//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 24, 2010 // optimized: September 2013, Ingo Weyrich // further optimized: February 2018, Ingo Weyrich // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "../rtgui/myflatcurve.h" #include "rt_math.h" #include "opthelper.h" #include "median.h" #include "jaggedarray.h" #define BENCHMARK #include "StopWatch.h" using namespace std; namespace rtengine { void ImProcFunctions::PF_correct_RT(LabImage * src, double radius, int thresh) { BENCHFUN const int halfwin = ceil(2 * radius) + 1; FlatCurve* chCurve = nullptr; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve = new FlatCurve(params->defringe.huecurve); } // local variables const int width = src->W, height = src->H; //temporary array to store chromaticity float *fringe = new float[width * height]; const JaggedArray tmpa(width, height); const JaggedArray tmpb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur(src->a, tmpa, src->W, src->H, radius); gaussianBlur(src->b, tmpb, src->W, src->H, radius); } double chromave = 0.f; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { #ifdef __SSE2__ // vectorized per row precalculation of the atan2 values if (chCurve) { int k = 0; for(; k < width - 3; k += 4) { STVFU(fringe[i * width + k], xatan2f(LVFU(src->b[i][k]), LVFU(src->a[i][k]))); } for(; k < width; k++) { fringe[i * width + k] = xatan2f(src->b[i][k], src->a[i][k]); } } #endif for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan values float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate float HH = xatan2f(src->b[i][j], src->a[i][j]); #endif float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; //get C=f(H) if(chparam < 0.f) { chparam *= 2.f; // increased action if chparam < 0 } chromaChfactor = SQR(1.f + chparam); } float chroma = chromaChfactor * (SQR(src->a[i][j] - tmpa[i][j]) + SQR(src->b[i][j] - tmpb[i][j])); //modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= (height * width); if(chromave > 0.f) { // now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel for simd #endif for(int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j = 0; for(; j < halfwin - 1; j++) { //test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } for(; j < width - halfwin + 1; j++) { //test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } for(; j < width; j++) { //test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } }//end of ab channel averaging } if(chCurve) { delete chCurve; } delete [] fringe; } void ImProcFunctions::PF_correct_RTcam(CieImage * src, double radius, int thresh) { BENCHFUN const int halfwin = ceil(2 * radius) + 1; FlatCurve* chCurve = nullptr; if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) { chCurve = new FlatCurve(params->defringe.huecurve); } // local variables const int width = src->W, height = src->H; //temporary array to store chromaticity float *fringe = new float[width * height]; float **sraa = src->h_p; // we use the src->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure float **srbb = src->C_p; // we use the src->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure const JaggedArray tmaa(width, height); const JaggedArray tmbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat piDiv180v = F2V(RT_PI_F_180); #endif #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j])); STVFU(sraa[i][j], LVFU(src->C_p[i][j]) * sincosvalv.y); STVFU(srbb[i][j], LVFU(src->C_p[i][j]) * sincosvalv.x); } #endif for (; j < width; j++) { float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } } } #ifdef _OPENMP #pragma omp parallel #endif { gaussianBlur(sraa, tmaa, src->W, src->H, radius); gaussianBlur(srbb, tmbb, src->W, src->H, radius); } double chromave = 0.0f; // use double precision for large summations #ifdef __SSE2__ if(chCurve) { // vectorized precalculation of the atan2 values #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++ ) { int j = 0; for(; j < width - 3; j += 4) { STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j]))); } for(; j < width; j++) { fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]); } } } } #endif #ifdef _OPENMP #pragma omp parallel #endif { float chromaChfactor = 1.f; #ifdef _OPENMP #pragma omp for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { if (chCurve) { #ifdef __SSE2__ // use the precalculated atan2 values float HH = fringe[i * width + j]; #else // no precalculated values without SSE => calculate float HH = xatan2f(srbb[i][j], sraa[i][j]); #endif float chparam = chCurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f; //get C=f(H) if(chparam < 0.f) { chparam *= 2.f; // increase action if chparam < 0 } chromaChfactor = SQR(1.f + chparam); } float chroma = chromaChfactor * (SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j])); //modulate chroma function hue chromave += chroma; fringe[i * width + j] = chroma; } } } chromave /= (height * width); if(chromave > 0.f) { // now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel for simd #endif for(int j = 0; j < width * height; j++) { fringe[j] = 1.f / (fringe[j] + chromave); } const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 // Issue 1972: Split this loop in three parts to avoid most of the min and max-operations #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j = 0; for(; j < halfwin - 1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } } } for(; j < width - halfwin + 1; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } } } for(; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (fringe[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { //neighbourhood average of pixels weighted by chrominance wt = fringe[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { tmaa[i][j] = atot / norm; tmbb[i][j] = btot / norm; } } } } //end of ab channel averaging #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { int j = 0; #ifdef __SSE2__ for(; j < width - 3; j += 4) { vfloat interav = LVFU(tmaa[i][j]); vfloat interbv = LVFU(tmbb[i][j]); STVFU(src->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180)); STVFU(src->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav))); } #endif for(; j < width; j++) { float intera = tmaa[i][j]; float interb = tmbb[i][j]; src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; src->C_p[i][j] = sqrt(SQR(interb) + SQR(intera)); } } } if(chCurve) { delete chCurve; } delete [] fringe; } void ImProcFunctions::Badpixelscam(CieImage * src, double radius, int thresh, int mode, float skinprot, float chrom, int hotbad) { BENCHFUN const int halfwin = ceil(2 * radius) + 1; const int width = src->W, height = src->H; constexpr float eps = 1.f; const JaggedArray tmL(width, height); float* badpix = new float[width * height]; #ifdef _OPENMP #pragma omp parallel #endif { //luma sh_p gaussianBlur(src->sh_p, tmL, src->W, src->H, 2.0);//low value to avoid artifacts } //luma badpixels constexpr float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts constexpr float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat shthrv = F2V(shthr); vfloat onev = F2V(1.f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { float shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = 0; j1 <= j + 2; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { vfloat shfabsv = vabsf(LVFU(src->sh_p[i][j]) - LVFU(tmL[i][j])); vfloat shmedv = ZEROV; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = j - 2; j1 <= j + 2; j1++ ) { shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1])); } STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev)); } #endif for (; j < width - 2; j++) { float shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = j - 2; j1 <= j + 2; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } for (; j < width; j++) { float shfabs = fabs(src->sh_p[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = j - 2; j1 < width; j1++ ) { shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]); } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.0f; float shsum = 0.0f; float sum = 0.0f; int tot = 0; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = 0; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else if (tot > 0) { src->sh_p[i][j] = sum / tot; } } for (; j < width - 2; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.0f; float shsum = 0.0f; float sum = 0.0f; int tot = 0; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = j - 2; j1 <= j + 2; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else if(tot > 0) { src->sh_p[i][j] = sum / tot; } } for (; j < width; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.0f; float shsum = 0.0f; float sum = 0.0f; int tot = 0; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ ) for (int j1 = j - 2; j1 < width; j1++ ) { if (i1 == i && j1 == j) { continue; } if (badpix[i1 * width + j1]) { continue; } sum += src->sh_p[i1][j1]; tot++; float dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps); shsum += dirsh * src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j] = shsum / norm; } else if(tot > 0) { src->sh_p[i][j] = sum / tot; } } } // end luma badpixels const JaggedArray sraa(width, height); const JaggedArray srbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat piDiv180v = F2V(RT_PI_F_180); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for (; j < width - 3; j += 4) { vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(src->h_p[i][j])); STVFU(sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y); STVFU(srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x); } #endif for (; j < width; j++) { float2 sincosval = xsincosf(RT_PI_F_180 * src->h_p[i][j]); sraa[i][j] = src->C_p[i][j] * sincosval.y; srbb[i][j] = src->C_p[i][j] * sincosval.x; } } } float ** tmaa = tmL; // reuse tmL buffer const JaggedArray tmbb(width, height); if(mode == 2) { //choice of gaussian blur #ifdef _OPENMP #pragma omp parallel #endif { //chroma a and b gaussianBlur(sraa, tmaa, src->W, src->H, radius); gaussianBlur(srbb, tmbb, src->W, src->H, radius); } } else if(mode == 1) { //choice of median #ifdef _OPENMP #pragma omp parallel #endif { int ip, in, jp, jn; #ifdef _OPENMP #pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one #endif for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } tmaa[i][j] = median(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn]); } } #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { if (i < 2) { ip = i + 2; } else { ip = i - 2; } if (i > height - 3) { in = i - 2; } else { in = i + 2; } for (int j = 0; j < width; j++) { if (j < 2) { jp = j + 2; } else { jp = j - 2; } if (j > width - 3) { jn = j - 2; } else { jn = j + 2; } tmbb[i][j] = median(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn]); } } } } // begin chroma badpixels double chrommed = 0.f; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= (height * width); if(chrommed > 0.f) { // now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat chrommedv = F2V(chrommed); vfloat onev = F2V(1.f); #endif #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for(; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv)); } #endif for(; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed); } } } const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed); #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j = 0; for(; j < halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = 0; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { const float intera = atot / norm; const float interb = atot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if(hotbad != 0 || (CC < chrom && skinprot != 0.f)) { src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; src->C_p[i][j] = CC; } } } } for(; j < width - halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { const float intera = atot / norm; const float interb = atot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if(hotbad != 0 || (CC < chrom && skinprot != 0.f)) { src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; src->C_p[i][j] = CC; } } } } for(; j < width; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; float wt; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) for (int j1 = j - halfwin + 1; j1 < width; j1++) { wt = badpix[i1 * width + j1]; atot += wt * sraa[i1][j1]; btot += wt * srbb[i1][j1]; norm += wt; } if(norm > 0.f) { const float intera = atot / norm; const float interb = atot / norm; const float CC = sqrt(SQR(interb) + SQR(intera)); if(hotbad != 0 || (CC < chrom && skinprot != 0.f)) { src->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180; src->C_p[i][j] = CC; } } } } } } delete [] badpix; } void ImProcFunctions::BadpixelsLab(LabImage * src, double radius, int thresh, int mode, float chrom) { BENCHFUN const int halfwin = ceil(2 * radius) + 1; const int width = src->W, height = src->H; constexpr float eps = 1.f; const JaggedArray tmL(width, height); float* badpix = new float[width * height]; #ifdef _OPENMP #pragma omp parallel #endif { // blur L channel gaussianBlur(src->L, tmL, src->W, src->H, 2.0);//low value to avoid artifacts } //luma badpixels constexpr float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts constexpr float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat shthrv = F2V(shthr); vfloat onev = F2V(1.f); #endif // __SSE2__ #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { float shfabs = fabs(src->L[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } #ifdef __SSE2__ for (; j < width - 5; j += 4) { vfloat shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j])); vfloat shmedv = ZEROV; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1])); } } STVFU(badpix[i * width + j], vselfzero(vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv), onev)); } #endif for (; j < width - 2; j++) { float shfabs = fabs(src->L[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } for (; j < width; j++) { float shfabs = fabs(src->L[i][j] - tmL[i][j]); float shmed = 0.0f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { shmed += fabs(src->L[i1][j1] - tmL[i1][j1]); } } badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr)); } } } #ifdef _OPENMP #pragma omp for schedule(dynamic,16) #endif for (int i = 0; i < height; i++) { int j = 0; for (; j < 2; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.f; float shsum = 0.f; float sum = 0.f; float tot = 0.f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = 0; j1 <= j + 2; j1++) { if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot += 1.f; float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else if(tot > 0.f) { src->L[i][j] = sum / tot; } } for (; j < width - 2; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.f; float shsum = 0.f; float sum = 0.f; float tot = 0.f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 <= j + 2; j1++) { if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot += 1.f; float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else if(tot > 0.f) { src->L[i][j] = sum / tot; } } for (; j < width; j++) { if (!badpix[i * width + j]) { continue; } float norm = 0.f; float shsum = 0.f; float sum = 0.f; float tot = 0.f; for (int i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++) { for (int j1 = j - 2; j1 < width; j1++) { if (badpix[i1 * width + j1]) { continue; } sum += src->L[i1][j1]; tot += 1.f; float dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps); shsum += dirsh * src->L[i1][j1]; norm += dirsh; } } if (norm > 0.f) { src->L[i][j] = shsum / norm; } else if(tot > 0.f) { src->L[i][j] = sum / tot; } } } // end luma badpixels float ** tmaa = tmL; // reuse tmL buffer const JaggedArray tmbb(width, height); #ifdef _OPENMP #pragma omp parallel #endif { // blur chroma a and b gaussianBlur(src->a, tmaa, src->W, src->H, radius); gaussianBlur(src->b, tmbb, src->W, src->H, radius); } // begin chroma badpixels double chrommed = 0.f; // use double precision for large summations #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma = SQR(src->a[i][j] - tmaa[i][j]) + SQR(src->b[i][j] - tmbb[i][j]); chrommed += chroma; badpix[i * width + j] = chroma; } } chrommed /= (height * width); if(chrommed > 0.f) { // now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ vfloat chrommedv = F2V(chrommed); vfloat onev = F2V(1.f); #endif #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { int j = 0; #ifdef __SSE2__ for(; j < width - 3; j += 4) { STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv)); } #endif for(; j < width; j++) { badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed); } } } const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed); chrom *= 327.68f; chrom *= chrom; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { int j = 0; for(; j < halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) { for (int j1 = 0; j1 < j + halfwin; j1++) { float wt = badpix[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } } if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) { src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } } #ifdef __SSE2__ vfloat chromv = F2V(chrom); vfloat threshfactorv = F2V(threshfactor); for(; j < width - halfwin - 3; j+=4) { vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv); if (_mm_movemask_ps((vfloat)selMask)) { vfloat atotv = ZEROV; vfloat btotv = ZEROV; vfloat normv = ZEROV; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { vfloat wtv = LVFU(badpix[i1 * width + j1]); atotv += wtv * LVFU(src->a[i1][j1]); btotv += wtv * LVFU(src->b[i1][j1]); normv += wtv; } } selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv))); if(_mm_movemask_ps((vfloat)selMask)) { vfloat aOrig = LVFU(src->a[i][j]); vfloat bOrig = LVFU(src->b[i][j]); STVFU(src->a[i][j], vself(selMask, atotv / normv, aOrig)); STVFU(src->b[i][j], vself(selMask, btotv / normv, bOrig)); } } } #endif for(; j < width - halfwin; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) { float wt = badpix[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } } if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) { src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } } for(; j < width; j++) { if (badpix[i * width + j] < threshfactor) { float atot = 0.f; float btot = 0.f; float norm = 0.f; for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++) { for (int j1 = j - halfwin + 1; j1 < width; j1++) { float wt = badpix[i1 * width + j1]; atot += wt * src->a[i1][j1]; btot += wt * src->b[i1][j1]; norm += wt; } } if(SQR(atot) + SQR(btot) < chrom * SQR(norm)) { src->a[i][j] = atot / norm; src->b[i][j] = btot / norm; } } } } } delete [] badpix; } }