/* * This file is part of RawTherapee. * * Copyright (c) 2004-2010 Gabor Horvath * * RawTherapee is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * RawTherapee is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with RawTherapee. If not, see . */ #include #include #ifdef _OPENMP #include #endif #include #include #include namespace rtengine { #undef CLIP #undef CMAXVAL #undef ABS #define CMAXVAL 0xffff #define CLIP(a) ((a)>0?((a)sharpening.enabled==false || params->sharpening.deconvamount<1) return; int W = lab->W, H = lab->H; float** tmpI = new float*[H]; for (int i=0; iL[i][j]; } float** tmp = (float**)b2; #ifdef _OPENMP #pragma omp parallel #endif { AlignedBuffer* buffer = new AlignedBuffer (MAX(W,H)); float damping = params->sharpening.deconvdamping / 5.0; bool needdamp = params->sharpening.deconvdamping > 0; for (int k=0; ksharpening.deconviter; k++) { // apply blur function (gaussian blur) gaussHorizontal (tmpI, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread); gaussVertical (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread); if (!needdamp) { #ifdef _OPENMP #pragma omp for #endif for (int i=0; i0) tmp[i][j] = (float)lab->L[i][j] / tmp[i][j]; } else dcdamping (tmp, lab->L, damping, W, H); gaussHorizontal (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread); gaussVertical (tmp, tmp, buffer, W, H, params->sharpening.deconvradius / scale, multiThread); #ifdef _OPENMP #pragma omp for #endif for (int i=0; isharpening.deconvamount /100.0; float p1 = 1.0 - p2; #ifdef _OPENMP #pragma omp for #endif for (int i=0; iL[i][j] = lab->L[i][j]*p1 + /*CLIP*/(tmpI[i][j])*p2; } // end parallel for (int i=0; isharpening.method=="rld") { deconvsharpening (lab, b2); return; } // Rest is UNSHARP MASK if (params->sharpening.enabled==false || params->sharpening.amount<1 || lab->W<8 || lab->H<8) return; int W = lab->W, H = lab->H; float** b3; if (params->sharpening.edgesonly) { b3 = new float*[H]; for (int i=0; i* buffer = new AlignedBuffer (MAX(W,H)); if (params->sharpening.edgesonly==false) { gaussHorizontal (lab->L, b2, buffer, W, H, params->sharpening.radius / scale, multiThread); gaussVertical (b2, b2, buffer, W, H, params->sharpening.radius / scale, multiThread); } else { bilateral (lab->L, (float**)b3, b2, W, H, params->sharpening.edges_radius / scale, params->sharpening.edges_tolerance, multiThread); gaussHorizontal (b3, b2, buffer, W, H, params->sharpening.radius / scale, multiThread); gaussVertical (b2, b2, buffer, W, H, params->sharpening.radius / scale, multiThread); } delete buffer; float** base = lab->L; if (params->sharpening.edgesonly) base = b3; if (params->sharpening.halocontrol==false) { #pragma omp for for (int i=0; iparams->sharpening.threshold) { lab->L[i][j] = lab->L[i][j] + params->sharpening.amount * diff / 100.f; } } } else sharpenHaloCtrl (lab, b2, base, W, H); } // end parallel if (params->sharpening.edgesonly) { for (int i=0; isharpening.halocontrol_amount) * 0.01f; float sharpFac = params->sharpening.amount * 0.01f; float** nL = base; #pragma omp parallel for if (multiThread) for (int i=2; iL[i][j]; if (max < labL) max = labL; if (min > labL) min = labL; // deviation from the environment as measurement float diff = nL[i][j] - blurmap[i][j]; if (ABS(diff) > params->sharpening.threshold) { float newL = labL + sharpFac * diff; // applying halo control if (newL > max) newL = max + (newL-max) * scale; else if (newL < min) newL = min - (min-newL) * scale; lab->L[i][j] = newL; } } } } // To the extent possible under law, Manuel Llorens [ // has waived all copyright and related or neighboring rights to this work. // This work is published from: Spain. //thanks to Manuel for this excellent job.. (Jacques Desmis JDC or frej83) void ImProcFunctions::MLsharpen (LabImage* lab) { // JD: this algorithm maximize clarity of images; it does not play on accutance. It can remove (partialy) the effects of the AA filter) // I think we can use this algorithm alone in most cases, or first to clarify image and if you want a very little USM (unsharp mask sharpening) after... if (params->clarity.enabled==false) return; MyTime t1e,t2e; t1e.set(); int offset,c,i,j,p,width2; int width = lab->W, height = lab->H; float *L,lumH,lumV,lumD1,lumD2,v,contrast,med,s; float difL,difR,difT,difB,difLT,difRB,difLB,difRT,wH,wV,wD1,wD2,chmax[3]; float f1,f2,f3,f4; float templab; int iii,kkk; width2=2*width; float strength; strength=params->clarity.clstrength / 100.0f; if(strength < 0.00001f) return; if (settings->verbose) printf ("Clarity strength %f\n", strength); L = new float[width*height]; chmax[0]=8.0f; chmax[1]=3.0f; chmax[2]=3.0f; int channels; if(params->clarity.clthreechannels) channels=0; else channels=2; if (settings->verbose) printf ("Clarity channels %d\n", channels); int passes=params->clarity.clpasses; if (settings->verbose) printf ("Clarity passes %d\n", passes); for(p=0;pL[ii][kk]/327.68f; // adjust to RT and to 0..100 else if (c==1) L[offset]=lab->a[ii][kk]/327.68f; else if (c==2) L[offset]=lab->b[ii][kk]/327.68f; } #pragma omp parallel for private(j,i,iii,kkk, templab,offset,wH,wV,wD1,wD2,s,lumH,lumV,lumD1,lumD2,v,contrast,f1,f2,f3,f4,difT,difB,difL,difR,difLT,difLB,difRT,difRB) shared(lab,L,strength) for(j=2;jL[ii][kk]/327.68f; else if (c==1) lumH=lumV=lumD1=lumD2=v=lab->a[ii][kk]/327.68f; else if (c==2) lumH=lumV=lumD1=lumD2=v=lab->b[ii][kk]/327.68f; // contrast detection contrast=sqrt(fabs(L[offset+1]-L[offset-1])*fabs(L[offset+1]-L[offset-1])+fabs(L[offset+width]-L[offset-width])*fabs(L[offset+width]-L[offset-width]))/chmax[c]; if(contrast>1.0) contrast=1.0; // new possible values if((L[offset]L[offset+1])||(L[offset]>L[offset-1])&&(L[offset]L[offset+width])||(L[offset]>L[offset-width])&&(L[offset]L[offset+1+width])||(L[offset]>L[offset-1-width])&&(L[offset]L[offset-1+width])||(L[offset]>L[offset+1-width])&&(L[offset]0.05f))||((fabs(wV/wH)<0.45f)&&(fabs(wV/wH)>0.05f))) s=strength/3.0f; // final mix if((wH!=0.0f)&&(wV!=0.0f)&&(wD1!=0.0f)&&(wD2!=0.0f)) { iii=offset/width; kkk=offset-iii*width; templab=v*(1-s)+(lumH*wH+lumV*wV+lumD1*wD1+lumD2*wD2)/(wH+wV+wD1+wD2)*s; if(c==0) lab->L[iii][kkk]=fabs(327.68f*templab);// fabs because lab->L always >0 else if (c==1){lab->a[iii][kkk]=327.68f*templab;} else if (c==2)lab->b[iii][kkk]=327.68f*templab; } } } delete [] L; t2e.set(); if( settings->verbose ) printf("Clarity gradient %d usec\n", t2e.etime(t1e)); } // To the extent possible under law, Manuel Llorens // has waived all copyright and related or neighboring rights to this work. // This code is licensed under CC0 v1.0, see license information at // http://creativecommons.org/publicdomain/zero/1.0/ // addition from JD : pyramid + ponderated contrast with matrix 5x5 void ImProcFunctions::MLmicrocontrast(LabImage* lab){ if (params->clarity.enabledtwo==false) return; MyTime t1e,t2e; t1e.set(); int k; if(params->clarity.MLmicromatrix == false) k=2; else k=1; // k=2 matrix 5x5 k=1 matrix 3x3 int offset,offset2,c,i,j,col,row,n; float temp,temp2,temp3,temp4,tempL; float *LM,v,s,contrast,w; int signs[25]; int width = lab->W, height = lab->H; float uniform=params->clarity.uniformity;//between 0 to 100 int unif; unif=(int)(uniform/10.0f); //put unif between 0 to 10 float strength=params->clarity.mlstrength/1500.0f; //strength 2000.0 quasi no artefacts ==> 1500 = maximum, after artefacts if(strength < 0.000001f) return; if(k==1) strength*=2.0f;//25/9, but reality # 2 if (settings->verbose) printf ("Microcontrast strength %f\n", strength); if (settings->verbose) printf ("Microcontrast uniformity %i\n",unif); //modualtion uniformity in function of luminance float L98[11]={0.0012f,0.0015f,0.002f,0.004f,0.006f,0.008f,0.01f,0.03f,0.05f,0.1f,0.1f}; float L95[11]={0.0015f,0.0025f,0.005f,0.01f,0.02f,0.05f,0.1f,0.12f,0.15f,0.2f,0.25f}; float L92[11]={0.01f,0.015f,0.02f,0.06f,0.10f,0.13f,0.17f,0.25f,0.3f,0.32f,0.35f}; float L90[11]={0.015f,0.02f,0.04f,0.08f,0.12f,0.15f,0.2f,0.3f,0.4f,0.5f,0.6f}; float L87[11]={0.025f,0.03f,0.05f,0.1f,0.15f,0.25f,0.3f,0.4f,0.5f,0.63f,0.75f}; float L83[11]={0.055f,0.08f,0.1f,0.15f,0.2f,0.3f,0.4f,0.5f,0.6f,0.75f,0.85f}; float L80[11]={0.15f,0.2f,0.25f,0.3f,0.35f,0.4f,0.5f,0.6f,0.7f,0.8f,0.9f}; float L75[11]={0.22f,0.25f,0.3f,0.4f,0.5f,0.6f,0.7f,0.8f,0.85f,0.9f,0.95f}; float L70[11]={0.35f,0.4f,0.5f,0.6f,0.7f,0.8f,0.97f,1.0f,1.0f,1.0f,1.0f}; float L63[11]={0.55f,0.6f,0.7f,0.8f,0.85f,0.9f,1.0f,1.0f,1.0f,1.0f,1.0f}; float L58[11]={0.75f,0.77f,0.8f,0.9f,1.0f,1.0f,1.0f,1.0f,1.0f,1.0f,1.0f}; //default 5 float chmax=8.0f; LM = new float[width*height];//allocation for Luminance c=0; #pragma omp parallel for private(offset, i,j) shared(LM) for(j=0;jL[j][i]/327.68f;// adjust to 0.100 and to RT variables } #pragma omp parallel for private(j,i,offset,s,signs,v,n,row,col,offset2,contrast,temp,w,temp2,temp3,tempL,temp4) shared(lab,LM,strength,chmax,unif,k,L98,L95,L92,L90,L87,L83,L80,L75,L70,L63,L58) for(j=k;jLM[offset2]) signs[n]=1; n++; } if(k==1) contrast=sqrt(fabs(LM[offset+1]-LM[offset-1])*fabs(LM[offset+1]-LM[offset-1])+fabs(LM[offset+width]-LM[offset-width])*fabs(LM[offset+width]-LM[offset-width]))/chmax; //for 3x3 else if(k==2) contrast=sqrt(fabs(LM[offset+1]-LM[offset-1])*fabs(LM[offset+1]-LM[offset-1])+fabs(LM[offset+width]-LM[offset-width])*fabs(LM[offset+width]-LM[offset-width])\ +fabs(LM[offset+2]-LM[offset-2])*fabs(LM[offset+2]-LM[offset-2])+fabs(LM[offset+2*width]-LM[offset-2*width])*fabs(LM[offset+2*width]-LM[offset-2*width]))/(2*chmax); //for 5x5 if(contrast>1.0f) contrast=1.0f; //matrix 5x5 temp=lab->L[j][i]/327.68f; //begin 3x3 temp +=(v-LM[offset-width-1])*sqrtf(2.0f)*s; temp +=(v-LM[offset-width])*s; temp +=(v-LM[offset-width+1])*sqrtf(2.0f)*s; temp +=(v-LM[offset-1])*s; temp +=(v-LM[offset+1])*s; temp +=(v-LM[offset+width-1])*sqrtf(2.0f)*s; temp +=(v-LM[offset+width])*s; temp +=(v-LM[offset+width+1])*sqrtf(2.0f)*s;//end 3x3 // add JD continue 5x5 if(k==2) { temp +=2.0f*(v-LM[offset+2*width])*s; temp +=2.0f*(v-LM[offset-2*width])*s; temp +=2.0f*(v-LM[offset-2])*s; temp +=2.0f*(v-LM[offset+2])*s; temp +=2.0f*(v-LM[offset+2*width -1])*s*sqrtf(1.25f);// 1.25 = 1*1 + 0.5*0.5 temp +=2.0f*(v-LM[offset+2*width -2])*s*sqrtf(2.0f); temp +=2.0f*(v-LM[offset+2*width+1])*s*sqrtf(1.25f);; temp +=2.0f*(v-LM[offset+2*width+2])*s*sqrtf(2.0f); temp +=2.0f*(v-LM[offset+ width+2])*s*sqrtf(1.25f);; temp +=2.0f*(v-LM[offset+width-2])*s*sqrtf(1.25f);; temp +=2.0f*(v-LM[offset-2*width -1])*s*sqrtf(1.25f); temp +=2.0f*(v-LM[offset-2*width -2])*s*sqrtf(2.0f); temp +=2.0f*(v-LM[offset-2*width+1])*s*sqrtf(1.25f);; temp +=2.0f*(v-LM[offset-2*width+2])*s*sqrtf(2.0f); temp +=2.0f*(v-LM[offset- width+2])*s*sqrtf(1.25f);; temp +=2.0f*(v-LM[offset-width-2])*s*sqrtf(1.25f);; } if(temp <0.0f) temp=0.0f; v=temp; n=0; for(row=j-k;row<=j+k;row++) for(col=i-k,offset2=row*width+col;col<=i+k;col++,offset2++){ if(((v0))||((v>LM[offset2])&&(signs[n]<0))) { temp =v*0.75f+LM[offset2]*0.25f;// 0.75 0.25 n++; } } if(LM[offset]>95.0f || LM[offset]<5.0f) contrast*=0.05f; //+ JD : luminance pyramid to adjust contrast and avoid pseudo halo by evaluation of LM[offset] else if(LM[offset]>90.0f || LM[offset]<10.0f) contrast*=0.3f; else if(LM[offset]>80.0f || LM[offset]<20.0f) contrast*=0.5f; else if(LM[offset]>70.0f || LM[offset]<30.0f) contrast*=0.6f; else if(LM[offset]>60.0f || LM[offset]<40.0f) contrast*=0.7f; else contrast*=0.8f; if(contrast>1.0f) contrast=1.0f; tempL=327.68f*(temp*(1.0f-contrast)+LM[offset]*contrast); // JD: modulation of microcontrast in function of original Luminance and modulation of luminance temp2=tempL/(327.68f*LM[offset]);//for highlights if(temp2>1.0f) { if(LM[offset]>98.0f) {temp3=temp2-1.0f;temp=(L98[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>95.0f) {temp3=temp2-1.0f;temp=(L95[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>92.0f) {temp3=temp2-1.0f;temp=(L92[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>90.0f) {temp3=temp2-1.0f;temp=(L90[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>87.0f) {temp3=temp2-1.0f;temp=(L87[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>83.0f) {temp3=temp2-1.0f;temp=(L83[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>80.0f) {temp3=temp2-1.0f;temp=(L80[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>75.0f) {temp3=temp2-1.0f;temp=(L75[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>70.0f) {temp3=temp2-1.0f;temp=(L70[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>63.0f) {temp3=temp2-1.0f;temp=(L63[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else if(LM[offset]>58.0f) {temp3=temp2-1.0f;temp=(L58[unif]*temp3)+1.0f;lab->L[j][i]=temp*LM[offset]*327.68f;} else lab->L[j][i]=tempL;//no modulation for L <58 } temp4=(327.68f*LM[offset])/tempL;//for lowlights if(temp4>1.0f) { if(LM[offset]<2.0f) {temp3=temp4-1.0f;temp=(L98[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<5.0f) {temp3=temp4-1.0f;temp=(L95[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<8.0f) {temp3=temp4-1.0f;temp=(L92[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<10.0f) {temp3=temp4-1.0f;temp=(L90[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<13.0f) {temp3=temp4-1.0f;temp=(L87[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<17.0f) {temp3=temp4-1.0f;temp=(L83[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<20.0f) {temp3=temp4-1.0f;temp=(L80[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<25.0f) {temp3=temp4-1.0f;temp=(L75[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<30.0f) {temp3=temp4-1.0f;temp=(L70[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<37.0f) {temp3=temp4-1.0f;temp=(L63[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else if(LM[offset]<42.0f) {temp3=temp4-1.0f;temp=(L58[unif]*temp3)+1.0f;lab->L[j][i]=(LM[offset]*327.68f)/temp;} else lab->L[j][i]=tempL;//no modulation for L>42 } } delete [] LM; t2e.set(); if( settings->verbose ) printf("Microcontrast %d usec\n", t2e.etime(t1e)); } }