of cacheline // data = (char*)( ( uintptr_t(buffer) + uintptr_t(63)) / 64 * 64); // shift the beginning of all arrays but the first by 64 bytes to avoid cache miss conflicts on CPUs which have <=4-way associative L1-Cache rgb[0] = (float (*)) data; rgb[1] = (float (*)) (data + 1*sizeof(float)*TS*TS + 1*64); rgb[2] = (float (*)) (data + 2*sizeof(float)*TS*TS + 2*64); grbdiff = (float (*)) (data + 3*sizeof(float)*TS*TS + 3*64); gshift = (float (*)) (data + 3*sizeof(float)*TS*TS + sizeof(float)*TS*TSH + 4*64); rbhpfh = (float (*)) (data + 4*sizeof(float)*TS*TS + 5*64); rbhpfv = (float (*)) (data + 4*sizeof(float)*TS*TS + sizeof(float)*TS*TSH + 6*64); rblpfh = (float (*)) (data + 5*sizeof(float)*TS*TS + 7*64); rblpfv = (float (*)) (data + 5*sizeof(float)*TS*TS + sizeof(float)*TS*TSH + 8*64); grblpfh = (float (*)) (data + 6*sizeof(float)*TS*TS + 9*64); grblpfv = (float (*)) (data + 6*sizeof(float)*TS*TS + sizeof(float)*TS*TSH + 10*64); if (autoCA) { // Main algorithm: Tile loop #pragma omp for collapse(2) schedule(dynamic) nowait for (top=-border ; top < height; top += TS-border2) for (left=-border; left < width; left += TS-border2) { vblock = ((top+border)/(TS-border2))+1; hblock = ((left+border)/(TS-border2))+1; int bottom = min(top+TS,height+border); int right = min(left+TS, width+border); int rr1 = bottom - top; int cc1 = right - left; //t1_init = clock(); if (top<0) {rrmin=border;} else {rrmin=0;} if (left<0) {ccmin=border;} else {ccmin=0;} if (bottom>height) {rrmax=height-top;} else {rrmax=rr1;} if (right>width) {ccmax=width-left;} else {ccmax=cc1;} // rgb from input CFA data // rgb values should be floating point number between 0 and 1 // after white balance multipliers are applied for (rr=rrmin; rr < rrmax; rr++) for (row=rr+top, cc=ccmin; cc < ccmax; cc++) { col = cc+left; c = FC(rr,cc); indx=row*width+col; indx1=rr*TS+cc; rgb[c][indx1] = (rawData[row][col])/65535.0f; //rgb[indx1][c] = image[indx][c]/65535.0f;//for dcraw implementation } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //fill borders if (rrmin>0) { for (rr=0; rr0) { for (rr=rrmin; rr0 && ccmin>0) { for (rr=0; rr0 && ccmax0) { for (rr=0; rr-1 && row-1 && col>1] = fabsf(fabsf((rgb[1][indx]-rgb[c][indx])-(rgb[1][indx+v4]-rgb[c][indx+v4])) + fabsf((rgb[1][indx-v4]-rgb[c][indx-v4])-(rgb[1][indx]-rgb[c][indx])) - fabsf((rgb[1][indx-v4]-rgb[c][indx-v4])-(rgb[1][indx+v4]-rgb[c][indx+v4]))); rbhpfh[indx>>1] = fabsf(fabsf((rgb[1][indx]-rgb[c][indx])-(rgb[1][indx+4]-rgb[c][indx+4])) + fabsf((rgb[1][indx-4]-rgb[c][indx-4])-(rgb[1][indx]-rgb[c][indx])) - fabsf((rgb[1][indx-4]-rgb[c][indx-4])-(rgb[1][indx+4]-rgb[c][indx+4]))); /*ghpfv = fabsf(fabsf(rgb[indx][1]-rgb[indx+v4][1])+fabsf(rgb[indx][1]-rgb[indx-v4][1]) - fabsf(rgb[indx+v4][1]-rgb[indx-v4][1])); ghpfh = fabsf(fabsf(rgb[indx][1]-rgb[indx+4][1])+fabsf(rgb[indx][1]-rgb[indx-4][1]) - fabsf(rgb[indx+4][1]-rgb[indx-4][1])); rbhpfv[indx] = fabsf(ghpfv - fabsf(fabsf(rgb[indx][c]-rgb[indx+v4][c])+fabsf(rgb[indx][c]-rgb[indx-v4][c]) - fabsf(rgb[indx+v4][c]-rgb[indx-v4][c]))); rbhpfh[indx] = fabsf(ghpfh - fabsf(fabsf(rgb[indx][c]-rgb[indx+4][c])+fabsf(rgb[indx][c]-rgb[indx-4][c]) - fabsf(rgb[indx+4][c]-rgb[indx-4][c])));*/ glpfv = 0.25*(2.0*rgb[1][indx]+rgb[1][indx+v2]+rgb[1][indx-v2]); glpfh = 0.25*(2.0*rgb[1][indx]+rgb[1][indx+2]+rgb[1][indx-2]); rblpfv[indx>>1] = eps+fabsf(glpfv - 0.25*(2.0*rgb[c][indx]+rgb[c][indx+v2]+rgb[c][indx-v2])); rblpfh[indx>>1] = eps+fabsf(glpfh - 0.25*(2.0*rgb[c][indx]+rgb[c][indx+2]+rgb[c][indx-2])); grblpfv[indx>>1] = glpfv + 0.25*(2.0*rgb[c][indx]+rgb[c][indx+v2]+rgb[c][indx-v2]); grblpfh[indx>>1] = glpfh + 0.25*(2.0*rgb[c][indx]+rgb[c][indx+2]+rgb[c][indx-2]); } areawt[0][0]=areawt[1][0]=1; areawt[0][2]=areawt[1][2]=1; // along line segments, find the point along each segment that minimizes the color variance // averaged over the tile; evaluate for up/down and left/right away from R/B grid point for (rr=8; rr < rr1-8; rr++) for (cc=8+(FC(rr,2)&1), indx=rr*TS+cc, c = FC(rr,cc); cc < cc1-8; cc+=2, indx+=2) { // areawt[0][c]=areawt[1][c]=0; //in linear interpolation, color differences are a quadratic function of interpolation position; //solve for the interpolation position that minimizes color difference variance over the tile //vertical gdiff=0.3125*(rgb[1][indx+TS]-rgb[1][indx-TS])+0.09375*(rgb[1][indx+TS+1]-rgb[1][indx-TS+1]+rgb[1][indx+TS-1]-rgb[1][indx-TS-1]); deltgrb=(rgb[c][indx]-rgb[1][indx]); gradwt=fabsf(0.25*rbhpfv[indx>>1]+0.125*(rbhpfv[(indx>>1)+1]+rbhpfv[(indx>>1)-1]) )*(grblpfv[(indx>>1)-v1]+grblpfv[(indx>>1)+v1])/(eps+0.1*grblpfv[(indx>>1)-v1]+rblpfv[(indx>>1)-v1]+0.1*grblpfv[(indx>>1)+v1]+rblpfv[(indx>>1)+v1]); coeff[0][0][c] += gradwt*deltgrb*deltgrb; coeff[0][1][c] += gradwt*gdiff*deltgrb; coeff[0][2][c] += gradwt*gdiff*gdiff; // areawt[0][c]+=1; //horizontal gdiff=0.3125*(rgb[1][indx+1]-rgb[1][indx-1])+0.09375*(rgb[1][indx+1+TS]-rgb[1][indx-1+TS]+rgb[1][indx+1-TS]-rgb[1][indx-1-TS]); deltgrb=(rgb[c][indx]-rgb[1][indx]); gradwt=fabsf(0.25*rbhpfh[indx>>1]+0.125*(rbhpfh[(indx>>1)+v1]+rbhpfh[(indx>>1)-v1]) )*(grblpfh[(indx>>1)-1]+grblpfh[(indx>>1)+1])/(eps+0.1*grblpfh[(indx>>1)-1]+rblpfh[(indx>>1)-1]+0.1*grblpfh[(indx>>1)+1]+rblpfh[(indx>>1)+1]); coeff[1][0][c] += gradwt*deltgrb*deltgrb; coeff[1][1][c] += gradwt*gdiff*deltgrb; coeff[1][2][c] += gradwt*gdiff*gdiff; // areawt[1][c]+=1; // In Mathematica, // f[x_]=Expand[Total[Flatten[ // ((1-x) RotateLeft[Gint,shift1]+x RotateLeft[Gint,shift2]-cfapad)^2[[dv;;-1;;2,dh;;-1;;2]]]]]; // extremum = -.5Coefficient[f[x],x]/Coefficient[f[x],x^2] } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* for (rr=4; rr < rr1-4; rr++) for (cc=4+(FC(rr,2)&1), indx=rr*TS+cc, c = FC(rr,cc); cc < cc1-4; cc+=2, indx+=2) { rbhpfv[indx] = SQR(fabs((rgb[indx][1]-rgb[indx][c])-(rgb[indx+v4][1]-rgb[indx+v4][c])) + fabs((rgb[indx-v4][1]-rgb[indx-v4][c])-(rgb[indx][1]-rgb[indx][c])) - fabs((rgb[indx-v4][1]-rgb[indx-v4][c])-(rgb[indx+v4][1]-rgb[indx+v4][c]))); rbhpfh[indx] = SQR(fabs((rgb[indx][1]-rgb[indx][c])-(rgb[indx+4][1]-rgb[indx+4][c])) + fabs((rgb[indx-4][1]-rgb[indx-4][c])-(rgb[indx][1]-rgb[indx][c])) - fabs((rgb[indx-4][1]-rgb[indx-4][c])-(rgb[indx+4][1]-rgb[indx+4][c]))); glpfv = 0.25*(2*rgb[indx][1]+rgb[indx+v2][1]+rgb[indx-v2][1]); glpfh = 0.25*(2*rgb[indx][1]+rgb[indx+2][1]+rgb[indx-2][1]); rblpfv[indx] = eps+fabs(glpfv - 0.25*(2*rgb[indx][c]+rgb[indx+v2][c]+rgb[indx-v2][c])); rblpfh[indx] = eps+fabs(glpfh - 0.25*(2*rgb[indx][c]+rgb[indx+2][c]+rgb[indx-2][c])); grblpfv[indx] = glpfv + 0.25*(2*rgb[indx][c]+rgb[indx+v2][c]+rgb[indx-v2][c]); grblpfh[indx] = glpfh + 0.25*(2*rgb[indx][c]+rgb[indx+2][c]+rgb[indx-2][c]); } for (c=0;c<3;c++) {areawt[0][c]=areawt[1][c]=0;} // along line segments, find the point along each segment that minimizes the color variance // averaged over the tile; evaluate for up/down and left/right away from R/B grid point for (rr=rrmin+8; rr < rrmax-8; rr++) for (cc=ccmin+8+(FC(rr,2)&1), indx=rr*TS+cc, c = FC(rr,cc); cc < ccmax-8; cc+=2, indx+=2) { if (rgb[indx][c]>0.8*clip_pt || Gtmp[indx]>0.8*clip_pt) continue; //in linear interpolation, color differences are a quadratic function of interpolation position; //solve for the interpolation position that minimizes color difference variance over the tile //vertical gdiff=0.3125*(rgb[indx+TS][1]-rgb[indx-TS][1])+0.09375*(rgb[indx+TS+1][1]-rgb[indx-TS+1][1]+rgb[indx+TS-1][1]-rgb[indx-TS-1][1]); deltgrb=(rgb[indx][c]-rgb[indx][1])-0.5*((rgb[indx-v4][c]-rgb[indx-v4][1])+(rgb[indx+v4][c]-rgb[indx+v4][1])); gradwt=fabs(0.25*rbhpfv[indx]+0.125*(rbhpfv[indx+2]+rbhpfv[indx-2]) );// *(grblpfv[indx-v2]+grblpfv[indx+v2])/(eps+0.1*grblpfv[indx-v2]+rblpfv[indx-v2]+0.1*grblpfv[indx+v2]+rblpfv[indx+v2]); if (gradwt>eps) { coeff[0][0][c] += gradwt*deltgrb*deltgrb; coeff[0][1][c] += gradwt*gdiff*deltgrb; coeff[0][2][c] += gradwt*gdiff*gdiff; areawt[0][c]++; } //horizontal gdiff=0.3125*(rgb[indx+1][1]-rgb[indx-1][1])+0.09375*(rgb[indx+1+TS][1]-rgb[indx-1+TS][1]+rgb[indx+1-TS][1]-rgb[indx-1-TS][1]); deltgrb=(rgb[indx][c]-rgb[indx][1])-0.5*((rgb[indx-4][c]-rgb[indx-4][1])+(rgb[indx+4][c]-rgb[indx+4][1])); gradwt=fabs(0.25*rbhpfh[indx]+0.125*(rbhpfh[indx+v2]+rbhpfh[indx-v2]) );// *(grblpfh[indx-2]+grblpfh[indx+2])/(eps+0.1*grblpfh[indx-2]+rblpfh[indx-2]+0.1*grblpfh[indx+2]+rblpfh[indx+2]); if (gradwt>eps) { coeff[1][0][c] += gradwt*deltgrb*deltgrb; coeff[1][1][c] += gradwt*gdiff*deltgrb; coeff[1][2][c] += gradwt*gdiff*gdiff; areawt[1][c]++; } // In Mathematica, // f[x_]=Expand[Total[Flatten[ // ((1-x) RotateLeft[Gint,shift1]+x RotateLeft[Gint,shift2]-cfapad)^2[[dv;;-1;;2,dh;;-1;;2]]]]]; // extremum = -.5Coefficient[f[x],x]/Coefficient[f[x],x^2] }*/ for (c=0; c<3; c+=2){ for (j=0; j<2; j++) {// vert/hor //printf("hblock %d vblock %d j %d c %d areawt %d \n",hblock,vblock,j,c,areawt[j][c]); //printf("hblock %d vblock %d j %d c %d areawt %d ",hblock,vblock,j,c,areawt[j][c]); if (areawt[j][c]>0 && coeff[j][2][c]>eps2) { CAshift[j][c]=coeff[j][1][c]/coeff[j][2][c]; blockwt[vblock*hblsz+hblock]= areawt[j][c]*coeff[j][2][c]/(eps+coeff[j][0][c]) ; } else { CAshift[j][c]=17.0; blockwt[vblock*hblsz+hblock]=0; } //if (c==0 && j==0) printf("vblock= %d hblock= %d denom= %f areawt= %d \n",vblock,hblock,coeff[j][2][c],areawt[j][c]); //printf("%f \n",CAshift[j][c]); //data structure = CAshift[vert/hor][color] //j=0=vert, 1=hor //offset gives NW corner of square containing the min; j=0=vert, 1=hor if (fabsf(CAshift[j][c])<2.0f) { blockavethr[j][c] += CAshift[j][c]; blocksqavethr[j][c] += SQR(CAshift[j][c]); blockdenomthr[j][c] += 1; } }//vert/hor }//color /* CAshift[j][c] are the locations that minimize color difference variances; This is the approximate _optical_ location of the R/B pixels */ for (c=0; c<3; c+=2) { //evaluate the shifts to the location that minimizes CA within the tile blockshifts[(vblock)*hblsz+hblock][c][0]=(CAshift[0][c]); //vert CA shift for R/B blockshifts[(vblock)*hblsz+hblock][c][1]=(CAshift[1][c]); //hor CA shift for R/B //data structure: blockshifts[blocknum][R/B][v/h] //if (c==0) printf("vblock= %d hblock= %d blockshiftsmedian= %f \n",vblock,hblock,blockshifts[(vblock)*hblsz+hblock][c][0]); } if(plistener) { progresscounter++; if(progresscounter % 8 == 0) #pragma omp critical { progress+=(double)(8.0*(TS-border2)*(TS-border2))/(2*height*width); if (progress>1.0) { progress=1.0; } plistener->setProgress(progress); } } } //end of diagnostic pass #pragma omp critical { for (j=0; j<2; j++) for (c=0; c<3; c+=2) { blockdenom[j][c] += blockdenomthr[j][c]; blocksqave[j][c] += blocksqavethr[j][c]; blockave[j][c] += blockavethr[j][c]; } } #pragma omp barrier #pragma omp single { for (j=0; j<2; j++) for (c=0; c<3; c+=2) { if (blockdenom[j][c]) { blockvar[j][c] = blocksqave[j][c]/blockdenom[j][c]-SQR(blockave[j][c]/blockdenom[j][c]); } else { processpasstwo = false; printf ("blockdenom vanishes \n"); break; } } //printf ("tile variances %f %f %f %f \n",blockvar[0][0],blockvar[1][0],blockvar[0][2],blockvar[1][2] ); // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //now prepare for CA correction pass //first, fill border blocks of blockshift array if(processpasstwo) { for (vblock=1; vblock4.0*blockvar[0][c] || SQR(bstemp[1])>4.0*blockvar[1][c]) continue; numblox[c]++; for (dir=0; dir<2; dir++) { for (i=0; iheight) {rrmax=height-top;} else {rrmax=rr1;} if (right>width) {ccmax=width-left;} else {ccmax=cc1;} // rgb from input CFA data // rgb values should be floating point number between 0 and 1 // after white balance multipliers are applied for (rr=rrmin; rr < rrmax; rr++) for (row=rr+top, cc=ccmin; cc < ccmax; cc++) { col = cc+left; c = FC(rr,cc); indx=row*width+col; indx1=rr*TS+cc; //rgb[indx1][c] = image[indx][c]/65535.0f; rgb[c][indx1] = (rawData[row][col])/65535.0f; //rgb[indx1][c] = image[indx][c]/65535.0f;//for dcraw implementation if ((c&1)==0) rgb[1][indx1] = Gtmp[indx]; } // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //fill borders if (rrmin>0) { for (rr=0; rr0) { for (rr=rrmin; rr0 && ccmin>0) { for (rr=0; rr0 && ccmax0) { for (rr=0; rr-1 && row-1 && col0) { GRBdir[0][c] = 1; } else { GRBdir[0][c] = -1; } if (blockshifts[(vblock)*hblsz+hblock][c][1]>0) { GRBdir[1][c] = 1; } else { GRBdir[1][c] = -1; } } for (rr=4; rr < rr1-4; rr++) for (cc=4+(FC(rr,2)&1), c = FC(rr,cc); cc < cc1-4; cc+=2) { //perform CA correction using color ratios or color differences Ginthfloor=(1-shifthfrac[c])*rgb[1][(rr+shiftvfloor[c])*TS+cc+shifthfloor[c]]+(shifthfrac[c])*rgb[1][(rr+shiftvfloor[c])*TS+cc+shifthceil[c]]; Ginthceil=(1-shifthfrac[c])*rgb[1][(rr+shiftvceil[c])*TS+cc+shifthfloor[c]]+(shifthfrac[c])*rgb[1][(rr+shiftvceil[c])*TS+cc+shifthceil[c]]; //Gint is blinear interpolation of G at CA shift point Gint=(1-shiftvfrac[c])*Ginthfloor+(shiftvfrac[c])*Ginthceil; //determine R/B at grid points using color differences at shift point plus interpolated G value at grid point //but first we need to interpolate G-R/G-B to grid points... grbdiff[((rr)*TS+cc)>>1]=Gint-rgb[c][(rr)*TS+cc]; gshift[((rr)*TS+cc)>>1]=Gint; } for (rr=8; rr < rr1-8; rr++) for (cc=8+(FC(rr,2)&1), c = FC(rr,cc), indx=rr*TS+cc; cc < cc1-8; cc+=2, indx+=2) { //if (rgb[indx][c]>clip_pt || Gtmp[indx]>clip_pt) continue; grbdiffold = rgb[1][indx]-rgb[c][indx]; //interpolate color difference from optical R/B locations to grid locations grbdiffinthfloor=(1.0f-shifthfrac[c]/2.0f)*grbdiff[indx>>1]+(shifthfrac[c]/2.0f)*grbdiff[(indx-2*GRBdir[1][c])>>1]; grbdiffinthceil=(1.0f-shifthfrac[c]/2.0f)*grbdiff[((rr-2*GRBdir[0][c])*TS+cc)>>1]+(shifthfrac[c]/2.0f)*grbdiff[((rr-2*GRBdir[0][c])*TS+cc-2*GRBdir[1][c])>>1]; //grbdiffint is bilinear interpolation of G-R/G-B at grid point grbdiffint=(1.0f-shiftvfrac[c]/2.0f)*grbdiffinthfloor+(shiftvfrac[c]/2.0f)*grbdiffinthceil; //now determine R/B at grid points using interpolated color differences and interpolated G value at grid point RBint=rgb[1][indx]-grbdiffint; if (fabsf(RBint-rgb[c][indx])<0.25f*(RBint+rgb[c][indx])) { if (fabsf(grbdiffold)>fabsf(grbdiffint) ) { rgb[c][indx]=RBint; } } else { //gradient weights using difference from G at CA shift points and G at grid points p[0]=1.0f/(eps+fabsf(rgb[1][indx]-gshift[indx>>1])); p[1]=1.0f/(eps+fabsf(rgb[1][indx]-gshift[(indx-2*GRBdir[1][c])>>1])); p[2]=1.0f/(eps+fabsf(rgb[1][indx]-gshift[((rr-2*GRBdir[0][c])*TS+cc)>>1])); p[3]=1.0f/(eps+fabsf(rgb[1][indx]-gshift[((rr-2*GRBdir[0][c])*TS+cc-2*GRBdir[1][c])>>1])); grbdiffint = (p[0]*grbdiff[indx>>1]+p[1]*grbdiff[(indx-2*GRBdir[1][c])>>1]+ p[2]*grbdiff[((rr-2*GRBdir[0][c])*TS+cc)>>1]+p[3]*grbdiff[((rr-2*GRBdir[0][c])*TS+cc-2*GRBdir[1][c])>>1])/(p[0]+p[1]+p[2]+p[3]); //now determine R/B at grid points using interpolated color differences and interpolated G value at grid point if (fabsf(grbdiffold)>fabsf(grbdiffint) ) { rgb[c][indx]=rgb[1][indx]-grbdiffint; } } //if color difference interpolation overshot the correction, just desaturate if (grbdiffold*grbdiffint<0) { rgb[c][indx]=rgb[1][indx]-0.5f*(grbdiffold+grbdiffint); } } // copy CA corrected results to temporary image matrix for (rr=border; rr < rr1-border; rr++){ c = FC(rr+top, left + border+FC(rr+top,2)&1); for (row=rr+top, cc=border+(FC(rr,2)&1),indx=(row*width+cc+left)>>1; cc < cc1-border; cc+=2,indx++) { col = cc + left; RawDataTmp[indx] = 65535.0f*rgb[c][(rr)*TS+cc] + 0.5f; //image[indx][c] = CLIP((int)(65535.0*rgb[(rr)*TS+cc][c] + 0.5));//for dcraw implementation } } if(plistener) { progresscounter++; if(progresscounter % 8 == 0) #pragma omp critical { progress+=(double)(8.0*(TS-border2)*(TS-border2))/(2*height*width); if (progress>1.0) { progress=1.0; } plistener->setProgress(progress); } } } #pragma omp barrier // copy temporary image matrix back to image matrix #pragma omp for for(row=0;row>1;colsetProgress(1.0); #undef TS #undef TSH #undef PIX_SORT }