//////////////////////////////////////////////////////////////// // // Chromatic Aberration Auto-correction // // copyright (c) 2008-2010 Emil Martinec // // // code dated: November 24, 2010 // // PF_correct_RT.cc is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////// //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #include "gauss.h" #include "improcfun.h" #include "sleef.c" #include "mytime.h" #ifdef _OPENMP #include #endif #include "rt_math.h" #define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} } #define med3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \ pp[0]=a0; pp[1]=a1; pp[2]=a2; pp[3]=a3; pp[4]=a4; pp[5]=a5; pp[6]=a6; pp[7]=a7; pp[8]=a8; \ PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \ PIX_SORT(pp[0],pp[1]); PIX_SORT(pp[3],pp[4]); PIX_SORT(pp[6],pp[7]); \ PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \ PIX_SORT(pp[0],pp[3]); PIX_SORT(pp[5],pp[8]); PIX_SORT(pp[4],pp[7]); \ PIX_SORT(pp[3],pp[6]); PIX_SORT(pp[1],pp[4]); PIX_SORT(pp[2],pp[5]); \ PIX_SORT(pp[4],pp[7]); PIX_SORT(pp[4],pp[2]); PIX_SORT(pp[6],pp[4]); \ PIX_SORT(pp[4],pp[2]); median=pp[4];} //pp4 = median using namespace std; namespace rtengine { extern const Settings* settings; void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh) { int halfwin = ceil(2*radius)+1; #include "rt_math.h" // local variables int width=src->W, height=src->H; //temporary array to store chromaticity int (*fringe); fringe = (int (*)) calloc ((height)*(width), sizeof *fringe); LabImage * tmp1; tmp1 = new LabImage(width, height); #ifdef _OPENMP #pragma omp parallel #endif { AlignedBufferMP buffer(max(src->W,src->H)); gaussHorizontal (src->a, tmp1->a, buffer, src->W, src->H, radius); gaussHorizontal (src->b, tmp1->b, buffer, src->W, src->H, radius); gaussVertical (tmp1->a, tmp1->a, buffer, src->W, src->H, radius); gaussVertical (tmp1->b, tmp1->b, buffer, src->W, src->H, radius); // gaussHorizontal (src->L, tmp1->L, buffer, src->W, src->H, radius); // gaussVertical (tmp1->L, tmp1->L, buffer, src->W, src->H, radius); } float chromave=0; #ifdef _OPENMP #pragma omp parallel for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma = SQR(src->a[i][j]-tmp1->a[i][j])+SQR(src->b[i][j]-tmp1->b[i][j]); chromave += chroma; fringe[i*width+j]=chroma; } } chromave /= (height*width); float threshfactor = (thresh*chromave)/33.f; // Calculated once to eliminate mult inside the next loop // printf("Chro %f \n",chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { tmp1->a[i][j] = src->a[i][j]; tmp1->b[i][j] = src->b[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ if (fringe[i*width+j]>threshfactor) { float atot=0.f; float btot=0.f; float norm=0.f; float wt; for (int i1=max(0,i-halfwin+1); i1a[i1][j1]; btot += wt*src->b[i1][j1]; norm += wt; } tmp1->a[i][j] = (int)(atot/norm); tmp1->b[i][j] = (int)(btot/norm); }//end of ab channel averaging } } #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->L[i][j] = src->L[i][j]; dst->a[i][j] = tmp1->a[i][j]; dst->b[i][j] = tmp1->b[i][j]; } } delete tmp1; free(fringe); } void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh) { int halfwin = ceil(2*radius)+1; #include "rt_math.h" // local variables int width=src->W, height=src->H; float piid=3.14159265f/180.f; static float eps2=0.01f; //temporary array to store chromaticity int (*fringe); fringe = (int (*)) calloc ((height)*(width), sizeof *fringe); float** sraa; sraa = new float*[height]; for (int i=0; iC_p[i][j]*cos(piid*src->h_p[i][j]); } */ float** tmaa; tmaa = new float*[height]; for (int i=0; ih_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } float** tmbb; tmbb = new float*[height]; for (int i=0; i buffer(max(src->W,src->H)); gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); // gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, radius); // gaussVertical (tmL, tmL, buffer, src->W, src->H, radius); } float chromave=0; #ifdef _OPENMP #pragma omp parallel for reduction(+:chromave) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); chromave += chroma; fringe[i*width+j]=chroma; } } chromave /= (height*width); float threshfactor = (thresh*chromave)/33.f; // Calculated once to eliminate mult inside the next loop // printf("Chromave CAM %f \n",chromave); // Issue 1674: // often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky. // so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work // Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better // choice for the chunk_size than 16 #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; //test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average /*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/ /*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/ if (fringe[i*width+j]>threshfactor) { float atot=0.f; float btot=0.f; float norm=0.f; float wt; for (int i1=max(0,i-halfwin+1); i1 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } }//end of ab channel averaging } } #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } } for (int i=0; iciebadpixgauss; int width=src->W, height=src->H; float piid=3.14159265f/180.f; float shfabs, shmed; int i1, j1, tot; static float eps = 1.0f; static float eps2 =0.01f; float shsum, dirsh, norm, sum; float** sraa; sraa = new float*[height]; for (int i=0; ih_p[i][j]); sraa[i][j]=src->C_p[i][j]*sincosval.y; srbb[i][j]=src->C_p[i][j]*sincosval.x; } float** tmbb; tmbb = new float*[height]; for (int i=0; i buffer(max(src->W,src->H)); //chroma a and b if(mode==2) {//choice of gaussian blur gaussHorizontal (sraa, tmaa, buffer, src->W, src->H, radius); gaussHorizontal (srbb, tmbb, buffer, src->W, src->H, radius); gaussVertical (tmaa, tmaa, buffer, src->W, src->H, radius); gaussVertical (tmbb, tmbb, buffer, src->W, src->H, radius); } //luma sh_p gaussHorizontal (src->sh_p, tmL, buffer, src->W, src->H, 2.0);//low value to avoid artifacts gaussVertical (tmL, tmL, buffer, src->W, src->H, 2.0); } if(mode==1){ //choice of median #pragma omp parallel { #pragma omp for for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(sraa[ip][jp],sraa[ip][j],sraa[ip][jn],sraa[i][jp],sraa[i][j],sraa[i][jn],sraa[in][jp],sraa[in][j],sraa[in][jn],tmaa[i][j]); } } #pragma omp for for (int i=0; iheight-3) {in=i-2;} else {in=i+2;} for (int j=0; jwidth-3) {jn=j-2;} else {jn=j+2;} med3(srbb[ip][jp],srbb[ip][j],srbb[ip][jn],srbb[i][jp],srbb[i][j],srbb[i][jn],srbb[in][jp],srbb[in][j],srbb[in][jn],tmbb[i][j]); } } } } //luma badpixels float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts float shthr = sh_thr / 24.0f; #ifdef _OPENMP #pragma omp parallel for private(shfabs, shmed,i1,j1) #endif for (int i=0; i < height; i++) for (int j=0; j < width; j++) { shfabs = fabs(src->sh_p[i][j]-tmL[i][j]); for (i1=max(0,i-2), shmed=0; i1<=min(i+2,height-1); i1++ ) for (j1=max(0,j-2); j1<=min(j+2,width-1); j1++ ) { shmed += fabs(src->sh_p[i1][j1]-tmL[i1][j1]); } badpix[i][j] = (shfabs>((shmed-shfabs)*shthr)); } #ifdef _OPENMP #pragma omp parallel for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16) #endif for (int i=0; i < height; i++) for (int j=0; j < width; j++) { if (!badpix[i][j]) continue; norm=0.0f; shsum=0.0f; sum=0.0f; tot=0; for (i1=max(0,i-2), shmed=0; i1<=min(i+2,height-1); i1++ ) for (j1=max(0,j-2); j1<=min(j+2,width-1); j1++ ) { if (i1==i && j1==j) continue; if (badpix[i1][j1]) continue; sum += src->sh_p[i1][j1]; tot++; dirsh = 1.f/(SQR(src->sh_p[i1][j1]-src->sh_p[i][j])+eps); shsum += dirsh*src->sh_p[i1][j1]; norm += dirsh; } if (norm > 0.f) { src->sh_p[i][j]=shsum/norm; } else { if(tot > 0) src->sh_p[i][j]=sum / tot; } } // end luma badpixels // begin chroma badpixels float chrommed=0.f; #ifdef _OPENMP #pragma omp parallel for reduction(+:chrommed) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { float chroma =SQR(sraa[i][j]-tmaa[i][j])+SQR(srbb[i][j]-tmbb[i][j]); chrommed += chroma; badpix[i][j]=chroma; } } chrommed /= (height*width); float threshfactor = (thresh*chrommed)/33.f; #ifdef _OPENMP #pragma omp parallel for schedule(dynamic,16) #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { tmaa[i][j] = sraa[i][j]; tmbb[i][j] = srbb[i][j]; if (badpix[i][j]>threshfactor) { float atot=0.f; float btot=0.f; float norm=0.f; float wt; for (int i1=max(0,i-halfwin+1); i1 0.f){ tmaa[i][j] = (atot/norm); tmbb[i][j] = (btot/norm); } } } } #ifdef _OPENMP #pragma omp parallel for #endif for(int i = 0; i < height; i++ ) { for(int j = 0; j < width; j++) { dst->sh_p[i][j] = src->sh_p[i][j]; float intera = tmaa[i][j]; float interb = tmbb[i][j]; dst->h_p[i][j]=(xatan2f(interb,intera))/piid; dst->C_p[i][j]=sqrt(SQR(interb)+SQR(intera)); } } for (int i=0; iverbose ) printf("Ciecam badpixels:- %d usec\n", t2.etime(t1)); } } #undef PIX_SORT #undef med3