/* * This file is part of RawTherapee. * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . * * © 2010 Emil Martinec * */ #include #include #include "curves.h" #include "labimage.h" #include "color.h" #include "mytime.h" //#include "StopWatch.h" #include "improcfun.h" #include "rawimagesource.h" #include "array2D.h" #include "rt_math.h" #ifdef __SSE2__ #include "sleefsseavx.c" #endif #ifdef _OPENMP #include #endif #define CLIPI(a) ((a)>0 ?((a)<32768 ?(a):32768):0) #define RANGEFN(i) ((1000.0f / (i + 1000.0f))) #define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000) #define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) ) namespace rtengine { static const int maxlevel = 5; static const float noise = 2000; static const float thresh = 1000; //sequence of scales static const int scales[8] = {1,2,4,8,16,32,64,128}; extern const Settings* settings; //sequence of scales void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, float ** dest_a, float ** dest_b,const double * mult, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev) { // StopWatch Stop1("Dirpyr equalizer"); int lastlevel=maxlevel; if(settings->verbose) printf("Dirpyr scaleprev=%i\n",scaleprev); float atten123=(float) settings->level123_cbdl; if(atten123 > 50.f) atten123=50.f; if(atten123 < 0.f) atten123=0.f; float atten0=(float) settings->level0_cbdl; if(atten0 > 40.f) atten123=40.f; if(atten0 < 0.f) atten0=0.f; while (lastlevel>0 && fabs(mult[lastlevel-1]-1)<0.001) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; float multi[5]={1.f,1.f,1.f,1.f,1.f}; float scalefl[5]; for(int lv=0;lv<5;lv++) { scalefl[lv]= ((float) scales[lv])/(float) scaleprev; if(lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100% else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];}//modulate action if zoom < 100% } if(settings->verbose) printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4]); multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; //int thresh = 100 * mult[5]; int scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, l_a, l_b, false ); level = 1; while(level < lastlevel) { scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, l_a, l_b, false ); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel-1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, l_a, l_b, false, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice ); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, l_a, l_b, false, skinprot, gamutlab, b_l,t_l,t_r,b_r, choice ); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for (int i=0; iverbose) printf("CAM dirpyr scaleprev=%i\n",scaleprev); float atten123=(float) settings->level123_cbdl; if(atten123 > 50.f) atten123=50.f; if(atten123 < 0.f) atten123=0.f; // printf("atten=%f\n",atten); float atten0=(float) settings->level0_cbdl; if(atten0 > 40.f) atten123=40.f; if(atten0 < 0.f) atten0=0.f; while (fabs(mult[lastlevel-1]-1)<0.001 && lastlevel>0) { lastlevel--; //printf("last level to process %d \n",lastlevel); } if (lastlevel==0) return; int level; float multi[5]={1.f,1.f,1.f,1.f,1.f}; float scalefl[5]; for(int lv=0;lv<5;lv++) { scalefl[lv]= ((float) scales[lv])/(float) scaleprev; // if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv]; if (lv>=1) {if(scalefl[lv] < 1.f) multi[lv] = (atten123*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];} else {if(scalefl[lv] < 1.f) multi[lv] = (atten0*((float) mult[lv] -1.f)/100.f)+1.f; else multi[lv]=(float) mult[lv];} } if(settings->verbose) printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f\n",multi[0],multi[1],multi[2],multi[3],multi[4]); multi_array2D dirpyrlo (srcwidth, srcheight); level = 0; int scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale, h_p, C_p, true ); level = 1; while(level < lastlevel) { scale = (int)(scales[level])/scaleprev; if(scale < 1) scale=1; dirpyr_channel(dirpyrlo[level-1], dirpyrlo[level], srcwidth, srcheight, level, scale, h_p, C_p, true ); level ++; } // with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory float ** buffer = dirpyrlo[lastlevel-1]; for(int level = lastlevel - 1; level > 0; level--) { idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level-1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold , h_p, C_p, true, skinprot, false, b_l,t_l,t_r,b_r, choice); } scale = scales[0]; idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, true, skinprot, false, b_l,t_l,t_r,b_r, choice); //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(execdir){ #ifdef _OPENMP #pragma omp parallel for #endif for (int i=0; iJ_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) dst[i][j] = CLIP( buffer[i][j] ); // TODO: Really a clip necessary? else dst[i][j]=src[i][j]; } } else for (int i=0; i 1) { //generate domain kernel int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}}; halfwin=2; scalewin = halfwin*scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv; float domkerv[5][5][4] = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}}; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scalewin-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwtv = _mm_loadu_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * (thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv)); valv += dirwtv*LVFU(data_fine[inbr][jnbr]); normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j],valv/normv);//low pass filter } for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) { dirwt = DIRWT(inbr, jnbr, i, j); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication halfwin = 1; scalewin = halfwin*scale; #ifdef _OPENMP #pragma omp parallel #endif { #ifdef __SSE2__ __m128 thousandv = _mm_set1_ps( 1000.0f ); __m128 dirwtv, valv, normv; #endif // __SSE2__ int j; #ifdef _OPENMP #pragma omp for #endif for(int i = 0; i < height; i++) { float dirwt; for(j = 0; j < scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=max(0,j-scalewin); jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #ifdef __SSE2__ for(; j < width-scalewin-3; j+=4) { valv = _mm_setzero_ps(); normv = _mm_setzero_ps(); for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwtv = thousandv / (vabsf(LVFU(data_fine[inbr][jnbr])-(LVFU(data_fine[i][j]))) + thousandv); valv += dirwtv*LVFU(data_fine[inbr][jnbr]); normv += dirwtv; } } _mm_storeu_ps( &data_coarse[i][j], valv/normv);//low pass filter } for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #else for(; j < width-scalewin; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } #endif for(; j < width; j++) { float val=0; float norm=0; for(int inbr=max(0,i-scalewin); inbr<=min(height-1,i+scalewin); inbr+=scale) { for (int jnbr=j-scalewin; jnbr<=min(width-1,j+scalewin); jnbr+=scale) { dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr]-data_fine[i][j])); val += dirwt*data_fine[inbr][jnbr]; norm += dirwt; } } data_coarse[i][j]=val/norm;//low pass filter } } } } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, bool ciec, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r , int choice) { TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params->icm.working); double wip[3][3] = { {wiprof[0][0],wiprof[0][1],wiprof[0][2]}, {wiprof[1][0],wiprof[1][1],wiprof[1][2]}, {wiprof[2][0],wiprof[2][1],wiprof[2][2]} }; bool highlight = params->toneCurve.hrenabled; //Get the value if "highlight reconstruction" is activated float noisehi = 1.33f*noise*dirpyrThreshold/expf(level*log(3.0)), noiselo = 0.66f*noise*dirpyrThreshold/expf(level*log(3.0)); //printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot); LUTf irangefn (0x20000); for (int i=0; i<0x20000; i++) { if (abs(i-0x10000)>noisehi || mult[level]<1.0) { irangefn[i] = mult[level] ; } else { if (abs(i-0x10000)= 0.) { Color::SkinSatcdbl ((data_fine[i][j])/327.68f, l_a_h[i][j] ,l_b_c[i][j], skinprot, scale, ciec, true, b_l, t_l, t_r, b_r, choice); buffer[i][j] += (1.f +(irangefn[hipass+0x10000]-1.f)*scale) * hipass ; } else { double skinprotneg = -skinprot; float correct; correct=irangefn[hipass+0x10000]; Color::SkinSatcdbl ((data_fine[i][j])/327.68f, l_a_h[i][j],l_b_c[i][j] , skinprotneg, scale, ciec, false, b_l, t_l, t_r, b_r, choice); if (scale == 1.f) {//image hard //buffer[i][j] += hipass ; buffer[i][j] += (1.f +(correct-1.f)* (1.f- (float) skinprotneg/100.f)) * hipass ; } else {//image soft buffer[i][j] += (1.f +(correct-1.f)) * hipass ; } } // if(gamutlab) { // ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels // } } else {//lab float modhue=atan2(l_b_c[i][j],l_a_h[i][j]); float modchro=sqrt(SQR((l_b_c[i][j])/327.68f)+SQR((l_a_h[i][j])/327.68f)); if(skinprot >= 0.) { Color::SkinSatcdbl ((data_fine[i][j])/327.68f, modhue, modchro, skinprot, scale, ciec, true, b_l, t_l, t_r, b_r, choice); buffer[i][j] += (1.f +(irangefn[hipass+0x10000]-1.f)*scale) * hipass ; } else { double skinprotneg = -skinprot; float correct; Color::SkinSatcdbl ((data_fine[i][j])/327.68f, modhue, modchro, skinprotneg, scale, ciec, false, b_l, t_l, t_r, b_r, choice); correct=irangefn[hipass+0x10000]; if (scale == 1.f) {//image hard buffer[i][j] += (1.f +(correct-1.f)* (1.f- (float)skinprotneg/100.f)) * hipass ; } else {//image soft with scale < 1 ==> skin buffer[i][j] += (1.f +(correct-1.f)) * hipass ; } } /* if(gamutlab) {//disabled float Lprov1=(buffer[i][j])/327.68f; float R,G,B; #ifdef _DEBUG bool neg=false; bool more_rgb=false; //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb); #else //gamut control : Lab values are in gamut Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f); #endif // Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM buffer[i][j]=Lprov1*327.68f; float2 sincosval = xsincosf(modhue); l_a_h[i][j]=327.68f*modchro*sincosval.y; l_b_c[i][j]=327.68f*modchro*sincosval.x; } */ } } } } // float hipass = (data_fine[i][j]-data_coarse[i][j]); // buffer[i][j] += irangefn[hipass+0x10000] * hipass ; #undef DIRWT_L #undef DIRWT_AB #undef NRWT_L #undef NRWT_AB }