//////////////////////////////////////////////////////////////// // // Green Equilibration via directional average // // copyright (c) 2008-2010 Emil Martinec // // // code dated: February 12, 2011 // // green_equil_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// #define TS 256 // Tile size #include #include #include #include "rt_math.h" #include "rawimagesource.h" namespace rtengine { //void green_equilibrate()//for dcraw implementation void RawImageSource::green_equilibrate(float thresh) { // thresh = threshold for performing green equilibration; max percentage difference of G1 vs G2 // G1-G2 differences larger than this will be assumed to be Nyquist texture, and left untouched int height = H, width = W; // local variables float** rawptr = rawData; array2D cfa (width, height, rawptr); //array2D checker (width,height,ARRAY2D_CLEAR_DATA); //int verbose=1; static const float eps = 1.0; //tolerance to avoid dividing by zero // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // Fill G interpolated values with border interpolation and input values //int vote1, vote2; //int counter, vtest; //The green equilibration algorithm starts here /* #ifdef _OPENMP #pragma omp parallel for #endif for (int rr=1; rr < height-1; rr++) for (int cc=3-(FC(rr,2)&1); cc < width-2; cc+=2) { float pcorr = (cfa[rr+1][cc+1]-cfa[rr][cc])*(cfa[rr-1][cc-1]-cfa[rr][cc]); float mcorr = (cfa[rr-1][cc+1]-cfa[rr][cc])*(cfa[rr+1][cc-1]-cfa[rr][cc]); if (pcorr>0 && mcorr>0) {checker[rr][cc]=1;} else {checker[rr][cc]=0;} checker[rr][cc]=1;//test what happens if we always interpolate } counter=vtest=0; */ //now smooth the cfa data #ifdef _OPENMP #pragma omp parallel for #endif for (int rr = 4; rr < height - 4; rr++) for (int cc = 5 - (FC(rr, 2) & 1); cc < width - 6; cc += 2) { //if (checker[rr][cc]) { //%%%%%%%%%%%%%%%%%%%%%% //neighbor checking code from Manuel Llorens Garcia float o1_1 = cfa[(rr - 1)][cc - 1]; float o1_2 = cfa[(rr - 1)][cc + 1]; float o1_3 = cfa[(rr + 1)][cc - 1]; float o1_4 = cfa[(rr + 1)][cc + 1]; float o2_1 = cfa[(rr - 2)][cc]; float o2_2 = cfa[(rr + 2)][cc]; float o2_3 = cfa[(rr)][cc - 2]; float o2_4 = cfa[(rr)][cc + 2]; float d1 = (o1_1 + o1_2 + o1_3 + o1_4) * 0.25f; float d2 = (o2_1 + o2_2 + o2_3 + o2_4) * 0.25f; float c1 = (fabs(o1_1 - o1_2) + fabs(o1_1 - o1_3) + fabs(o1_1 - o1_4) + fabs(o1_2 - o1_3) + fabs(o1_3 - o1_4) + fabs(o1_2 - o1_4)) / 6.0; float c2 = (fabs(o2_1 - o2_2) + fabs(o2_1 - o2_3) + fabs(o2_1 - o2_4) + fabs(o2_2 - o2_3) + fabs(o2_3 - o2_4) + fabs(o2_2 - o2_4)) / 6.0; //%%%%%%%%%%%%%%%%%%%%%% //vote1=(checker[rr-2][cc]+checker[rr][cc-2]+checker[rr][cc+2]+checker[rr+2][cc]); //vote2=(checker[rr+1][cc-1]+checker[rr+1][cc+1]+checker[rr-1][cc-1]+checker[rr-1][cc+1]); //if ((vote1==0 || vote2==0) && (c1+c2)<2*thresh*fabs(d1-d2)) vtest++; //if (vote1>0 && vote2>0 && (c1+c2)<4*thresh*fabs(d1-d2)) { if ((c1 + c2) < 4 * thresh * fabs(d1 - d2)) { //pixel interpolation float gin = cfa[rr][cc]; float gse = (cfa[rr + 1][cc + 1]) + 0.5 * (cfa[rr][cc] - cfa[rr + 2][cc + 2]); float gnw = (cfa[rr - 1][cc - 1]) + 0.5 * (cfa[rr][cc] - cfa[rr - 2][cc - 2]); float gne = (cfa[rr - 1][cc + 1]) + 0.5 * (cfa[rr][cc] - cfa[rr - 2][cc + 2]); float gsw = (cfa[rr + 1][cc - 1]) + 0.5 * (cfa[rr][cc] - cfa[rr + 2][cc - 2]); float wtse = 1.0f / (eps + SQR(cfa[rr + 2][cc + 2] - cfa[rr][cc]) + SQR(cfa[rr + 3][cc + 3] - cfa[rr + 1][cc + 1])); float wtnw = 1.0f / (eps + SQR(cfa[rr - 2][cc - 2] - cfa[rr][cc]) + SQR(cfa[rr - 3][cc - 3] - cfa[rr - 1][cc - 1])); float wtne = 1.0f / (eps + SQR(cfa[rr - 2][cc + 2] - cfa[rr][cc]) + SQR(cfa[rr - 3][cc + 3] - cfa[rr - 1][cc + 1])); float wtsw = 1.0f / (eps + SQR(cfa[rr + 2][cc - 2] - cfa[rr][cc]) + SQR(cfa[rr + 3][cc - 3] - cfa[rr + 1][cc - 1])); float ginterp = (gse * wtse + gnw * wtnw + gne * wtne + gsw * wtsw) / (wtse + wtnw + wtne + wtsw); if ( ((ginterp - gin) < thresh * (ginterp + gin)) ) { rawData[rr][cc] = 0.5f * (ginterp + gin); //counter++; } } // } } //printf("pixfix count= %d; vtest= %d \n",counter,vtest); // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // done /*t2 = clock(); dt = ((double)(t2-t1)) / CLOCKS_PER_SEC; if (verbose) { fprintf(stderr,_("elapsed time = %5.3fs\n"),dt); }*/ } } #undef TS