/* * This file is part of RawTherapee. * * Copyright (c) 2019 Ingo Weyrich (heckflosse67@gmx.de) * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #include "jaggedarray.h" #include "rtengine.h" #include "rawimagesource.h" #include "rt_math.h" #include "improcfun.h" #include "procparams.h" #include "color.h" #include "gauss.h" #include "rt_algo.h" #define BENCHMARK #include "StopWatch.h" #ifdef _OPENMP #include #endif #include "opthelper.h" #include "../rtgui/multilangmgr.h" namespace { void buildClipMaskBayer(const float * const *rawData, int W, int H, float** clipMask, const float whites[2][2]) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 0; row < H; ++row) { for (int col = 0; col < W; ++col) { clipMask[row][col] = 1.f; } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 2; row < H - 2; ++row) { float clip0 = whites[row & 1][0]; float clip1 = whites[row & 1][1]; for (int col = 2; col < W - 2; ++col) { if (rawData[row][col] >= clip0) { clipMask[row - 2][col - 1] = clipMask[row - 2][col] = clipMask[row - 2][col + 1] = 0.f; clipMask[row - 1][col - 2] = clipMask[row - 1][col - 1] = clipMask[row - 1][col] = clipMask[row - 1][col + 1] = clipMask[row - 1][col + 2] = 0.f; clipMask[row][col - 2] = clipMask[row][col - 1] = clipMask[row][col] = clipMask[row][col + 1] = clipMask[row][col + 2] = 0.f; clipMask[row + 1][col - 2] = clipMask[row + 1][col - 1] = clipMask[row + 1][col] = clipMask[row + 1][col + 1] = clipMask[row + 1][col + 2] = 0.f; clipMask[row + 2][col - 1] = clipMask[row + 2][col] = clipMask[row + 2][col + 1] = 0.f; } std::swap(clip0, clip1); } } } void buildClipMaskXtrans(const float * const *rawData, int W, int H, float** clipMask, const float whites[6][6]) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 0; row < H; ++row) { for (int col = 0; col < W; ++col) { clipMask[row][col] = 1.f; } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 2; row < H - 2; ++row) { for (int col = 2; col < W - 2; ++col) { const float clip = whites[row % 6][col % 6]; if (rawData[row][col] >= clip) { clipMask[row - 2][col - 1] = clipMask[row - 2][col] = clipMask[row - 2][col + 1] = 0.f; clipMask[row - 1][col - 2] = clipMask[row - 1][col - 1] = clipMask[row - 1][col] = clipMask[row - 1][col + 1] = clipMask[row - 1][col + 2] = 0.f; clipMask[row][col - 2] = clipMask[row][col - 1] = clipMask[row][col] = clipMask[row][col + 1] = clipMask[row][col + 2] = 0.f; clipMask[row + 1][col - 2] = clipMask[row + 1][col - 1] = clipMask[row + 1][col] = clipMask[row + 1][col + 1] = clipMask[row + 1][col + 2] = 0.f; clipMask[row + 2][col - 1] = clipMask[row + 2][col] = clipMask[row + 2][col + 1] = 0.f; } } } } void buildClipMaskMono(const float * const *rawData, int W, int H, float** clipMask, float white) { #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 0; row < H; ++row) { for (int col = 0; col < W; ++col) { clipMask[row][col] = 1.f; } } #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int row = 2; row < H - 2; ++row) { for (int col = 2; col < W - 2; ++col) { if (rawData[row][col] >= white) { clipMask[row - 2][col - 1] = clipMask[row - 2][col] = clipMask[row - 2][col + 1] = 0.f; clipMask[row - 1][col - 2] = clipMask[row - 1][col - 1] = clipMask[row - 1][col] = clipMask[row - 1][col + 1] = clipMask[row - 1][col + 2] = 0.f; clipMask[row][col - 2] = clipMask[row][col - 1] = clipMask[row][col] = clipMask[row][col + 1] = clipMask[row][col + 2] = 0.f; clipMask[row + 1][col - 2] = clipMask[row + 1][col - 1] = clipMask[row + 1][col] = clipMask[row + 1][col + 1] = clipMask[row + 1][col + 2] = 0.f; clipMask[row + 2][col - 1] = clipMask[row + 2][col] = clipMask[row + 2][col + 1] = 0.f; } } } } float calcRadiusBayer(const float * const *rawData, int W, int H, float lowerLimit, float upperLimit, const unsigned int fc[2]) { float maxRatio = 1.f; #ifdef _OPENMP #pragma omp parallel for reduction(max:maxRatio) schedule(dynamic, 16) #endif for (int row = 4; row < H - 4; ++row) { for (int col = 5 + (fc[row & 1] & 1); col < W - 4; col += 2) { const float val00 = rawData[row][col]; if (val00 > 0.f) { const float val1m1 = rawData[row + 1][col - 1]; const float val1p1 = rawData[row + 1][col + 1]; const float maxVal0 = std::max(val00, val1m1); if (val1m1 > 0.f && maxVal0 > lowerLimit) { const float minVal = std::min(val00, val1m1); if (UNLIKELY(maxVal0 > maxRatio * minVal)) { bool clipped = false; if (maxVal0 == val00) { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col - 1], rawData[row - 1][col + 1], val1p1) >= upperLimit) { clipped = true; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row][col - 2], val00, rawData[row + 2][col - 2], rawData[row + 2][col]) >= upperLimit) { clipped = true; } } if (!clipped) { maxRatio = maxVal0 / minVal; } } } const float maxVal1 = std::max(val00, val1p1); if (val1p1 > 0.f && maxVal1 > lowerLimit) { const float minVal = std::min(val00, val1p1); if (UNLIKELY(maxVal1 > maxRatio * minVal)) { if (maxVal1 == val00) { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col - 1], rawData[row - 1][col + 1], val1p1) >= upperLimit) { continue; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(val00, rawData[row][col + 2], rawData[row + 2][col], rawData[row + 2][col + 2]) >= upperLimit) { continue; } } maxRatio = maxVal1 / minVal; } } } } } return std::sqrt((1.f / (std::log(1.f / maxRatio) / 2.f)) / -2.f); } float calcRadiusXtrans(const float * const *rawData, int W, int H, float lowerLimit, float upperLimit, unsigned int starty, unsigned int startx) { float maxRatio = 1.f; #ifdef _OPENMP #pragma omp parallel for reduction(max:maxRatio) schedule(dynamic, 16) #endif for (int row = starty + 3; row < H - 4; row += 3) { for (int col = startx + 3; col < W - 4; col += 3) { const float valtl = rawData[row][col]; const float valtr = rawData[row][col + 1]; const float valbl = rawData[row + 1][col]; const float valbr = rawData[row + 1][col + 1]; if (valtl > 1.f) { const float maxValtltr = std::max(valtl, valtr); if (valtr > 1.f && maxValtltr > lowerLimit) { const float minVal = std::min(valtl, valtr); if (UNLIKELY(maxValtltr > maxRatio * minVal)) { bool clipped = false; if (maxValtltr == valtl) { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col - 1], valtr, valbl, valbr) >= upperLimit) { clipped = true; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col + 2], valtl, valbl, valbr) >= upperLimit) { clipped = true; } } if (!clipped) { maxRatio = maxValtltr / minVal; } } } const float maxValtlbl = std::max(valtl, valbl); if (valbl > 1.f && maxValtlbl > lowerLimit) { const float minVal = std::min(valtl, valbl); if (UNLIKELY(maxValtlbl > maxRatio * minVal)) { bool clipped = false; if (maxValtlbl == valtl) { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col - 1], valtr, valbl, valbr) >= upperLimit) { clipped = true; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(valtl, valtr, rawData[row + 2][col - 1], valbr) >= upperLimit) { clipped = true; } } if (!clipped) { maxRatio = maxValtlbl / minVal; } } } } if (valbr > 1.f) { const float maxValblbr = std::max(valbl, valbr); if (valbl > 1.f && maxValblbr > lowerLimit) { const float minVal = std::min(valbl, valbr); if (UNLIKELY(maxValblbr > maxRatio * minVal)) { bool clipped = false; if (maxValblbr == valbr) { // check for influence by clipped green in neighborhood if (rtengine::max(valtl, valtr, valbl, rawData[row + 2][col + 2]) >= upperLimit) { clipped = true; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(valtl, valtr, rawData[row + 2][col - 1], valbr) >= upperLimit) { clipped = true; } } if (!clipped) { maxRatio = maxValblbr / minVal; } } } const float maxValtrbr = std::max(valtr, valbr); if (valtr > 1.f && maxValtrbr > lowerLimit) { const float minVal = std::min(valtr, valbr); if (UNLIKELY(maxValtrbr > maxRatio * minVal)) { if (maxValtrbr == valbr) { // check for influence by clipped green in neighborhood if (rtengine::max(valtl, valtr, valbl, rawData[row + 2][col + 2]) >= upperLimit) { continue; } } else { // check for influence by clipped green in neighborhood if (rtengine::max(rawData[row - 1][col + 2], valtl, valbl, valbr) >= upperLimit) { continue; } } maxRatio = maxValtrbr / minVal; } } } } } return std::sqrt((1.f / (std::log(1.f / maxRatio))) / -2.f); } void CaptureDeconvSharpening (float** luminance, float** tmp, const float * const * blend, int W, int H, double sigma, int iterations, rtengine::ProgressListener* plistener, double start, double step) { rtengine::JaggedArray tmpI(W, H); #ifdef _OPENMP #pragma omp parallel #endif { #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < H; i++) { for(int j = 0; j < W; j++) { tmpI[i][j] = max(luminance[i][j], 0.f); } } for (int k = 0; k < iterations; k++) { // apply gaussian blur and divide luminance by result of gaussian blur gaussianBlur(tmpI, tmp, W, H, sigma, nullptr, GAUSS_DIV, luminance); gaussianBlur(tmp, tmpI, W, H, sigma, nullptr, GAUSS_MULT); if (plistener) { #ifdef _OPENMP #pragma omp single #endif start += step; plistener->setProgress(start); } } // end for #ifdef _OPENMP #pragma omp for #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { luminance[i][j] = rtengine::intp(blend[i][j], max(tmpI[i][j], 0.0f), luminance[i][j]); } } } // end parallel } } namespace rtengine { void RawImageSource::captureSharpening(const procparams::CaptureSharpeningParams &sharpeningParams, bool showMask, double &conrastThreshold, double &radius) { if (plistener) { plistener->setProgressStr(M("TP_PDSHARPENING_LABEL")); plistener->setProgress(0.0); } const float xyz_rgb[3][3] = { // XYZ from RGB { 0.412453, 0.357580, 0.180423 }, { 0.212671, 0.715160, 0.072169 }, { 0.019334, 0.119193, 0.950227 } }; float contrast = conrastThreshold / 100.f; const float clipVal = (ri->get_white(1) - ri->get_cblack(1)) * scale_mul[1]; array2D& redVals = redCache ? *redCache : red; array2D& greenVals = greenCache ? *greenCache : green; array2D& blueVals = blueCache ? *blueCache : blue; array2D clipMask(W, H); constexpr float clipLimit = 0.95f; if (ri->getSensorType() == ST_BAYER) { const float whites[2][2] = { {(ri->get_white(FC(0,0)) - c_black[FC(0,0)]) * scale_mul[FC(0,0)] * clipLimit, (ri->get_white(FC(0,1)) - c_black[FC(0,1)]) * scale_mul[FC(0,1)] * clipLimit}, {(ri->get_white(FC(1,0)) - c_black[FC(1,0)]) * scale_mul[FC(1,0)] * clipLimit, (ri->get_white(FC(1,1)) - c_black[FC(1,1)]) * scale_mul[FC(1,1)] * clipLimit} }; buildClipMaskBayer(rawData, W, H, clipMask, whites); const unsigned int fc[2] = {FC(0,0), FC(1,0)}; if (sharpeningParams.autoRadius) { radius = calcRadiusBayer(rawData, W, H, 1000.f, clipVal, fc); } } else if (ri->getSensorType() == ST_FUJI_XTRANS) { float whites[6][6]; for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { const auto color = ri->XTRANSFC(i, j); whites[i][j] = (ri->get_white(color) - c_black[color]) * scale_mul[color] * clipLimit; } } buildClipMaskXtrans(rawData, W, H, clipMask, whites); bool found = false; int i, j; for (i = 6; i < 12 && !found; ++i) { for (j = 6; j < 12 && !found; ++j) { if (ri->XTRANSFC(i, j) == 1) { if (ri->XTRANSFC(i, j - 1) != ri->XTRANSFC(i, j + 1)) { if (ri->XTRANSFC(i - 1, j) != 1) { if (ri->XTRANSFC(i, j - 1) != 1) { found = true; break; } } } } } } if (sharpeningParams.autoRadius) { radius = calcRadiusXtrans(rawData, W, H, 1000.f, clipVal, i, j); } } else if (ri->get_colors() == 1) { buildClipMaskMono(rawData, W, H, clipMask, (ri->get_white(0) - c_black[0]) * scale_mul[0] * clipLimit); if (sharpeningParams.autoRadius) { const unsigned int fc[2] = {0, 0}; radius = calcRadiusBayer(rawData, W, H, 1000.f, clipVal, fc); } } if (showMask) { array2D& L = blue; // blue will be overridden anyway => we can use its buffer to store L #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H; ++i) { Color::RGB2L(redVals[i], greenVals[i], blueVals[i], L[i], xyz_rgb, W); } if (plistener) { plistener->setProgress(0.1); } array2D& blend = red; // red will be overridden anyway => we can use its buffer to store the blend mask buildBlendMask(L, blend, W, H, contrast, 1.f, sharpeningParams.autoContrast, clipMask); if (plistener) { plistener->setProgress(0.2); } conrastThreshold = contrast * 100.f; #ifdef _OPENMP #pragma omp parallel for #endif for (int i = 0; i < H; ++i) { for (int j = 0; j < W; ++j) { red[i][j] = green[i][j] = blue[i][j] = blend[i][j] * 16384.f; } } if (plistener) { plistener->setProgress(1.0); } return; } array2D* Lbuffer = nullptr; if (!redCache) { Lbuffer = new array2D(W, H); } array2D* YOldbuffer = nullptr; if (!greenCache) { YOldbuffer = new array2D(W, H); } array2D* YNewbuffer = nullptr; if (!blueCache) { YNewbuffer = new array2D(W, H); } array2D& L = Lbuffer ? *Lbuffer : red; array2D& YOld = YOldbuffer ? * YOldbuffer : green; array2D& YNew = YNewbuffer ? * YNewbuffer : blue; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int i = 0; i < H; ++i) { Color::RGB2L(redVals[i], greenVals[i], blueVals[i], L[i], xyz_rgb, W); Color::RGB2Y(redVals[i], greenVals[i], blueVals[i], YOld[i], YNew[i], sharpeningParams.gamma, W); } if (plistener) { plistener->setProgress(0.1); } // calculate contrast based blend factors to reduce sharpening in regions with low contrast JaggedArray blend(W, H); buildBlendMask(L, blend, W, H, contrast, 1.f, sharpeningParams.autoContrast, clipMask); if (plistener) { plistener->setProgress(0.2); } conrastThreshold = contrast * 100.f; array2D& tmp = L; // L is not used anymore now => we can use its buffer as the needed temporary buffer CaptureDeconvSharpening(YNew, tmp, blend, W, H, radius, sharpeningParams.deconviter, plistener, 0.2, (0.9 - 0.2) / sharpeningParams.deconviter); if (plistener) { plistener->setProgress(0.9); } const float gamma = sharpeningParams.gamma; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic, 16) #endif for (int i = 0; i < H; ++i) { int j = 0; #ifdef __SSE2__ const vfloat gammav = F2V(gamma); for (; j < W - 3; j += 4) { const vfloat factor = pow_F(vmaxf(LVFU(YNew[i][j]), ZEROV) / vmaxf(LVFU(YOld[i][j]), F2V(0.00001f)), gammav); STVFU(red[i][j], LVFU(redVals[i][j]) * factor); STVFU(green[i][j], LVFU(greenVals[i][j]) * factor); STVFU(blue[i][j], LVFU(blueVals[i][j]) * factor); } #endif for (; j < W; ++j) { const float factor = pow_F(std::max(YNew[i][j], 0.f) / std::max(YOld[i][j], 0.00001f), gamma); red[i][j] = redVals[i][j] * factor; green[i][j] = greenVals[i][j] * factor; blue[i][j] = blueVals[i][j] * factor; } } delete Lbuffer; delete YOldbuffer; delete YNewbuffer; if (plistener) { plistener->setProgress(1.0); } } } /* namespace */