Flössie 0731975ff0 Apply modernize-use-nullptr
Setup:
- `mkdir tidy; cd tidy`
- `cmake .. -DCMAKE_BUILD_TYPE=debug -DPROC_TARGET_NUMBER=1 -DCACHE_NAME_SUFFIX=4 -DBINDIR=. -DDATADIR=. -DBUILD_BUNDLE=ON -DWITH_LTO=OFF -DOPTION_OMP=OFF -DCMAKE_EXPORT_COMPILE_COMMANDS=ON`
- `cd ..`
- `find -name '*.cc' -exec clang-tidy-3.8 -header-filter=.* -p=tidy -fix-errors -checks=modernize-use-nullptr {} \;`
2016-10-12 17:48:40 +02:00

536 lines
15 KiB
C++

/*********************************************************************
* klt.c
*
* Kanade-Lucas-Tomasi tracker
*********************************************************************/
/* Standard includes */
#include <cassert>
#include <cmath> /* logf() */
#include <cstdlib> /* malloc() */
#include "../rt_math.h"
/* Our includes */
#include "base.h"
#include "convolve.h"
#include "error.h"
#include "klt.h"
#include "pyramid.h"
using namespace std;
static const int mindist = 10;
static const int window_size = 7;
static const int min_eigenvalue = 1;
static const float min_determinant = 0.01f;
static const float min_displacement = 0.1f;
static const int max_iterations = 10;
static const float max_residue = 10.0f;
static const float grad_sigma = 1.0f;
static const float smooth_sigma_fact = 0.1f;
static const float pyramid_sigma_fact = 0.9f;
static const float step_factor = 1.0f;
static const KLT_BOOL sequentialMode = FALSE;
static const KLT_BOOL lighting_insensitive = FALSE;
/* for affine mapping*/
static const int affineConsistencyCheck = -1;
static const int affine_window_size = 15;
static const int affine_max_iterations = 10;
static const float affine_max_residue = 10.0;
static const float affine_min_displacement = 0.02f;
static const float affine_max_displacement_differ = 1.5f;
static const KLT_BOOL smoothBeforeSelecting = TRUE;
static const KLT_BOOL writeInternalImages = FALSE;
static const int search_range = 15;
static const int nSkippedPixels = 0;
extern int KLT_verbose;
/*********************************************************************
* _createArray2D
*
* Creates a two-dimensional array.
*
* INPUTS
* ncols: no. of columns
* nrows: no. of rows
* nbytes: no. of bytes per entry
*
* RETURNS
* Pointer to an array. Must be coerced.
*
* EXAMPLE
* char **ar;
* ar = (char **) createArray2D(8, 5, sizeof(char));
*/
static void** _createArray2D(int ncols, int nrows, int nbytes)
{
char **tt;
int i;
tt = (char **) malloc(nrows * sizeof(void *) +
ncols * nrows * nbytes);
if (tt == nullptr) {
KLTError("(createArray2D) Out of memory");
exit(1);
}
for (i = 0 ; i < nrows ; i++)
tt[i] = ((char *) tt) + (nrows * sizeof(void *) +
i * ncols * nbytes);
return((void **) tt);
}
/*********************************************************************
* KLTCreateTrackingContext
*
*/
KLT_TrackingContext KLTCreateTrackingContext()
{
KLT_TrackingContext tc;
/* Allocate memory */
tc = (KLT_TrackingContext) malloc(sizeof(KLT_TrackingContextRec));
/* Set values to default values */
tc->mindist = mindist;
tc->window_width = window_size;
tc->window_height = window_size;
tc->sequentialMode = sequentialMode;
tc->smoothBeforeSelecting = smoothBeforeSelecting;
tc->writeInternalImages = writeInternalImages;
tc->lighting_insensitive = lighting_insensitive;
tc->min_eigenvalue = min_eigenvalue;
tc->min_determinant = min_determinant;
tc->max_iterations = max_iterations;
tc->min_displacement = min_displacement;
tc->max_residue = max_residue;
tc->grad_sigma = grad_sigma;
tc->smooth_sigma_fact = smooth_sigma_fact;
tc->pyramid_sigma_fact = pyramid_sigma_fact;
tc->step_factor = step_factor;
tc->nSkippedPixels = nSkippedPixels;
tc->pyramid_last = nullptr;
tc->pyramid_last_gradx = nullptr;
tc->pyramid_last_grady = nullptr;
/* for affine mapping */
tc->affineConsistencyCheck = affineConsistencyCheck;
tc->affine_window_width = affine_window_size;
tc->affine_window_height = affine_window_size;
tc->affine_max_iterations = affine_max_iterations;
tc->affine_max_residue = affine_max_residue;
tc->affine_min_displacement = affine_min_displacement;
tc->affine_max_displacement_differ = affine_max_displacement_differ;
/* Change nPyramidLevels and subsampling */
KLTChangeTCPyramid(tc, search_range);
/* Update border, which is dependent upon */
/* smooth_sigma_fact, pyramid_sigma_fact, window_size, and subsampling */
KLTUpdateTCBorder(tc);
return(tc);
}
/*********************************************************************
* KLTCreateFeatureList
*
*/
KLT_FeatureList KLTCreateFeatureList(
int nFeatures)
{
KLT_FeatureList fl;
KLT_Feature first;
int nbytes = sizeof(KLT_FeatureListRec) +
nFeatures * sizeof(KLT_Feature) +
nFeatures * sizeof(KLT_FeatureRec);
int i;
/* Allocate memory for feature list */
fl = (KLT_FeatureList) malloc(nbytes);
/* Set parameters */
fl->nFeatures = nFeatures;
/* Set pointers */
fl->feature = (KLT_Feature *) (fl + 1);
first = (KLT_Feature) (fl->feature + nFeatures);
for (i = 0 ; i < nFeatures ; i++) {
fl->feature[i] = first + i;
fl->feature[i]->aff_img = nullptr; /* initialization fixed by Sinisa Segvic */
fl->feature[i]->aff_img_gradx = nullptr;
fl->feature[i]->aff_img_grady = nullptr;
}
/* Return feature list */
return(fl);
}
/*********************************************************************
* KLTCreateFeatureHistory
*
*/
KLT_FeatureHistory KLTCreateFeatureHistory(
int nFrames)
{
KLT_FeatureHistory fh;
KLT_Feature first;
int nbytes = sizeof(KLT_FeatureHistoryRec) +
nFrames * sizeof(KLT_Feature) +
nFrames * sizeof(KLT_FeatureRec);
int i;
/* Allocate memory for feature history */
fh = (KLT_FeatureHistory) malloc(nbytes);
/* Set parameters */
fh->nFrames = nFrames;
/* Set pointers */
fh->feature = (KLT_Feature *) (fh + 1);
first = (KLT_Feature) (fh->feature + nFrames);
for (i = 0 ; i < nFrames ; i++)
fh->feature[i] = first + i;
/* Return feature history */
return(fh);
}
/*********************************************************************
* KLTCreateFeatureTable
*
*/
KLT_FeatureTable KLTCreateFeatureTable(
int nFrames,
int nFeatures)
{
KLT_FeatureTable ft;
KLT_Feature first;
int nbytes = sizeof(KLT_FeatureTableRec);
int i, j;
/* Allocate memory for feature history */
ft = (KLT_FeatureTable) malloc(nbytes);
/* Set parameters */
ft->nFrames = nFrames;
ft->nFeatures = nFeatures;
/* Set pointers */
ft->feature = (KLT_Feature **)
_createArray2D(nFrames, nFeatures, sizeof(KLT_Feature));
first = (KLT_Feature) malloc(nFrames * nFeatures * sizeof(KLT_FeatureRec));
for (j = 0 ; j < nFeatures ; j++)
for (i = 0 ; i < nFrames ; i++)
ft->feature[j][i] = first + j*nFrames + i;
//free(first);
/* Return feature table */
return(ft);
}
/*********************************************************************
* KLTPrintTrackingContext
*/
void KLTPrintTrackingContext(
KLT_TrackingContext tc)
{
fprintf(stderr, "\n\nTracking context:\n\n");
fprintf(stderr, "\tmindist = %d\n", tc->mindist);
fprintf(stderr, "\twindow_width = %d\n", tc->window_width);
fprintf(stderr, "\twindow_height = %d\n", tc->window_height);
fprintf(stderr, "\tsequentialMode = %s\n",
tc->sequentialMode ? "TRUE" : "FALSE");
fprintf(stderr, "\tsmoothBeforeSelecting = %s\n",
tc->smoothBeforeSelecting ? "TRUE" : "FALSE");
fprintf(stderr, "\twriteInternalImages = %s\n",
tc->writeInternalImages ? "TRUE" : "FALSE");
fprintf(stderr, "\tmin_eigenvalue = %d\n", tc->min_eigenvalue);
fprintf(stderr, "\tmin_determinant = %f\n", tc->min_determinant);
fprintf(stderr, "\tmin_displacement = %f\n", tc->min_displacement);
fprintf(stderr, "\tmax_iterations = %d\n", tc->max_iterations);
fprintf(stderr, "\tmax_residue = %f\n", tc->max_residue);
fprintf(stderr, "\tgrad_sigma = %f\n", tc->grad_sigma);
fprintf(stderr, "\tsmooth_sigma_fact = %f\n", tc->smooth_sigma_fact);
fprintf(stderr, "\tpyramid_sigma_fact = %f\n", tc->pyramid_sigma_fact);
fprintf(stderr, "\tnSkippedPixels = %d\n", tc->nSkippedPixels);
fprintf(stderr, "\tborderx = %d\n", tc->borderx);
fprintf(stderr, "\tbordery = %d\n", tc->bordery);
fprintf(stderr, "\tnPyramidLevels = %d\n", tc->nPyramidLevels);
fprintf(stderr, "\tsubsampling = %d\n", tc->subsampling);
fprintf(stderr, "\n\tpyramid_last = %s\n", (tc->pyramid_last!=nullptr) ?
"points to old image" : "NULL");
fprintf(stderr, "\tpyramid_last_gradx = %s\n",
(tc->pyramid_last_gradx!=nullptr) ?
"points to old image" : "NULL");
fprintf(stderr, "\tpyramid_last_grady = %s\n",
(tc->pyramid_last_grady!=nullptr) ?
"points to old image" : "NULL");
fprintf(stderr, "\n\n");
}
/*********************************************************************
* KLTChangeTCPyramid
*
*/
void KLTChangeTCPyramid(
KLT_TrackingContext tc,
int search_range)
{
float window_halfwidth;
float subsampling;
/* Check window size (and correct if necessary) */
if (tc->window_width % 2 != 1) {
tc->window_width = tc->window_width+1;
KLTWarning("(KLTChangeTCPyramid) Window width must be odd. "
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height % 2 != 1) {
tc->window_height = tc->window_height+1;
KLTWarning("(KLTChangeTCPyramid) Window height must be odd. "
"Changing to %d.\n", tc->window_height);
}
if (tc->window_width < 3) {
tc->window_width = 3;
KLTWarning("(KLTChangeTCPyramid) Window width must be at least three. \n"
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height < 3) {
tc->window_height = 3;
KLTWarning("(KLTChangeTCPyramid) Window height must be at least three. \n"
"Changing to %d.\n", tc->window_height);
}
window_halfwidth = min(tc->window_width,tc->window_height)/2.0f;
subsampling = ((float) search_range) / window_halfwidth;
if (subsampling < 1.0) { /* 1.0 = 0+1 */
tc->nPyramidLevels = 1;
} else if (subsampling <= 3.0) { /* 3.0 = 2+1 */
tc->nPyramidLevels = 2;
tc->subsampling = 2;
} else if (subsampling <= 5.0) { /* 5.0 = 4+1 */
tc->nPyramidLevels = 2;
tc->subsampling = 4;
} else if (subsampling <= 9.0) { /* 9.0 = 8+1 */
tc->nPyramidLevels = 2;
tc->subsampling = 8;
} else {
/* The following lines are derived from the formula:
search_range =
window_halfwidth * \sum_{i=0}^{nPyramidLevels-1} 8^i,
which is the same as:
search_range =
window_halfwidth * (8^nPyramidLevels - 1)/(8 - 1).
Then, the value is rounded up to the nearest integer. */
float val = (float) (log(7.0*subsampling+1.0)/log(8.0));
tc->nPyramidLevels = (int) (val + 0.99);
tc->subsampling = 8;
}
}
/*********************************************************************
* NOTE: Manually must ensure consistency with _KLTComputePyramid()
*/
static float _pyramidSigma(
KLT_TrackingContext tc)
{
return (tc->pyramid_sigma_fact * tc->subsampling);
}
/*********************************************************************
* Updates border, which is dependent upon
* smooth_sigma_fact, pyramid_sigma_fact, window_size, and subsampling
*/
void KLTUpdateTCBorder(
KLT_TrackingContext tc)
{
float val;
int pyramid_gauss_hw;
int smooth_gauss_hw;
int gauss_width, gaussderiv_width;
int num_levels = tc->nPyramidLevels;
int n_invalid_pixels;
int window_hw;
int ss = tc->subsampling;
int ss_power;
int border;
int i;
/* Check window size (and correct if necessary) */
if (tc->window_width % 2 != 1) {
tc->window_width = tc->window_width+1;
KLTWarning("(KLTUpdateTCBorder) Window width must be odd. "
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height % 2 != 1) {
tc->window_height = tc->window_height+1;
KLTWarning("(KLTUpdateTCBorder) Window height must be odd. "
"Changing to %d.\n", tc->window_height);
}
if (tc->window_width < 3) {
tc->window_width = 3;
KLTWarning("(KLTUpdateTCBorder) Window width must be at least three. \n"
"Changing to %d.\n", tc->window_width);
}
if (tc->window_height < 3) {
tc->window_height = 3;
KLTWarning("(KLTUpdateTCBorder) Window height must be at least three. \n"
"Changing to %d.\n", tc->window_height);
}
window_hw = max(tc->window_width, tc->window_height)/2;
/* Find widths of convolution windows */
_KLTGetKernelWidths(_KLTComputeSmoothSigma(tc),
&gauss_width, &gaussderiv_width);
smooth_gauss_hw = gauss_width/2;
_KLTGetKernelWidths(_pyramidSigma(tc),
&gauss_width, &gaussderiv_width);
pyramid_gauss_hw = gauss_width/2;
/* Compute the # of invalid pixels at each level of the pyramid.
n_invalid_pixels is computed with respect to the ith level
of the pyramid. So, e.g., if n_invalid_pixels = 5 after
the first iteration, then there are 5 invalid pixels in
level 1, which translated means 5*subsampling invalid pixels
in the original level 0. */
n_invalid_pixels = smooth_gauss_hw;
for (i = 1 ; i < num_levels ; i++) {
val = ((float) n_invalid_pixels + pyramid_gauss_hw) / ss;
n_invalid_pixels = (int) (val + 0.99); /* Round up */
}
/* ss_power = ss^(num_levels-1) */
ss_power = 1;
for (i = 1 ; i < num_levels ; i++)
ss_power *= ss;
/* Compute border by translating invalid pixels back into */
/* original image */
border = (n_invalid_pixels + window_hw) * ss_power;
tc->borderx = border;
tc->bordery = border;
}
/*********************************************************************
* KLTFreeTrackingContext
* KLTFreeFeatureList
* KLTFreeFeatureHistory
* KLTFreeFeatureTable
*/
void KLTFreeTrackingContext(
KLT_TrackingContext tc)
{
if (tc->pyramid_last)
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last);
if (tc->pyramid_last_gradx)
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last_gradx);
if (tc->pyramid_last_grady)
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last_grady);
free(tc);
}
void KLTFreeFeatureList(
KLT_FeatureList fl)
{
/* for affine mapping */
int indx;
for (indx = 0 ; indx < fl->nFeatures ; indx++) {
/* free image and gradient */
_KLTFreeFloatImage(fl->feature[indx]->aff_img);
_KLTFreeFloatImage(fl->feature[indx]->aff_img_gradx);
_KLTFreeFloatImage(fl->feature[indx]->aff_img_grady);
fl->feature[indx]->aff_img = nullptr;
fl->feature[indx]->aff_img_gradx = nullptr;
fl->feature[indx]->aff_img_grady = nullptr;
}
free(fl);
}
void KLTFreeFeatureHistory(
KLT_FeatureHistory fh)
{
free(fh);
}
void KLTFreeFeatureTable(
KLT_FeatureTable ft)
{
free(ft->feature[0][0]); /* this plugs a memory leak found by Stefan Wachter */
free(ft->feature);
free(ft);
}
/*********************************************************************
* KLTStopSequentialMode
*/
void KLTStopSequentialMode(
KLT_TrackingContext tc)
{
tc->sequentialMode = FALSE;
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last);
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last_gradx);
_KLTFreePyramid((_KLT_Pyramid) tc->pyramid_last_grady);
tc->pyramid_last = nullptr;
tc->pyramid_last_gradx = nullptr;
tc->pyramid_last_grady = nullptr;
}
/*********************************************************************
* KLTCountRemainingFeatures
*/
int KLTCountRemainingFeatures(
KLT_FeatureList fl)
{
int count = 0;
int i;
for (i = 0 ; i < fl->nFeatures ; i++)
if (fl->feature[i]->val >= 0)
count++;
return count;
}
/*********************************************************************
* KLTSetVerbosity
*/
void KLTSetVerbosity(
int verbosity)
{
KLT_verbose = verbosity;
}