//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 24, 2010 // optimized: September 2013, Ingo Weyrich // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "mytime.h" #include "../rtgui/myflatcurve.h" #include "rt_math.h" #include "opthelper.h" #ifdef _OPENMP #include #endif using namespace std; namespace rtengine { extern const Settings* settings; SSEFUNCTION void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) { const int halfwin = ceil(2*radius)+1; FlatCurve* chCurve = NULL; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) chCurve = new FlatCurve(params->defringe.huecurve); // local variables const int width=src->W, height=src->H; //temporary array to store chromaticity float (*fringe); fringe = (float (*)) malloc (height * width * sizeof(*fringe)); LabImage * tmp1; tmp1 = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { AlignedBufferMP buffer(max(src->W,src->H)); gaussHorizontal (src->a, tmp1->a, buffer, src->W, src->H, radius); gaussHorizontal (src->b, tmp1->b, buffer, src->W, src->H, radius); gaussVertical (tmp1->a, tmp1->a, buffer, src->W, src->H, radius); gaussVertical (tmp1->b, tmp1->b, buffer, src->W, src->H, radius); } float chromave=0.0f; #ifdef __SSE2__ if( chCurve ) { // vectorized precalculation of the atan2 values #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(j = 0; j < width-3; j+=4) _mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(src->b[i][j]),LVFU(src->a[i][j]))); for(; j < width; j++) fringe[i*width+j]=xatan2f(src->b[i][j],src->a[i][j]); } } } #endif #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.0f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values float HH=fringe[i*width+j]; #else // no precalculated values without SSE => calculate float HH=xatan2f(src->b[i][j],src->a[i][j]); #endif float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H) if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 chromaChfactor=1.0f+chparam; } float chroma = SQR(chromaChfactor*(src->a[i][j]-tmp1->a[i][j]))+SQR(chromaChfactor*(src->b[i][j]-tmp1->b[i][j]));//modulate chroma function hue chromave += chroma; fringe[i*width+j]=chroma; } } } chromave /= (height*width); float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { __m128 sumv = _mm_set1_ps( chromave ); __m128 onev = _mm_set1_ps( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int j=0; j < width*height-3; j+=4) _mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv)); } for(int j=width*height - (width*height)%4; j < width*height; j++) fringe[j] = 1.f/(fringe[j]+chromave); #else #ifdef _OPENMP #pragma omp parallel for #endif for(int j = 0; j < width*height; j++) fringe[j] = 1.f/(fringe[j]+chromave); #endif // because we changed the values of fringe we also have to recalculate threshfactor threshfactor = 1.0f/(threshfactor + chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j; for(j = 0; j < halfwin-1; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ if (fringe[i*width+j]a[i1][j1]; btot += wt*src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot/norm; tmp1->b[i][j] = btot/norm; } } for(; j < width-halfwin+1; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ if (fringe[i*width+j]a[i1][j1]; btot += wt*src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot/norm; tmp1->b[i][j] = btot/norm; } } for(; j < width; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ if (fringe[i*width+j]a[i1][j1]; btot += wt*src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = atot/norm; tmp1->b[i][j] = btot/norm; } } }//end of ab channel averaging if(src != dst) #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->L[i][j] = src->L[i][j]; } } #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->a[i][j] = tmp1->a[i][j]; dst->b[i][j] = tmp1->b[i][j]; } } delete tmp1; if(chCurve) delete chCurve; free(fringe); } SSEFUNCTION void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) { const int halfwin = ceil(2*radius)+1; FlatCurve* chCurve = NULL; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) chCurve = new FlatCurve(params->defringe.huecurve); // local variables const int width=src->W, height=src->H; const float piid=3.14159265f/180.f; const float eps2=0.01f; //temporary array to store chromaticity float (*fringe); fringe = (float (*)) malloc (height * width * sizeof(*fringe)); float** sraa; sraa = new float*[height]; for (int i=0; ih_p[i][j])); _mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y); _mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x); } for (; jh_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } #else for (int j=0; jh_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { AlignedBufferMP buffer(max(src->W,src->H)); gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); } float chromave=0.0f; #ifdef __SSE2__ if( chCurve ) { // vectorized precalculation of the atan2 values #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(j = 0; j < width-3; j+=4) _mm_storeu_ps(&fringe[i*width+j], xatan2f(LVFU(srbb[i][j]),LVFU(sraa[i][j]))); for(; j < width; j++) fringe[i*width+j]=xatan2f(srbb[i][j],sraa[i][j]); } } } #endif #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.0f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values float HH=fringe[i*width+j]; #else // no precalculated values without SSE => calculate float HH=xatan2f(srbb[i][j],sraa[i][j]); #endif float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH)))-0.5f) * 2.0f);//get C=f(H) if(chparam > 0.f) chparam /=2.f; // reduced action if chparam > 0 chromaChfactor=1.0f+chparam; } float chroma = SQR(chromaChfactor*(sraa[i][j]-tmaa[i][j]))+SQR(chromaChfactor*(srbb[i][j]-tmbb[i][j]));//modulate chroma function hue chromave += chroma; fringe[i*width+j]=chroma; } } } chromave /= (height*width); float threshfactor = SQR(thresh/33.f)*chromave*5.0f; // Calculated once to eliminate mult inside the next loop // now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { __m128 sumv = _mm_set1_ps( chromave + eps2 ); __m128 onev = _mm_set1_ps( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int j=0; j < width*height-3; j+=4) _mm_storeu_ps( &fringe[j], onev/(LVFU(fringe[j])+sumv)); } for(int j=width*height - (width*height)%4; j < width*height; j++) fringe[j] = 1.f/(fringe[j]+chromave+eps2); #else #ifdef _OPENMP #pragma omp parallel for #endif for(int j = 0; j < width*height; j++) fringe[j] = 1.f/(fringe[j]+chromave+eps2); #endif // because we changed the values of fringe we also have to recalculate threshfactor threshfactor = 1.0f/(threshfactor + chromave + eps2); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j; for(j = 0; j < halfwin-1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width-halfwin+1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } } //end of ab channel averaging #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ int j; __m128 interav, interbv; __m128 piidv = _mm_set1_ps(piid); #endif #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { #ifdef __SSE2__ for(j = 0; j < width-3; j+=4) { _mm_storeu_ps( &dst->sh_p[i][j], LVFU(src->sh_p[i][j])); interav = LVFU(tmaa[i][j]); interbv = LVFU(tmbb[i][j]); _mm_storeu_ps(&dst->h_p[i][j],(xatan2f(interbv,interav))/piidv); _mm_storeu_ps(&dst->C_p[i][j],_mm_sqrt_ps(SQRV(interbv)+SQRV(interav))); } for(; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } #else for(int j = 0; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } #endif } } for (int i=0; iW, height=src->H; const float piid=3.14159265f/180.f; float shfabs, shmed; int i1, j1, tot; const float eps = 1.0f; const float eps2 = 0.01f; float shsum, dirsh, norm, sum; float** sraa; sraa = new float*[height]; for (int i=0; ih_p[i][j])); _mm_storeu_ps(&sraa[i][j],LVFU(src->C_p[i][j])*sincosvalv.y); _mm_storeu_ps(&srbb[i][j],LVFU(src->C_p[i][j])*sincosvalv.x); } for (; jh_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } #else for (int j=0; jh_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { AlignedBufferMP buffer(max(src->W,src->H)); //chroma a and b if(mode==2) {//choice of gaussian blur gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); } //luma sh_p gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts gaussVertical (tmL, tmL, buffer, src->W, src->H, 2.0); } if(mode==1){ //choice of median #pragma omp parallel { int ip,in,jp,jn; float pp[9],temp; #pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]); } } #pragma omp for for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]); } } } } //luma badpixels const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts const float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef __SSE2__ __m128 shfabsv, shmedv; __m128 shthrv = _mm_set1_ps(shthr); __m128 onev = _mm_set1_ps(1.0f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for private(shfabs, shmed,i1,j1) #endif for (int i=0; i < height; i++) { for (j=0; j < 2; j++) { shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=0; j1<=j+2; j1++ ) { shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #ifdef __SSE2__ for (; j < width-5; j+=4) { shfabsv = vabsf(LVFU(src->sh_p[i][j])-LVFU(tmL[i][j])); shmedv = _mm_setzero_ps(); for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmedv += vabsf(LVFU(src->sh_p[i1][j1])-LVFU(tmL[i1][j1])); } _mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps())); } for (; j < width-2; j++) { shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #else for (; j < width-2; j++) { shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #endif for (; j < width; j++) { shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1sh_p[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } } } #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif for (int i=0; i < height; i++) { for (j=0; j < 2; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=0; j1<=j+2; j1++ ) { if (i1==i && j1==j) continue; if (badpix[i1*width+j1]) continue; sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); shsum += dirsh*src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j]=shsum/norm; } else { if(tot > 0) src->sh_p[i][j]=sum / tot; } } for (; j < width-2; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { if (i1==i && j1==j) continue; if (badpix[i1*width+j1]) continue; sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); shsum += dirsh*src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j]=shsum/norm; } else { if(tot > 0) src->sh_p[i][j]=sum / tot; } } for (; j < width; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1sh_p[i1][j1]; tot++; dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); shsum += dirsh*src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j]=shsum/norm; } else { if(tot > 0) src->sh_p[i][j]=sum / tot; } } } } // end luma badpixels // begin chroma badpixels float chrommed=0.f; #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); chrommed += chroma; badpix[i*width+j]=chroma; } } chrommed /= (height*width); float threshfactor = (thresh*chrommed)/33.f; // now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { int j; __m128 sumv = _mm_set1_ps( chrommed + eps2 ); __m128 onev = _mm_set1_ps( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width-halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } } } #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; float CC=sqrt(SQR(interb)+SQR(intera)); if(hotbad==0) { if(CC < chrom && skinprot !=0.f){ dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } } else { dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } } } } if(src != dst) { #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) for(int j = 0; j < width; j++) dst->sh_p[i][j] = src->sh_p[i][j]; } for (int i=0; iverbose ) printf("Ciecam badpixels:- %d usec\n", t2.etime(t1)); } SSEFUNCTION void ImProcFunctions::BadpixelsLab(LabImage * src, LabImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom) { const int halfwin = ceil(2*radius)+1; MyTime t1,t2; t1.set(); const int width=src->W, height=src->H; // const float piid=3.14159265f/180.f; float shfabs, shmed; int i1, j1, tot; const float eps = 1.0f; const float eps2 = 0.01f; float shsum, dirsh, norm, sum; float** sraa; sraa = new float*[height]; for (int i=0; ia[i][j])); _mm_storeu_ps(&srbb[i][j],LVFU(src->b[i][j])); } for (; ja[i][j]; srbb[i][j]=src->b[i][j]; } #else for (int j=0; ja[i][j]; srbb[i][j]=src->b[i][j]; } #endif } } #ifdef _OPENMP #pragma omp parallel #endif { AlignedBufferMP buffer(max(src->W,src->H)); //chroma a and b if(mode>=2) {//choice of gaussian blur gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); } //luma sh_p gaussHorizontal (src->L, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts gaussVertical (tmL, tmL, buffer, src->W, src->H, 2.0); } if(mode==1){ //choice of median #pragma omp parallel { int ip,in,jp,jn; float pp[9],temp; #pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]); } } #pragma omp for for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]); } } } } //luma badpixels const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts const float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef __SSE2__ __m128 shfabsv, shmedv; __m128 shthrv = _mm_set1_ps(shthr); __m128 onev = _mm_set1_ps(1.0f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for private(shfabs, shmed,i1,j1) #endif for (int i=0; i < height; i++) { for (j=0; j < 2; j++) { shfabs = fabs(src->L[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=0; j1<=j+2; j1++ ) { shmed += fabs(src->L[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #ifdef __SSE2__ for (; j < width-5; j+=4) { shfabsv = vabsf(LVFU(src->L[i][j])-LVFU(tmL[i][j])); shmedv = _mm_setzero_ps(); for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmedv += vabsf(LVFU(src->L[i1][j1])-LVFU(tmL[i1][j1])); } _mm_storeu_ps( &badpix[i*width+j], vself(vmaskf_gt(shfabsv,(shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps())); } for (; j < width-2; j++) { shfabs = fabs(src->L[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmed += fabs(src->L[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #else for (; j < width-2; j++) { shfabs = fabs(src->L[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { shmed += fabs(src->L[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } #endif for (; j < width; j++) { shfabs = fabs(src->L[i][j]-tmL[i][j]); shmed=0.0f; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1L[i1][j1]-tmL[i1][j1]); } badpix[i*width+j] = (shfabs>((shmed-shfabs)*shthr)); } } } #ifdef _OPENMP #pragma omp parallel #endif { int j; #ifdef _OPENMP #pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif for (int i=0; i < height; i++) { for (j=0; j < 2; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=0; j1<=j+2; j1++ ) { if (i1==i && j1==j) continue; if (badpix[i1*width+j1]) continue; sum += src->L[i1][j1]; tot++; dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps); shsum += dirsh*src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j]=shsum/norm; } else { if(tot > 0) src->L[i][j]=sum / tot; } } for (; j < width-2; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1<=j+2; j1++ ) { if (i1==i && j1==j) continue; if (badpix[i1*width+j1]) continue; sum += src->L[i1][j1]; tot++; dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps); shsum += dirsh*src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j]=shsum/norm; } else { if(tot > 0) src->L[i][j]=sum / tot; } } for (; j < width; j++) { if (!badpix[i*width+j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2); i1<=min(i+2,height-1); i1++ ) for (j1=j-2; j1L[i1][j1]; tot++; dirsh = 1.f/(SQR(src->L[i1][j1]-src->L[i][j])+eps); shsum += dirsh*src->L[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->L[i][j]=shsum/norm; } else { if(tot > 0) src->L[i][j]=sum / tot; } } } } // end luma badpixels if(mode==3) { // begin chroma badpixels float chrommed=0.f; #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); chrommed += chroma; badpix[i*width+j]=chroma; } } chrommed /= (height*width); float threshfactor = (thresh*chrommed)/33.f; // now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future #ifdef __SSE2__ #ifdef _OPENMP #pragma omp parallel #endif { int j; __m128 sumv = _mm_set1_ps( chrommed + eps2 ); __m128 onev = _mm_set1_ps( 1.0f ); #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width-halfwin; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i*width+j] 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } } } #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; float CC=sqrt(SQR(interb/327.68)+SQR(intera/327.68f)); if(CC < chrom && skinprot !=0.f){ dst->a[i][j]=intera; dst->b[i][j]=interb; } } } } } if(src != dst) { #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) for(int j = 0; j < width; j++) dst->L[i][j] = src->L[i][j]; } for (int i=0; iverbose ) printf("Lab artifacts:- %d usec\n", t2.etime(t1)); } }