275 lines
8.9 KiB
C++
275 lines
8.9 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
|
|
#include "colortemp.h"
|
|
#include "image8.h"
|
|
#include "imagefloat.h"
|
|
#include "rtengine.h"
|
|
|
|
using namespace rtengine;
|
|
|
|
|
|
Image8::Image8 ()
|
|
{
|
|
}
|
|
|
|
Image8::Image8 (int w, int h)
|
|
{
|
|
allocate (w, h);
|
|
}
|
|
|
|
Image8::~Image8 ()
|
|
{
|
|
}
|
|
|
|
void Image8::getScanline (int row, unsigned char* buffer, int bps, bool isFloat) const
|
|
{
|
|
|
|
if (data == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (bps == 8) {
|
|
memcpy (buffer, data + row * width * 3, width * 3);
|
|
} else if (bps == 16) {
|
|
unsigned short* sbuffer = (unsigned short*) buffer;
|
|
|
|
for (int i = 0, ix = row * width * 3; i < width * 3; ++i, ++ix) {
|
|
sbuffer[i] = static_cast<unsigned short>(data[ix]) * 257;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Image8::setScanline (int row, const unsigned char* buffer, int bps, unsigned int numSamples)
|
|
{
|
|
|
|
if (data == nullptr) {
|
|
return;
|
|
}
|
|
|
|
switch (sampleFormat) {
|
|
case (IIOSF_UNSIGNED_CHAR):
|
|
if(numSamples == 1) {
|
|
for(size_t i = 0; i < static_cast<size_t>(width); ++i) {
|
|
data[row * width * 3 + 3 * i] = data[row * width * 3 + 3 * i + 1] = data[row * width * 3 + 3 * i + 2] = buffer[i];
|
|
}
|
|
} else {
|
|
memcpy (data + (uint64_t)row * (uint64_t)width * (uint64_t)3u, buffer, width * 3);
|
|
}
|
|
break;
|
|
|
|
case (IIOSF_UNSIGNED_SHORT): {
|
|
const unsigned short* sbuffer = (const unsigned short*) buffer;
|
|
|
|
for (int i = 0, ix = row * width * 3; i < width * 3; ++i, ++ix) {
|
|
data[ix] = uint16ToUint8Rounded(sbuffer[i]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Other type are ignored, but could be implemented if necessary
|
|
break;
|
|
}
|
|
}
|
|
|
|
Image8* Image8::copy () const
|
|
{
|
|
|
|
Image8* cp = new Image8 (width, height);
|
|
copyData(cp);
|
|
return cp;
|
|
}
|
|
|
|
void Image8::getStdImage (const ColorTemp &ctemp, int tran, Imagefloat* image, PreviewProps pp) const
|
|
{
|
|
// compute channel multipliers
|
|
float rm = 1.f, gm = 1.f, bm = 1.f;
|
|
if (ctemp.getTemp() >= 0) {
|
|
double drm, dgm, dbm;
|
|
ctemp.getMultipliers (drm, dgm, dbm);
|
|
rm = drm;
|
|
gm = dgm;
|
|
bm = dbm;
|
|
|
|
rm = 1.0 / rm;
|
|
gm = 1.0 / gm;
|
|
bm = 1.0 / bm;
|
|
float mul_lum = 0.299 * rm + 0.587 * gm + 0.114 * bm;
|
|
rm /= mul_lum;
|
|
gm /= mul_lum;
|
|
bm /= mul_lum;
|
|
}
|
|
|
|
int sx1, sy1, sx2, sy2;
|
|
|
|
transform (pp, tran, sx1, sy1, sx2, sy2);
|
|
|
|
int imwidth = image->getWidth(); // Destination image
|
|
int imheight = image->getHeight(); // Destination image
|
|
|
|
if (((tran & TR_ROT) == TR_R90) || ((tran & TR_ROT) == TR_R270)) {
|
|
int swap = imwidth;
|
|
imwidth = imheight;
|
|
imheight = swap;
|
|
}
|
|
|
|
int maxx = width; // Source image
|
|
int maxy = height; // Source image
|
|
int mtran = tran & TR_ROT;
|
|
int skip = pp.getSkip();
|
|
|
|
//if ((sx1 + skip*imwidth)>maxx) imwidth -- ; // we have a boundary condition that can cause errors
|
|
|
|
// improve speed by integrating the area division into the multipliers
|
|
// switched to using ints for the red/green/blue channel buffer.
|
|
// Incidentally this improves accuracy too.
|
|
float area = skip * skip;
|
|
float rm2 = rm;
|
|
float gm2 = gm;
|
|
float bm2 = bm;
|
|
rm /= area;
|
|
gm /= area;
|
|
bm /= area;
|
|
|
|
#define GCLIP( x ) Color::gamma_srgb(CLIP(x))
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
{
|
|
#endif
|
|
AlignedBuffer<float> abR(imwidth);
|
|
AlignedBuffer<float> abG(imwidth);
|
|
AlignedBuffer<float> abB(imwidth);
|
|
float *lineR = abR.data;
|
|
float *lineG = abG.data;
|
|
float *lineB = abB.data;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
// Iterating all the rows of the destination image
|
|
for (int iy = 0; iy < imheight; iy++) {
|
|
if (skip == 1) {
|
|
// special case (speedup for 1:1 scale)
|
|
// i: source image, first line of the current destination row
|
|
int src_y = sy1 + iy;
|
|
|
|
// overflow security check, not sure that it's necessary
|
|
if (src_y >= maxy) {
|
|
continue;
|
|
}
|
|
|
|
for (int dst_x = 0, src_x = sx1; dst_x < imwidth; dst_x++, src_x++) {
|
|
float r_, g_, b_;
|
|
|
|
// overflow security check, not sure that it's necessary
|
|
if (src_x >= maxx) {
|
|
continue;
|
|
}
|
|
|
|
convertTo(r(src_y, src_x), r_);
|
|
convertTo(g(src_y, src_x), g_);
|
|
convertTo(b(src_y, src_x), b_);
|
|
lineR[dst_x] = CLIP(rm2 * r_);
|
|
lineG[dst_x] = CLIP(gm2 * g_);
|
|
lineB[dst_x] = CLIP(bm2 * b_);
|
|
}
|
|
} else {
|
|
// source image, first line of the current destination row
|
|
int src_y = sy1 + skip * iy;
|
|
|
|
if (src_y >= maxy) {
|
|
continue;
|
|
}
|
|
|
|
for (int dst_x = 0, src_x = sx1; dst_x < imwidth; dst_x++, src_x += skip) {
|
|
if (src_x >= maxx) {
|
|
continue;
|
|
}
|
|
|
|
int src_sub_width = MIN(maxx - src_x, skip);
|
|
int src_sub_height = MIN(maxy - src_y, skip);
|
|
|
|
float rtot, gtot, btot; // RGB accumulators
|
|
rtot = gtot = btot = 0.;
|
|
|
|
for (int src_sub_y = 0; src_sub_y < src_sub_height; src_sub_y++)
|
|
for (int src_sub_x = 0; src_sub_x < src_sub_width; src_sub_x++) {
|
|
float r_, g_, b_;
|
|
convertTo(r(src_y + src_sub_y, src_x + src_sub_x), r_);
|
|
convertTo(g(src_y + src_sub_y, src_x + src_sub_x), g_);
|
|
convertTo(b(src_y + src_sub_y, src_x + src_sub_x), b_);
|
|
rtot += r_;
|
|
gtot += g_;
|
|
btot += b_;
|
|
}
|
|
|
|
// convert back to gamma and clip
|
|
if (src_sub_width == skip && src_sub_height == skip) {
|
|
// Common case where the sub-region is complete
|
|
lineR[dst_x] = CLIP(rm * rtot);
|
|
lineG[dst_x] = CLIP(gm * gtot);
|
|
lineB[dst_x] = CLIP(bm * btot);
|
|
} else {
|
|
// computing a special factor for this incomplete sub-region
|
|
float area = src_sub_width * src_sub_height;
|
|
lineR[dst_x] = CLIP(rm2 * rtot / area);
|
|
lineG[dst_x] = CLIP(gm2 * gtot / area);
|
|
lineB[dst_x] = CLIP(bm2 * btot / area);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mtran == TR_NONE)
|
|
for (int dst_x = 0, src_x = sx1; dst_x < imwidth; dst_x++, src_x += skip) {
|
|
image->r(iy, dst_x) = lineR[dst_x];
|
|
image->g(iy, dst_x) = lineG[dst_x];
|
|
image->b(iy, dst_x) = lineB[dst_x];
|
|
}
|
|
else if (mtran == TR_R180)
|
|
for (int dst_x = 0; dst_x < imwidth; dst_x++) {
|
|
image->r(imheight - 1 - iy, imwidth - 1 - dst_x) = lineR[dst_x];
|
|
image->g(imheight - 1 - iy, imwidth - 1 - dst_x) = lineG[dst_x];
|
|
image->b(imheight - 1 - iy, imwidth - 1 - dst_x) = lineB[dst_x];
|
|
}
|
|
else if (mtran == TR_R90)
|
|
for (int dst_x = 0, src_x = sx1; dst_x < imwidth; dst_x++, src_x += skip) {
|
|
image->r(dst_x, imheight - 1 - iy) = lineR[dst_x];
|
|
image->g(dst_x, imheight - 1 - iy) = lineG[dst_x];
|
|
image->b(dst_x, imheight - 1 - iy) = lineB[dst_x];
|
|
}
|
|
else if (mtran == TR_R270)
|
|
for (int dst_x = 0, src_x = sx1; dst_x < imwidth; dst_x++, src_x += skip) {
|
|
image->r(imwidth - 1 - dst_x, iy) = lineR[dst_x];
|
|
image->g(imwidth - 1 - dst_x, iy) = lineG[dst_x];
|
|
image->b(imwidth - 1 - dst_x, iy) = lineB[dst_x];
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
}
|
|
#endif
|
|
#undef GCLIP
|
|
}
|