289 lines
11 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __CURVES_H__
#define __CURVES_H__
#include <glibmm.h>
#include <map>
#include <string>
#include <cmath>
#include "../rtgui/mycurve.h"
#include "../rtgui/myflatcurve.h"
#include "../rtgui/mydiagonalcurve.h"
#include "LUT.h"
#define CURVES_MIN_POLY_POINTS 1000
#define SQR(x) ((x)*(x))
#define CLIPI(a) ((a)>0?((a)<65534?(a):65534):0)
namespace rtengine {
class CurveFactory {
friend class Curve;
protected:
// look-up tables for the standard srgb gamma and its inverse (filled by init())
static LUTf igammatab_srgb;
static LUTf gammatab_srgb;
// look-up tables for the simple exponential gamma
static LUTf gammatab;
// functions calculating the parameters of the contrast curve based on the desired slope at the center
static double solve_upper (double m, double c, double deriv);
static double solve_lower (double m, double c, double deriv);
static double dupper (const double b, const double m, const double c);
static double dlower (const double b, const double m, const double c);
// basic convex function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point
static inline double basel (double x, double m1, double m2) {
if (x==0.0)
return 0.0;
double k = sqrt ((m1-1.0)*(m1-m2)/2) / (1.0-m2);
double l = (m1-m2) / (1.0-m2) + k;
double lx = log(x);
return m2*x + (1.0-m2)*(2.0 - exp(k*lx))*exp(l*lx);
}
// basic concave function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point
static inline double baseu (double x, double m1, double m2) {
return 1.0 - basel(1.0-x, m1, m2);
}
// convex curve between (0,0) and (1,1) with slope m at (0,0). hr controls the highlight recovery
static inline double cupper (double x, double m, double hr) {
if (hr>1.0)
return baseu (x, m, 2.0*(hr-1.0)/m);
double x1 = (1.0-hr)/m;
double x2 = x1 + hr;
if (x>=x2) return 1.0;
if (x<x1) return x*m;
return 1.0 - hr + hr*baseu((x-x1)/hr, m, 0);
}
// concave curve between (0,0) and (1,1) with slope m at (1,1). sr controls the shadow recovery
static inline double clower (double x, double m, double sr) {
return 1.0 - cupper(1.0-x, m, sr);
}
// convex curve between (0,0) and (1,1) with slope m at (0,0). hr controls the highlight recovery
static inline double cupper2 (double x, double m, double hr) {
double x1 = (1.0-hr)/m;
double x2 = x1 + hr;
if (x>=x2) return 1.0;
if (x<x1) return x*m;
return 1.0 - hr + hr*baseu((x-x1)/hr, m, 0.3*hr);
}
static inline double clower2 (double x, double m, double sr) {
//curve for b<0; starts with positive slope and then rolls over toward straight line to x=y=1
float x1 = sr/1.5 + 0.00001;
float y1 = 1-(1-x1)*m;
if (x>x1 || sr<0.001)
return 1-(1-x)*m;
else
return y1+m*(x-x1)-(1-m)*SQR(SQR(1-x/x1));
}
// tone curve base. a: slope (from exp.comp.), b: black point normalized by 65535,
// D: max. x value (can be>1), hr,sr: highlight,shadow recovery
static inline double basecurve (double x, double a, double b, double D, double hr, double sr) {
if (b<0) {
double m = 0.5;//midpoint
double slope = 1.0+b;//slope of straight line between (0,-b) and (1,1)
double y = -b+m*slope;//value at midpoint
if (x>m)
return y + (x - m)*slope;//value on straight line between (m,y) and (1,1)
else
return y*clower2(x/m, slope*m/y, 2.0-sr);
} else {
double slope = a/(1.0-b);
double m = a*D>1.0 ? b/a+(0.25)/slope : b+(1-b)/4;
double y = a*D>1.0 ? 0.25 : (m-b/a)*slope;
if (x<=m)
return b==0 ? x*slope : clower (x/m, slope*m/y, sr) * y;
else if (a*D>1.0)
return y+(1.0-y)*cupper2((x-m)/(D-m), slope*(D-m)/(1.0-y), hr);
else
return y+(x-m)*slope;
}
}
public:
const static double sRGBGamma; // standard average gamma
const static double sRGBGammaCurve; // 2.4 in the curve
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// accurately determine value from integer array with float as index
//linearly interpolate from ends of range if arg is out of bounds
static inline float interp(int *array,float f)
{
int index = CLIPI(floor(f));
float part = (float)((f)-index)*(float)(array[index+1]-array[index]);
return (float)array[index]+part;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// accurately determine value from float array with float as index
//linearly interpolate from ends of range if arg is out of bounds
static inline float flinterp(float *array,float f)
{
int index = CLIPI(floor(f));
float part = ((f)-(float)index)*(array[index+1]-array[index]);
return array[index]+part;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
static void init ();
static void cleanup ();
static inline double centercontrast (double x, double b, double m);
// standard srgb gamma and its inverse
static inline double gamma2 (double x) {
return x <= 0.00304 ? x*12.92 : 1.055*exp(log(x)/sRGBGammaCurve)-0.055;
}
static inline double igamma2 (double x) {
return x <= 0.03928 ? x/12.92 : exp(log((x+0.055)/1.055)*sRGBGammaCurve);
}
// gamma function with adjustable parameters
static inline double gamma (double x, double gamma, double start, double slope, double mul, double add){
return (x <= start ? x*slope : exp(log(x)/gamma)*mul-add);
}
static inline double igamma (double x, double gamma, double start, double slope, double mul, double add){
return (x <= start*slope ? x/slope : exp(log((x+add)/mul)*gamma) );
}
// gamma functions on [0,65535] based on look-up tables
static inline float gamma_srgb (int x) { return gammatab_srgb[x]; }
static inline float gamma (int x) { return gammatab[x]; }
static inline float igamma_srgb (int x) { return igammatab_srgb[x]; }
static inline float gamma_srgb (float x) { return gammatab_srgb[x]; }
static inline float gamma (float x) { return gammatab[x]; }
static inline float igamma_srgb (float x) { return igammatab_srgb[x]; }
//static inline float gamma_srgb (double x) { return gammatab_srgb[x]; }
//static inline float gamma (double x) { return gammatab[x]; }
//static inline float igamma_srgb (double x) { return igammatab_srgb[x]; }
static inline float hlcurve (const float exp_scale, const float comp, const float hlrange, float level)
{
if (comp>0.0) {
float val = level+(hlrange-65536.0);
float Y = val*exp_scale/hlrange;
float R = hlrange/(val*comp);
return log(1.0+Y*comp)*R;
} else {
return exp_scale;
}
}
public:
static void complexCurve (double ecomp, double black, double hlcompr, double hlcomprthresh, double shcompr, double br, double contr,
double gamma_, bool igamma_, const std::vector<double>& curvePoints, LUTu & histogram, LUTu & histogramCropped,
LUTf & hlCurve, LUTf & shCurve,LUTf & outCurve, LUTu & outBeforeCCurveHistogram, int skip=1);
static void complexsgnCurve (double saturation, bool satlimit, double satlimthresh, const std::vector<double>& acurvePoints,
const std::vector<double>& bcurvePoints, LUTf & aoutCurve, LUTf & boutCurve, LUTf & satCurve, int skip=1);
static void complexLCurve (double br, double contr, const std::vector<double>& curvePoints, LUTu & histogram, LUTu & histogramCropped,
LUTf & outCurve, LUTu & outBeforeCCurveHistogram, int skip);
static void RGBCurve (const std::vector<double>& curvePoints, LUTf & outCurve, int skip);
};
class Curve {
protected:
int N;
int ppn; // targeted polyline point number
double* x;
double* y;
std::vector<double> poly_x; // X points of the faceted curve
std::vector<double> poly_y; // Y points of the faceted curve
unsigned short int* hash;
unsigned int hashSize; // hash table's size, between [10, 100, 1000]
double* ypp;
// Fields for the elementary curve polygonisation
double x1, y1, x2, y2, x3, y3;
bool firstPointIncluded;
double increment;
int nbr_points;
static inline double p00 (double x, double prot) { return CurveFactory::clower (x, 2.0, prot); }
static inline double p11 (double x, double prot) { return CurveFactory::cupper (x, 2.0, prot); }
static inline double p01 (double x, double prot) { return x<=0.5 ? CurveFactory::clower (x*2, 2.0, prot)/2.0 : 0.5 + CurveFactory::cupper ((x-0.5)*2, 2.0, prot)/2.0; }
static inline double p10 (double x, double prot) { return x<=0.5 ? CurveFactory::cupper (x*2, 2.0, prot)/2.0 : 0.5 + CurveFactory::clower ((x-0.5)*2, 2.0, prot)/2.0; }
static inline double pfull (double x, double prot, double sh, double hl) { return (1-sh)*(1-hl)*p00(x,prot) + sh*hl*p11(x,prot) + (1-sh)*hl*p01(x,prot) + sh*(1-hl)*p10(x,prot); }
void fillHash();
public:
Curve ();
~Curve ();
void AddPolygons ();
virtual double getVal (double t) = 0;
virtual void getVal (const std::vector<double>& t, std::vector<double>& res) = 0;
virtual bool isIdentity () = 0;
};
class DiagonalCurve : public Curve {
protected:
DiagonalCurveType kind;
unsigned int minSearch; // a effacer!!!
unsigned int maxSearch; // a effacer!!!
unsigned int searchArray[21]; // a effacer!!!
void spline_cubic_set ();
void NURBS_set ();
public:
DiagonalCurve (const std::vector<double>& points, int ppn=CURVES_MIN_POLY_POINTS);
~DiagonalCurve ();
double getVal (double t);
void getVal (const std::vector<double>& t, std::vector<double>& res);
bool isIdentity () { return kind==DCT_Empty; };
};
class FlatCurve : public Curve {
protected:
FlatCurveType kind;
double* leftTangent;
double* rightTangent;
bool periodic;
void CtrlPoints_set ();
public:
FlatCurve (const std::vector<double>& points, bool isPeriodic = true, int ppn=CURVES_MIN_POLY_POINTS);
~FlatCurve ();
double getVal (double t);
void getVal (const std::vector<double>& t, std::vector<double>& res);
bool isIdentity () { return kind==FCT_Empty; };
};
}
#undef CLIPI
#endif