luzpaz 22f89bc752
Fix various typos (#6332)
* Fix various typos

Found via `codespell -q 3 -S ./rtdata/languages -L ba,bord,childs,hist,fo,reall,bloc,alph,dof,inout,thre,makro,chang,currentry,preserv,portugues,struc,trough,vektor`

* Fix source typo

* Added requested revisions
2021-08-13 14:37:29 +02:00

391 lines
14 KiB
C++

/* -*- C++ -*-
*
* This file is part of RawTherapee.
*
* Copyright (c) 2018 Alberto Griggio <alberto.griggio@gmail.com>
* Small adaptation to Rawtherapee Locallab October 2019
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
/* film grain emulation.
* Ported from darktable (src/iop/grain.c). Original copyright/license follows
*/
/*
This file is part of darktable,
copyright (c) 2010-2012 Henrik Andersson.
adaptation to Rawtherapee 2021 Jacques Desmis jdesmis@gmail.com
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "imagefloat.h"
#include "improcfun.h"
#include "rt_math.h"
namespace rtengine {
namespace {
constexpr float GRAIN_LIGHTNESS_STRENGTH_SCALE = 0.15f;
constexpr float GRAIN_SCALE_FACTOR = 213.2f;
constexpr int GRAIN_LUT_SIZE = 128;
constexpr float GRAIN_LUT_DELTA_MAX = 2.0f;
constexpr float GRAIN_LUT_DELTA_MIN = 0.0001f;
constexpr float GRAIN_LUT_PAPER_GAMMA = 1.0f;
const int grad3[12][3] = { { 1, 1, 0 },
{ -1, 1, 0 },
{ 1, -1, 0 },
{ -1, -1, 0 },
{ 1, 0, 1 },
{ -1, 0, 1 },
{ 1, 0, -1 },
{ -1, 0, -1 },
{ 0, 1, 1 },
{ 0, -1, 1 },
{ 0, 1, -1 },
{ 0, -1, -1 } };
const int permutation[]
= { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30,
69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62,
94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136,
171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86,
164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126,
255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253,
19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193,
238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31,
181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 };
class GrainEvaluator {
public:
GrainEvaluator(int offset_x, int offset_y, int full_width, int full_height, double scale, float divgr, int call, int fww, int fhh):
ox(offset_x),
oy(offset_y),
fw(full_width),
fh(full_height),
scale(scale)
{
simplex_noise_init();
constexpr float mb = 100.f;// * divgr;
evaluate_grain_lut(mb, divgr);
}
void operator()(int isogr, int strengr, int scalegr, float divgr, Imagefloat *lab, bool multithread, int call, int fww, int fhh)
{
const double strength = (strengr / 100.0);
const double octaves = 3.;
const double wd = std::min(fw, fh);
const double wdf = std::min(fww, fhh);
const double zoom = (1.0 + 8 * (double(isogr) / GRAIN_SCALE_FACTOR) / 100.0) / 800.0;
const double s = std::max(scale / 3.0, 1.0) / (double(std::max(scalegr, 1)) / 100.0);
const int W = lab->getWidth();
const int H = lab->getHeight();
float **lab_L = lab->g.ptrs;
double wddf = wd;
if (call == 1 || call == 3) {
wddf = wdf;
}
#ifdef _OPENMP
# pragma omp parallel for if (multithread)
#endif
for (int j = 0; j < H; ++j) {
double wy = oy + j;
double y = wy / wddf;
for (int i = 0; i < W; ++i) {
double wx = ox + i;
double x = wx / wddf;
double noise = simplex_2d_noise(x, y, octaves, zoom) / s;
lab_L[j][i] += lut_lookup(noise * strength * GRAIN_LIGHTNESS_STRENGTH_SCALE, lab_L[j][i] / 32768.f);
}
}
}
private:
void simplex_noise_init()
{
for(int i = 0; i < 512; i++) perm[i] = permutation[i & 255];
}
double dot(const int *g, double x, double y, double z)
{
return g[0] * x + g[1] * y + g[2] * z;
}
float FASTFLOOR(float x)
{
return (x > 0 ? (int)(x) : (int)(x)-1);
}
double simplex_noise(double xin, double yin, double zin)
{
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
const double F3 = 1.0 / 3.0;
const double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
const int i = FASTFLOOR(xin + s);
const int j = FASTFLOOR(yin + s);
const int k = FASTFLOOR(zin + s);
const double G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
const double t = (i + j + k) * G3;
const double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
const double Y0 = j - t;
const double Z0 = k - t;
const double x0 = xin - X0; // The x,y,z distances from the cell origin
const double y0 = yin - Y0;
const double z0 = zin - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if(x0 >= y0)
{
if(y0 >= z0)
{
i1 = 1; // X Y Z order
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
else if(x0 >= z0)
{
i1 = 1; // X Z Y order
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
}
else
{
i1 = 0; // Z X Y order
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
}
else // x0<y0
{
if(y0 < z0)
{
i1 = 0; // Z Y X order
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
}
else if(x0 < z0)
{
i1 = 0; // Y Z X order
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
}
else
{
i1 = 0; // Y X Z order
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
const double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
const double y1 = y0 - j1 + G3;
const double z1 = z0 - k1 + G3;
const double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
const double y2 = y0 - j2 + 2.0 * G3;
const double z2 = z0 - k2 + 2.0 * G3;
const double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
const double y3 = y0 - 1.0 + 3.0 * G3;
const double z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
const int ii = i & 255;
const int jj = j & 255;
const int kk = k & 255;
const int gi0 = perm[ii + perm[jj + perm[kk]]] % 12;
const int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12;
const int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12;
const int gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12;
// Calculate the contribution from the four corners
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if(t0 < 0)
n0 = 0.0;
else
{
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if(t1 < 0)
n1 = 0.0;
else
{
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if(t2 < 0)
n2 = 0.0;
else
{
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if(t3 < 0)
n3 = 0.0;
else
{
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3);
}
double simplex_2d_noise(double x, double y, uint32_t octaves, double z)
{
double total = 0;
// parametrization of octaves to match power spectrum of real grain scans
static double f[] = {0.4910, 0.9441, 1.7280};
static double a[] = {0.2340, 0.7850, 1.2150};
for(uint32_t o = 0; o < octaves; o++)
{
total += (simplex_noise(x * f[o] / z, y * f[o] / z, o) * a[o]);
}
return total;
}
float paper_resp(float exposure, float mb, float gp, float divgr)
{
float dived = 1.f;
if(divgr > 1.8f) {
dived = 1.f + (divgr - 1.8f);
}
const float delta = dived * GRAIN_LUT_DELTA_MAX * expf((mb / 100.0f) * logf(GRAIN_LUT_DELTA_MIN / dived));
const float density = (1.0f + 2.0f * delta) / (1.0f + expf( (4.0f * gp * (0.5f - exposure)) / (1.0f + 2.0f * delta) )) - delta;
return density;
}
float paper_resp_inverse(float density, float mb, float gp, float divgr)
{
float dived = 1.f;
if(divgr > 1.8f) {
dived = 1.f + (divgr - 1.8f);
}
const float delta = dived * GRAIN_LUT_DELTA_MAX * expf((mb / 100.0f) * logf(GRAIN_LUT_DELTA_MIN / dived));
const float exposure = -logf((1.0f + 2.0f * delta) / (density + delta) - 1.0f) * (1.0f + 2.0f * delta) / (4.0f * gp) + 0.5f;
return exposure;
}
void evaluate_grain_lut(const float mb, float divgr)
{
for(int i = 0; i < GRAIN_LUT_SIZE; i++)
{
for(int j = 0; j < GRAIN_LUT_SIZE; j++)
{
float gu = (float)i / (GRAIN_LUT_SIZE - 1) - 0.5;
float l = (float)j / (GRAIN_LUT_SIZE - 1);
float divg = divgr; //1.f
grain_lut[j * GRAIN_LUT_SIZE + i] = 32768.f * (paper_resp(gu + paper_resp_inverse(l, mb, divg * GRAIN_LUT_PAPER_GAMMA, divgr), mb, divg * GRAIN_LUT_PAPER_GAMMA, divgr) - l);
}
}
}
float lut_lookup(const float x, const float y)
{
const float _x = LIM((x + 0.5f) * (GRAIN_LUT_SIZE - 1), 0.f, float(GRAIN_LUT_SIZE - 1));
const float _y = LIM(y * (GRAIN_LUT_SIZE - 1), 0.f, float(GRAIN_LUT_SIZE - 1));
const int _x0 = _x < GRAIN_LUT_SIZE - 2 ? _x : GRAIN_LUT_SIZE - 2;
const int _y0 = _y < GRAIN_LUT_SIZE - 2 ? _y : GRAIN_LUT_SIZE - 2;
const int _x1 = _x0 + 1;
const int _y1 = _y0 + 1;
const float x_diff = _x - _x0;
const float y_diff = _y - _y0;
const float l00 = grain_lut[_y0 * GRAIN_LUT_SIZE + _x0];
const float l01 = grain_lut[_y0 * GRAIN_LUT_SIZE + _x1];
const float l10 = grain_lut[_y1 * GRAIN_LUT_SIZE + _x0];
const float l11 = grain_lut[_y1 * GRAIN_LUT_SIZE + _x1];
const float xy0 = (1.0 - y_diff) * l00 + l10 * y_diff;
const float xy1 = (1.0 - y_diff) * l01 + l11 * y_diff;
return xy0 * (1.0f - x_diff) + xy1 * x_diff;
}
int ox;
int oy;
int fw;
int fh;
double scale;
int perm[512];
float grain_lut[GRAIN_LUT_SIZE * GRAIN_LUT_SIZE];
};
} // namespace
void ImProcFunctions::filmGrain(Imagefloat *rgb, int isogr, int strengr, int scalegr, float divgr, int bfw, int bfh, int call, int fw, int fh)
{
if (settings->verbose) {
printf("iso=%i strength=%i scale=%i gamma=%f\n", isogr, strengr, scalegr, divgr);
}
GrainEvaluator ge(0, 0, bfw, bfh, scale, divgr, call, fw, fh);
ge(isogr, strengr, scalegr, divgr, rgb, multiThread, call, fw, fh);
}
} // namespace rtengine