/* * This file is part of RawTherapee. */ #include "camconst.h" #include #include #include #include #include #include #include #include #include #include #include "settings.h" #include "rt_math.h" // cJSON is a very minimal JSON parser lib in C, not for threaded stuff etc, so if we're going to use JSON more than just // here we should probably replace cJSON with something beefier. #include "cJSON.h" namespace rtengine { CameraConst::CameraConst() : pdafOffset(0) { memset(dcraw_matrix, 0, sizeof(dcraw_matrix)); memset(raw_crop, 0, sizeof(raw_crop)); memset(raw_mask, 0, sizeof(raw_mask)); white_max = 0; globalGreenEquilibration = -1; } bool CameraConst::parseApertureScaling(CameraConst *cc, const void *ji_) { const cJSON *ji = static_cast(ji_); if (ji->type != cJSON_Array) { fprintf(stderr, "\"ranges\":\"aperture_scaling\" must be an array\n"); return false; } for (ji = ji->child; ji; ji = ji->next) { const cJSON *js = cJSON_GetObjectItem(ji, "aperture"); if (!js) { fprintf(stderr, "missing \"ranges\":\"aperture_scaling\":\"aperture\" object item.\n"); return false; } if (js->type != cJSON_Number) { fprintf(stderr, "\"ranges\":\"aperture_scaling\":\"aperture\" must be a number.\n"); return false; } const float aperture = js->valuedouble; js = cJSON_GetObjectItem(ji, "scale_factor"); if (!js) { fprintf(stderr, "missing \"ranges\":\"aperture_scaling\":\"scale_factor\" object item.\n"); return false; } if (js->type != cJSON_Number) { fprintf(stderr, "\"ranges\":\"aperture_scaling\":\"scale_factor\" must be a number.\n"); return false; } const float scale_factor = js->valuedouble; cc->mApertureScaling.emplace(aperture, scale_factor); } return true; } bool CameraConst::parseLevels(CameraConst *cc, int bw, const void *ji_) { const cJSON *ji = static_cast(ji_); if (ji->type == cJSON_Number) { camera_const_levels lvl; lvl.levels[0] = lvl.levels[1] = lvl.levels[2] = lvl.levels[3] = ji->valueint; cc->mLevels[bw].emplace(0, lvl); return true; } if (ji->type != cJSON_Array) { fprintf(stderr, "\"ranges\":\"%s\" must be a number or an array\n", bw ? "white" : "black"); return false; } if (ji->child->type == cJSON_Number) { camera_const_levels lvl; int i; const cJSON *js; for (js = ji->child, i = 0; js && i < 4; js = js->next, i++) { lvl.levels[i] = js->valueint; } if (i == 3) { lvl.levels[3] = lvl.levels[1]; // G2 = G1 } else if (i == 1) { lvl.levels[3] = lvl.levels[2] = lvl.levels[1] = lvl.levels[0]; } else if (i != 4 || js) { fprintf(stderr, "\"ranges\":\"%s\" array must have 1, 3 or 4 numbers.\n", bw ? "white" : "black"); return false; } cc->mLevels[bw].emplace(0, lvl); return true; } for (ji = ji->child; ji; ji = ji->next) { const cJSON *js = cJSON_GetObjectItem(ji, "iso"); if (!js) { fprintf(stderr, "missing \"ranges\":\"%s\":\"iso\" object item.\n", bw ? "white" : "black"); return false; } std::vector isos; if (js->type == cJSON_Number) { isos.push_back(js->valueint); } else if (js->type == cJSON_Array) { for (js = js->child; js; js = js->next) { if (js->type != cJSON_Number) { fprintf(stderr, "\"ranges\":\"%s\":\"iso\" must be a number or an array of numbers.\n", bw ? "white" : "black"); return false; } isos.push_back(js->valueint); } } else { fprintf(stderr, "\"ranges\":\"%s\":\"iso\" must be an array or a number.\n", bw ? "white" : "black"); return false; } js = cJSON_GetObjectItem(ji, "levels"); if (!js) { fprintf(stderr, "missing \"ranges\":\"%s\":\"levels\".\n", bw ? "white" : "black"); return false; } camera_const_levels lvl; if (js->type == cJSON_Number) { lvl.levels[0] = lvl.levels[1] = lvl.levels[2] = lvl.levels[3] = js->valueint; } else if (js->type == cJSON_Array) { int i; for (js = js->child, i = 0; js && i < 4; js = js->next, i++) { if (js->type != cJSON_Number) { fprintf(stderr, "\"ranges\":\"%s\":\"levels\" must be a number or an array of numbers.\n", bw ? "white" : "black"); return false; } lvl.levels[i] = js->valueint; } if (i == 3) { lvl.levels[3] = lvl.levels[1]; // G2 = G1 } else if (i == 1) { lvl.levels[3] = lvl.levels[2] = lvl.levels[1] = lvl.levels[0]; } else if (i != 4 || js) { fprintf(stderr, "\"ranges\":\"%s\":\"levels\" array must have 1, 3 or 4 numbers.\n", bw ? "white" : "black"); return false; } } else { fprintf(stderr, "\"ranges\":\"%s\":\"levels\" must be a number or an array of numbers.\n", bw ? "white" : "black"); return false; } for (auto iso : isos) { cc->mLevels[bw].emplace(iso, lvl); } } return true; } CameraConst* CameraConst::parseEntry(const void *cJSON_, const char *make_model) { const cJSON *js = static_cast(cJSON_); std::unique_ptr cc(new CameraConst); cc->make_model = make_model; const cJSON *ji = cJSON_GetObjectItem(js, "dcraw_matrix"); if (ji) { if (ji->type != cJSON_Array) { fprintf(stderr, "\"dcraw_matrix\" must be an array\n"); return nullptr; } int i; for (i = 0, ji = ji->child; i < 12 && ji; i++, ji = ji->next) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"dcraw_matrix\" array must contain numbers\n"); return nullptr; } cc->dcraw_matrix[i] = ji->valueint; } } ji = cJSON_GetObjectItem(js, "raw_crop"); if (ji) { if (ji->type != cJSON_Array) { fprintf(stderr, "\"raw_crop\" must be an array\n"); return nullptr; } int i; for (i = 0, ji = ji->child; i < 4 && ji; i++, ji = ji->next) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"raw_crop\" array must contain numbers\n"); return nullptr; } cc->raw_crop[i] = ji->valueint; } if (i != 4 || ji) { fprintf(stderr, "\"raw_crop\" must contain 4 numbers\n"); return nullptr; } } ji = cJSON_GetObjectItem(js, "masked_areas"); if (ji) { if (ji->type != cJSON_Array) { fprintf(stderr, "\"masked_areas\" must be an array\n"); return nullptr; } int i; for (i = 0, ji = ji->child; i < 2 * 4 && ji; i++, ji = ji->next) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"masked_areas\" array must contain numbers\n"); return nullptr; } cc->raw_mask[i / 4][i % 4] = ji->valueint; } if (i % 4 != 0) { fprintf(stderr, "\"masked_areas\" array length must be divisible by 4\n"); return nullptr; } } const cJSON *jranges = cJSON_GetObjectItem(js, "ranges"); if (jranges) { ji = cJSON_GetObjectItem(jranges, "black"); if (ji && !parseLevels(cc.get(), 0, ji)) { return nullptr; } ji = cJSON_GetObjectItem(jranges, "white"); if (ji && !parseLevels(cc.get(), 1, ji)) { return nullptr; } ji = cJSON_GetObjectItem(jranges, "white_max"); if (ji) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"ranges\":\"white_max\" must be a number\n"); return nullptr; } cc->white_max = ji->valueint; } ji = cJSON_GetObjectItem(jranges, "aperture_scaling"); if (ji && !parseApertureScaling(cc.get(), ji)) { return nullptr; } } for (int bw = 0; bw < 2; bw++) { camera_const_levels lvl; if (!cc->get_Levels(lvl, bw, 0, 0)) { const auto it = cc->mLevels[bw].cbegin(); if (it != cc->mLevels[bw].cend()) { // insert levels with lowest iso as the default (iso 0) cc->mLevels[bw].emplace(0, it->second); } } } ji = cJSON_GetObjectItem(js, "pdaf_pattern"); if (ji) { if (ji->type != cJSON_Array) { fprintf(stderr, "\"pdaf_pattern\" must be an array\n"); return nullptr; } for (ji = ji->child; ji; ji = ji->next) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"pdaf_pattern\" array must contain numbers\n"); return nullptr; } cc->pdafPattern.push_back(ji->valueint); } } ji = cJSON_GetObjectItem(js, "pdaf_offset"); if (ji) { if (ji->type != cJSON_Number) { fprintf(stderr, "\"pdaf_offset\" must contain a number\n"); return nullptr; } cc->pdafOffset = ji->valueint; } ji = cJSON_GetObjectItem(js, "global_green_equilibration"); if (ji) { if (ji->type != cJSON_False && ji->type != cJSON_True) { fprintf(stderr, "\"global_green_equilibration\" must be a boolean\n"); return nullptr; } cc->globalGreenEquilibration = (ji->type == cJSON_True); } return cc.release(); } bool CameraConst::has_dcrawMatrix() const { return dcraw_matrix[0] != 0; } void CameraConst::update_dcrawMatrix(const short *other) { if (!other) { return; } for (int i = 0; i < 12; ++i) { dcraw_matrix[i] = other[i]; } } const short* CameraConst::get_dcrawMatrix() const { if (!has_dcrawMatrix()) { return nullptr; } return dcraw_matrix; } const std::vector& CameraConst::get_pdafPattern() const { return pdafPattern; } void CameraConst::update_pdafPattern(const std::vector &other) { if (other.empty()) { return; } pdafPattern = other; } void CameraConst::update_pdafOffset(int other) { if (other == 0) { return; } pdafOffset = other; } bool CameraConst::has_rawCrop() const { return raw_crop[0] != 0 || raw_crop[1] != 0 || raw_crop[2] != 0 || raw_crop[3] != 0; } void CameraConst::get_rawCrop(int& left_margin, int& top_margin, int& width, int& height) const { left_margin = raw_crop[0]; top_margin = raw_crop[1]; width = raw_crop[2]; height = raw_crop[3]; } bool CameraConst::has_rawMask(int idx) const { if (idx < 0 || idx > 1) { return false; } return (raw_mask[idx][0] | raw_mask[idx][1] | raw_mask[idx][2] | raw_mask[idx][3]) != 0; } void CameraConst::get_rawMask(int idx, int& top, int& left, int& bottom, int& right) const { top = left = bottom = right = 0; if (idx < 0 || idx > 1) { return; } top = raw_mask[idx][0]; left = raw_mask[idx][1]; bottom = raw_mask[idx][2]; right = raw_mask[idx][3]; } void CameraConst::update_Levels(const CameraConst *other) { if (!other) { return; } if (!other->mLevels[0].empty()) { mLevels[0] = other->mLevels[0]; } if (!other->mLevels[1].empty()) { mLevels[1] = other->mLevels[1]; } if (!other->mApertureScaling.empty()) { mApertureScaling = other->mApertureScaling; } if (other->white_max) { white_max = other->white_max; } } void CameraConst::update_Crop(CameraConst *other) { if (!other) { return; } if (other->has_rawCrop()) { other->get_rawCrop(raw_crop[0], raw_crop[1], raw_crop[2], raw_crop[3]); } } bool CameraConst::get_Levels(camera_const_levels & lvl, int bw, int iso, float fnumber) const { std::map::const_iterator it = mLevels[bw].find(iso); if (it == mLevels[bw].end()) { auto best_it = mLevels[bw].cbegin(); if (iso > 0) { for (it = mLevels[bw].begin(); it != mLevels[bw].end(); ++it) { if (std::abs(it->first - iso) <= std::abs(best_it->first - iso)) { best_it = it; } else { break; } } } it = best_it; if (it == mLevels[bw].end()) { return false; } } lvl = it->second; if (bw == 1 && fnumber > 0 && !mApertureScaling.empty()) { std::map::const_iterator scaleIt = mApertureScaling.find(fnumber); if (scaleIt == mApertureScaling.end()) { // fnumber may be an exact aperture, eg 1.414, or a rounded eg 1.4. In our map we // should have rounded numbers so we translate and retry the lookup // table with traditional 1/3 stop f-number rounding used by most cameras, we only // have in the range 0.7 - 10.0, but aperture scaling rarely happen past f/4.0 constexpr float fn_tab[8][3] = { { 0.7f, 0.8f, 0.9f }, { 1.f, 1.1f, 1.2f }, { 1.4f, 1.6f, 1.8f }, { 2.f, 2.2f, 2.5f }, { 2.8f, 3.2f, 3.5f }, { 4.f, 4.5f, 5.f }, { 5.6f, 6.3f, 7.1f }, { 8.f, 9.f, 10.f } }; for (int avh = 0; avh < 8; avh++) { for (int k = 0; k < 3; k++) { const float av = (avh - 1) + k / 3.f; const float aperture = std::sqrt(std::pow(2.f, av)); if (fnumber > aperture * 0.97f && fnumber < aperture / 0.97f) { fnumber = fn_tab[avh][k]; scaleIt = mApertureScaling.find(fnumber); avh = 7; break; } } } } float scaling = 1.f; if (scaleIt == mApertureScaling.end()) { for (auto entry = mApertureScaling.crbegin(); entry != mApertureScaling.crend(); ++entry) { if (entry->first > fnumber) { scaling = entry->second; } else { break; } } } else { scaling = scaleIt->second; } if (scaling > 1.f) { for (int i = 0; i < 4; i++) { lvl.levels[i] *= scaling; if (white_max > 0 && lvl.levels[i] > white_max) { lvl.levels[i] = white_max; } } } } return true; } int CameraConst::get_BlackLevel(const int idx, const int iso_speed) const { assert(idx >= 0 && idx <= 3); camera_const_levels lvl; if (!get_Levels(lvl, 0, iso_speed, 0.f)) { return -1; } return lvl.levels[idx]; } int CameraConst::get_WhiteLevel(const int idx, const int iso_speed, const float fnumber) const { assert(idx >= 0 && idx <= 3); camera_const_levels lvl; if (!get_Levels(lvl, 1, iso_speed, fnumber)) { return -1; } return lvl.levels[idx]; } bool CameraConst::has_globalGreenEquilibration() const { return globalGreenEquilibration >= 0; } bool CameraConst::get_globalGreenEquilibration() const { return globalGreenEquilibration > 0; } void CameraConst::update_globalGreenEquilibration(bool other) { globalGreenEquilibration = (other ? 1 : 0); } bool CameraConstantsStore::parse_camera_constants_file(const Glib::ustring& filename_) { // read the file into a single long string const char *filename = filename_.c_str(); FILE *stream = fopen(filename, "rt"); if (!stream) { fprintf(stderr, "Could not open camera constants file \"%s\": %s\n", filename, strerror(errno)); return false; } size_t bufsize = 262144; size_t increment = bufsize; size_t datasize = 0, ret; char *buf = (char *)malloc(bufsize); while ((ret = fread(&buf[datasize], 1, bufsize - datasize - 1, stream)) != 0) { datasize += ret; if (datasize == bufsize - 1) { // we need more memory bufsize += increment; void *temp = realloc(buf, bufsize); // try to realloc buffer with new size if (!temp) { // realloc failed temp = malloc(bufsize); // alloc now buffer if (temp) { // alloc worked memcpy(temp, buf, bufsize - increment); // copy old buffer content to new buffer free(buf); // free old buffer } else { // alloc didn't work, break break; } } buf = (char *)temp; // assign new buffer increment *= 2; // double increment } } if (!feof(stream)) { fclose(stream); free(buf); fprintf(stderr, "Failed to read camera constants file \"%s\"\n", filename); return false; } fclose(stream); buf[datasize] = '\0'; // remove comments cJSON_Minify(buf); // parse cJSON* const jsroot = cJSON_Parse(buf); if (!jsroot) { char str[128]; const char *ep = cJSON_GetErrorPtr() - 10; if ((uintptr_t)ep < (uintptr_t)buf) { ep = buf; } strncpy(str, ep, sizeof(str)); str[sizeof(str) - 1] = '\0'; fprintf(stderr, "JSON parse error in file \"%s\" near '%s'\n", filename, str); free(buf); return false; } free(buf); const cJSON *js = cJSON_GetObjectItem(jsroot, "camera_constants"); if (!js) { fprintf(stderr, "missing \"camera_constants\" object item\n"); goto parse_error; } for (js = js->child; js; js = js->next) { const cJSON *ji = cJSON_GetObjectItem(js, "make_model"); if (!ji) { fprintf(stderr, "missing \"make_model\" object item\n"); goto parse_error; } bool is_array = false; if (ji->type == cJSON_Array) { ji = ji->child; is_array = true; } while (ji) { if (ji->type != cJSON_String) { fprintf(stderr, "\"make_model\" must be a string or an array of strings\n"); goto parse_error; } CameraConst* const cc = CameraConst::parseEntry((const void *)js, ji->valuestring); if (!cc) { goto parse_error; } std::string make_model(ji->valuestring); std::transform(make_model.begin(), make_model.end(), make_model.begin(), ::toupper); const auto entry = mCameraConstants.emplace(make_model, cc); if (entry.second) { // entry inserted into map if (settings->verbose) { printf("Add camera constants for \"%s\"\n", make_model.c_str()); } } else { // The CameraConst already exist for this camera make/model -> we merge the values CameraConst* const existingcc = entry.first->second; // updating the dcraw matrix existingcc->update_dcrawMatrix(cc->get_dcrawMatrix()); // deleting all the existing levels, replaced by the new ones existingcc->update_Levels(cc); existingcc->update_Crop(cc); existingcc->update_pdafPattern(cc->get_pdafPattern()); existingcc->update_pdafOffset(cc->get_pdafOffset()); if (cc->has_globalGreenEquilibration()) { existingcc->update_globalGreenEquilibration(cc->get_globalGreenEquilibration()); } if (settings->verbose) { printf("Merging camera constants for \"%s\"\n", make_model.c_str()); } } if (is_array) { ji = ji->next; } else { ji = nullptr; } } } cJSON_Delete(jsroot); return true; parse_error: fprintf(stderr, "failed to parse camera constants file \"%s\"\n", filename); mCameraConstants.clear(); cJSON_Delete(jsroot); return false; } CameraConstantsStore::CameraConstantsStore() { } CameraConstantsStore::~CameraConstantsStore() { for (auto &p : mCameraConstants) { delete p.second; } } void CameraConstantsStore::init(const Glib::ustring& baseDir, const Glib::ustring& userSettingsDir) { parse_camera_constants_file(Glib::build_filename(baseDir, "camconst.json")); const Glib::ustring userFile(Glib::build_filename(userSettingsDir, "camconst.json")); if (Glib::file_test(userFile, Glib::FILE_TEST_EXISTS)) { parse_camera_constants_file(userFile); } } CameraConstantsStore* CameraConstantsStore::getInstance() { static CameraConstantsStore instance_; return &instance_; } const CameraConst* CameraConstantsStore::get(const char make[], const char model[]) const { std::string key(make); key += " "; key += model; std::transform(key.begin(), key.end(), key.begin(), ::toupper); const auto it = mCameraConstants.find(key); if (it == mCameraConstants.end()) { return nullptr; } return it->second; } } // namespace rtengine