/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "color.h" #include "mytime.h" #include "improcfun.h" #include "rawimagesource.h" #include "array2D.h" #include "rt_math.h" #include "opthelper.h" #ifdef _OPENMP #include #endif #define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0) #define RANGEFN(i) ((1000.0f / (i + 1000.0f))) #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) ) namespace rtengine { static const int maxlevel = 6; static const float noise = 2000; //sequence of scales static const int scales[6] = {1,2,4,8,16,32}; extern const Settings* settings; //sequence of scales SSEFUNCTION void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b,const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev) { int lastlevel=maxlevel; if(settings->verbose) printf("Dirpyr scaleprev=%i\n",scaleprev); float atten123=(float) settings->level123_cbdl; if(atten123 > 50.f) atten123=50.f; if(atten123 < 0.f) atten123=0.f; float atten0=(float) settings->level0_cbdl; if(atten0 > 40.f) atten123=40.f; if(atten0 < 0.f) atten0=0.f; if((t_r-t_l)<0.55f) t_l = t_r + 0.55f;//avoid too small range while (lastlevel>0 && fabs(mult[lastlevel-1]-1)<0.001) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; float multi[6]={1.f,1.f,1.f,1.f,1.f,1.f}; float scalefl[6]; for(int lv=0;lv<6;lv++) { scalefl[lv]= ((float) scales[lv])/(float) scaleprev; if(lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100% else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100% } if(settings->verbose) printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4],multi[5]); multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; //int thresh = 100 * mult[5]; int scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale); level = 1; while(level < lastlevel) { scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale); level ++; } float **tmpHue,**tmpChr; if(skinprot != 0.f) { // precalculate hue and chroma, use SSE, if available // by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel() // but we need two additional buffers for this preprocessing tmpHue = new float*[srcheight]; for (int i=0; i 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice ); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice ); if(skinprot != 0.f) { for (int i=0; iverbose) printf("CAM dirpyr scaleprev=%i\n",scaleprev); float atten123=(float) settings->level123_cbdl; if(atten123 > 50.f) atten123=50.f; if(atten123 < 0.f) atten123=0.f; // printf("atten=%f\n",atten); float atten0=(float) settings->level0_cbdl; if(atten0 > 40.f) atten123=40.f; if(atten0 < 0.f) atten0=0.f; if((t_r-t_l)<0.55f) t_l = t_r + 0.55f;//avoid too small range while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; float multi[6]={1.f,1.f,1.f,1.f,1.f,1.f}; float scalefl[6]; for(int lv=0;lv<6;lv++) { scalefl[lv]= ((float) scales[lv])/(float) scaleprev; // if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv]; if (lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];} else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];} } if(settings->verbose) printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4],multi[5]); multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; int scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale); level = 1; while(level < lastlevel) { scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel-1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, skinprot, b_l,t_l,t_r); } scale = scales[0]; idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l,t_l,t_r); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(execdir){ #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i=0; iJ_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary? else dst[i][j]=src[i][j]; } } else for (int i=0; i 1) { //generate domain kernel int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}}; // int domker[5][5] = {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}}; static const int halfwin=2; const int scalewin = halfwin*scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv, dftemp1v, dftemp2v; // multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{2000,2000,2000,2000},{2000,2000,2000,2000},{2000,2000,2000,2000},{1000,1000,1000,1000}},{{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000},{1000,1000,1000,1000}}}; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for //schedule (dynamic,8) #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) { //printf("i=%d ",(inbr-i)/scale+halfwin); dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scalewin-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); dftemp1v = LVFU(data_fine[i][j]); for(int inbr=MAX(0,i-scalewin); inbr<=MIN(height-1,i+scalewin); inbr+=scale) { int indexihlp = (inbr-i)/scale+halfwin; for (int jnbr=j-scalewin, indexjhlp = 0; jnbr<=j+scalewin; jnbr+=scale,indexjhlp++) { dftemp2v = LVFU(data_fine[inbr][jnbr]); dirwtv = _mm_load_ps((float*)&domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v-dftemp2v) + thousandv); valv += dirwtv*dftemp2v; normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter } for(; j < width-scalewin; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scalewin; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication // const int scalewin = scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv, dftemp1v, dftemp2v; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scale; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) { for (int jnbr=max(0,j-scale); jnbr<=j+scale; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scale-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); dftemp1v = LVFU(data_fine[i][j]); for(int inbr=MAX(0,i-scale); inbr<=MIN(height-1,i+scale); inbr+=scale) { for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) { dftemp2v = LVFU(data_fine[inbr][jnbr]); dirwtv = thousandv / (vabsf(dftemp2v-dftemp1v) + thousandv); valv += dirwtv*dftemp2v; normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter } for(; j < width-scale; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) { for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scale; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) { for (int jnbr=j-scale; jnbr<=j+scale; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0.f; float norm=0.f; for(int inbr=max(0,i-scale); inbr<=min(height-1,i+scale); inbr+=scale) { for (int jnbr=j-scale; jnbr<=min(width-1,j+scale); jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice) { const float skinprotneg = -skinprot; const float factorHard = (1.f - skinprotneg/100.f); float offs; if(skinprot==0.f) offs = 0.f; else offs = -1.f; float multbis[6]; multbis[level]=mult[level];//multbis to reduce artifacts for high values mult if(level==4 && mult[level]> 1.f) multbis[level]=1.f+0.65f*(mult[level]-1.f); if(level==5 && mult[level]> 1.f) multbis[level]=1.f+0.45f*(mult[level]-1.f); LUTf irangefn (0x20000); { const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0)); //printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot); for (int i=0; i<0x20000; i++) { if (abs(i-0x10000)>noisehi || multbis[level]<1.0) { irangefn[i] = multbis[level] + offs; } else { if (abs(i-0x10000) 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float scale=1.f; float hipass = (data_fine[i][j]-data_coarse[i][j]); // These values are precalculated now float modhue = hue[i][j]; float modchro = chrom[i][j]; Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r); buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ; } } else #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float scale=1.f; float hipass = (data_fine[i][j]-data_coarse[i][j]); // These values are precalculated now float modhue = hue[i][j]; float modchro = chrom[i][j]; Color::SkinSatCbdl ((data_fine[i][j])/327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r); float correct = irangefn[hipass+0x10000]; if (scale == 1.f) {//image hard buffer[i][j] += (1.f +(correct)* (factorHard)) * hipass ; } else {//image soft with scale < 1 ==> skin buffer[i][j] += (1.f +(correct)) * hipass ; } } } } void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r) { const float skinprotneg = -skinprot; const float factorHard = (1.f - skinprotneg/100.f); float offs; if(skinprot==0.f) offs = 0.f; else offs = -1.f; float multbis[6]; multbis[level]=mult[level];//multbis to reduce artifacts for high values mult if(level==4 && mult[level]> 1.f) multbis[level]=1.f+0.65f*(mult[level]-1.f); if(level==5 && mult[level]> 1.f) multbis[level]=1.f+0.45f*(mult[level]-1.f); LUTf irangefn (0x20000); { const float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0)); //printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot); for (int i=0; i<0x20000; i++) { if (abs(i-0x10000)>noisehi || multbis[level]<1.0) { irangefn[i] = multbis[level] + offs; } else { if (abs(i-0x10000) 0.f) #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j]-data_coarse[i][j]); float scale=1.f; Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j] ,l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r); buffer[i][j] += (1.f +(irangefn[hipass+0x10000])*scale) * hipass ; } } else #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++) { for(int j = 0; j < width; j++) { float hipass = (data_fine[i][j]-data_coarse[i][j]); float scale=1.f; float correct; correct=irangefn[hipass+0x10000]; Color::SkinSatCbdlCam ((data_fine[i][j])/327.68f, l_a_h[i][j],l_b_c[i][j] , skinprotneg, scale, false, b_l, t_l, t_r); if (scale == 1.f) {//image hard buffer[i][j] += (1.f +(correct)* factorHard) * hipass ; } else {//image soft buffer[i][j] += (1.f +(correct)) * hipass ; } } } // if(gamutlab) { // ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels // } /* if(gamutlab) {//disabled float Lprov1=(buffer[i][j])/327.68f; float R,G,B; #ifdef _DEBUG bool neg=false; bool more_rgb=false; //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb); #else //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f); #endif // Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM buffer[i][j]=Lprov1*327.68f; float2 sincosval = xsincosf(modhue); l_a_h[i][j]=327.68f*modchro*sincosval.y; l_b_c[i][j]=327.68f*modchro*sincosval.x; } */ } // float hipass = (data_fine[i][j]-data_coarse[i][j]); // buffer[i][j] += irangefn[hipass+0x10000] * hipass ; #undef DIRWT_L #undef DIRWT_AB #undef NRWT_L #undef NRWT_AB }