2019-10-29 21:06:27 +01:00

1198 lines
39 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2012 Oliver Duis <www.oliverduis.de>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cstring>
#include <glibmm/ustring.h>
#include <glibmm/fileutils.h>
#include <glib/gstdio.h>
#ifdef WIN32
#include <shlobj.h>
#include <windows.h>
#endif
#include "lcp.h"
#include "procparams.h"
#include "settings.h"
#include "utils.h"
namespace rtengine
{
extern const Settings* settings;
}
class rtengine::LCPProfile::LCPPersModel
{
public:
LCPPersModel();
bool hasModeData(LCPCorrectionMode mode) const;
void print() const;
float focLen;
float focDist;
float aperture; // this is what it refers to
LCPModelCommon base; // base perspective correction
LCPModelCommon chromRG;
LCPModelCommon chromG;
LCPModelCommon chromBG; // red/green, green, blue/green (may be empty)
LCPModelCommon vignette; // vignette (may be empty)
};
rtengine::LCPModelCommon::LCPModelCommon() :
foc_len_x(-1.0f),
foc_len_y(-1.0f),
img_center_x(0.5f),
img_center_y(0.5f),
param{{}},
scale_factor(1.0f),
mean_error(0.0),
bad_error(false),
x0(0.0f),
y0(0.0f),
fx(0.0f),
fy(0.0f),
rfx(0.0f),
rfy(0.0f),
vign_param{{}}
{
}
bool rtengine::LCPModelCommon::empty() const
{
return
param[0] == 0.0f
&& param[1] == 0.0f
&& param[2] == 0.0f;
}
void rtengine::LCPModelCommon::print() const
{
std::printf("focLen %g/%g; imgCenter %g/%g; scale %g; err %g\n", foc_len_x, foc_len_y, img_center_x, img_center_y, scale_factor, mean_error);
std::printf("xy0 %g/%g fxy %g/%g\n", x0, y0, fx, fy);
std::printf("param: %g/%g/%g/%g/%g\n", param[0], param[1], param[2], param[3], param[4]);
}
// weighted merge two parameters
void rtengine::LCPModelCommon::merge(const LCPModelCommon& a, const LCPModelCommon& b, float facA)
{
const float facB = 1.0f - facA;
foc_len_x = facA * a.foc_len_x + facB * b.foc_len_x;
foc_len_y = facA * a.foc_len_y + facB * b.foc_len_y;
img_center_x = facA * a.img_center_x + facB * b.img_center_x;
img_center_y = facA * a.img_center_y + facB * b.img_center_y;
scale_factor = facA * a.scale_factor + facB * b.scale_factor;
mean_error = facA * a.mean_error + facB * b.mean_error;
for (int i = 0; i < 5; ++i) {
param[i] = facA * a.param[i] + facB * b.param[i];
}
const float param0Sqr = param[0] * param[0];
vign_param[0] = -param[0];
vign_param[1] = param0Sqr - param[1];
vign_param[2] = param0Sqr * param[0] - 2.0f * param[0] * param[1] + param[2];
vign_param[3] = param0Sqr * param0Sqr + param[1] * param[1] + 2.0f * param[0] * param[2] - 3.0f * param0Sqr * param[1];
}
void rtengine::LCPModelCommon::prepareParams(
int fullWidth,
int fullHeight,
float focalLength,
float focalLength35mm,
float sensorFormatFactor,
bool swapXY,
bool mirrorX,
bool mirrorY
)
{
// Mention that the Adobe technical paper has a bug here, the DMAX is handled differently for focLen and imgCenter
const int Dmax = std::max(fullWidth, fullHeight);
// correct focLens
if (foc_len_x < 0.0f) { // they may not be given
// and 35mm may not be given either
if (focalLength35mm < 1.0f) {
focalLength35mm = focalLength * sensorFormatFactor;
}
foc_len_x = foc_len_y = focalLength / (35.0f * focalLength / focalLength35mm); // focLen must be calculated in pixels
}
if (swapXY) {
x0 = (mirrorX ? 1.0f - img_center_y : img_center_y) * fullWidth;
y0 = (mirrorY ? 1.0f - img_center_x : img_center_x) * fullHeight;
fx = foc_len_y * Dmax;
fy = foc_len_x * Dmax;
} else {
x0 = (mirrorX ? 1.0f - img_center_x : img_center_x) * fullWidth;
y0 = (mirrorY ? 1.0f - img_center_y : img_center_y) * fullHeight;
fx = foc_len_x * Dmax;
fy = foc_len_y * Dmax;
}
rfx = 1.0f / fx;
rfy = 1.0f / fy;
//std::printf("FW %i /X0 %g FH %i /Y0 %g %g\n",fullWidth,x0,fullHeight,y0, imgYCenter);
}
rtengine::LCPProfile::LCPPersModel::LCPPersModel() :
focLen(0.f),
focDist(0.f),
aperture(0.f)
{
}
bool rtengine::LCPProfile::LCPPersModel::hasModeData(LCPCorrectionMode mode) const
{
switch (mode) {
case LCPCorrectionMode::VIGNETTE: {
return !vignette.empty() && !vignette.bad_error;
}
case LCPCorrectionMode::DISTORTION: {
return !base.empty() && !base.bad_error;
}
case LCPCorrectionMode::CA: {
return
!chromRG.empty()
&& !chromG.empty()
&& !chromBG.empty()
&& !chromRG.bad_error
&& !chromG.bad_error
&& !chromBG.bad_error;
}
}
assert(false);
return false;
}
void rtengine::LCPProfile::LCPPersModel::print() const
{
std::printf("--- PersModel focLen %g; focDist %g; aperture %g\n", focLen, focDist, aperture);
std::printf("Base:\n");
base.print();
if (!chromRG.empty()) {
std::printf("ChromRG:\n");
chromRG.print();
}
if (!chromG.empty()) {
std::printf("ChromG:\n");
chromG.print();
}
if (!chromBG.empty()) {
std::printf("ChromBG:\n");
chromBG.print();
}
if (!vignette.empty()) {
std::printf("Vignette:\n");
vignette.print();
}
std::printf("\n");
}
rtengine::LCPProfile::LCPProfile(const Glib::ustring& fname) :
isFisheye(false),
sensorFormatFactor(1.f),
persModelCount(0),
inCamProfiles(false),
firstLIDone(false),
inPerspect(false),
inAlternateLensID(false),
inAlternateLensNames(false),
lastTag{},
inInvalidTag{},
pCurPersModel(nullptr),
pCurCommon(nullptr),
aPersModel{}
{
XML_Parser parser = XML_ParserCreate(nullptr);
if (!parser) {
throw "Couldn't allocate memory for XML parser";
}
XML_SetElementHandler(parser, XmlStartHandler, XmlEndHandler);
XML_SetCharacterDataHandler(parser, XmlTextHandler);
XML_SetUserData(parser, static_cast<void*>(this));
FILE* const pFile = g_fopen(fname.c_str (), "rb");
if (pFile) {
constexpr int BufferSize = 8192;
char buf[BufferSize];
bool done;
do {
int bytesRead = fread(buf, 1, BufferSize, pFile);
done = feof(pFile);
if (XML_Parse(parser, buf, bytesRead, done) == XML_STATUS_ERROR) {
XML_ParserFree(parser);
throw "Invalid XML in LCP file";
}
} while (!done);
fclose(pFile);
}
XML_ParserFree(parser);
if (settings->verbose) {
std::printf("Parsing %s\n", fname.c_str());
}
// Two phase filter: first filter out the very rough ones, that distord the average a lot
// force it, even if there are few frames (community profiles)
filterBadFrames(LCPCorrectionMode::VIGNETTE, 2.0, 0);
filterBadFrames(LCPCorrectionMode::CA, 2.0, 0);
// from the non-distorded, filter again on new average basis, but only if there are enough frames left
filterBadFrames(LCPCorrectionMode::VIGNETTE, 1.5, 50);
filterBadFrames(LCPCorrectionMode::CA, 1.5, 50);
}
rtengine::LCPProfile::~LCPProfile()
{
delete pCurPersModel;
for (int i = 0; i < MaxPersModelCount; ++i) {
delete aPersModel[i];
}
}
void rtengine::LCPProfile::calcParams(
LCPCorrectionMode mode,
float focalLength,
float focusDist,
float aperture,
LCPModelCommon* pCorr1,
LCPModelCommon* pCorr2,
LCPModelCommon* pCorr3
) const
{
const float euler = std::exp(1.0);
// find the frames with the least distance, focal length wise
LCPPersModel* pLow = nullptr;
LCPPersModel* pHigh = nullptr;
const float focalLengthLog = std::log(focalLength); //, apertureLog=aperture>0 ? std::log(aperture) : 0;
const float focusDistLog = focusDist > 0 ? std::log(focusDist) + euler : 0;
// Pass 1: determining best focal length, if possible different focusDistances (for the focDist is not given case)
for (int pm = 0; pm < persModelCount; ++pm) {
const float f = aPersModel[pm]->focLen;
if (aPersModel[pm]->hasModeData(mode)) {
if (
f <= focalLength
&& (
pLow == nullptr
|| f > pLow->focLen
|| (
focusDist == 0
&& f == pLow->focLen
&& pLow->focDist > aPersModel[pm]->focDist
)
)
) {
pLow = aPersModel[pm];
}
if (
f >= focalLength
&& (
pHigh == nullptr
|| f < pHigh->focLen
|| (
focusDist == 0
&& f == pHigh->focLen
&& pHigh->focDist < aPersModel[pm]->focDist
)
)
) {
pHigh = aPersModel[pm];
}
}
}
if (!pLow) {
pLow = pHigh;
}
else if (!pHigh) {
pHigh = pLow;
}
else {
// Pass 2: We have some, so take the best aperture for vignette and best focus for CA and distortion
// there are usually several frame per focal length. In the end pLow will have both flen and apterure/focdis below the target,
// and vice versa pHigh
const float bestFocLenLow = pLow->focLen;
const float bestFocLenHigh = pHigh->focLen;
for (int pm = 0; pm < persModelCount; ++pm) {
const float aper = aPersModel[pm]->aperture; // float aperLog=std::log(aper);
const float focDist = aPersModel[pm]->focDist;
const float focDistLog = std::log(focDist) + euler;
if (aPersModel[pm]->hasModeData(mode)) {
double meanErr = 0.0;
double lowMeanErr = 0.0;
double highMeanErr = 0.0;
switch (mode) {
case LCPCorrectionMode::VIGNETTE: {
meanErr = aPersModel[pm]->vignette.mean_error;
lowMeanErr = pLow->vignette.mean_error;
highMeanErr = pHigh->vignette.mean_error;
break;
}
case LCPCorrectionMode::DISTORTION: {
meanErr = aPersModel[pm]->base.mean_error;
lowMeanErr = pLow->base.mean_error;
highMeanErr = pHigh->base.mean_error;
break;
}
case LCPCorrectionMode::CA: {
meanErr = aPersModel[pm]->chromG.mean_error;
lowMeanErr = pLow->chromG.mean_error;
highMeanErr = pHigh->chromG.mean_error;
break;
}
}
if (aperture > 0 && mode != LCPCorrectionMode::CA) {
if (
aPersModel[pm]->focLen == bestFocLenLow
&& (
(
aper == aperture
&& lowMeanErr > meanErr
)
|| (
aper >= aperture
&& aper < pLow->aperture
&& pLow->aperture > aperture
)
|| (
aper <= aperture
&& (
pLow->aperture > aperture
|| fabs(aperture - aper) < fabs(aperture - pLow->aperture)
)
)
)
) {
pLow = aPersModel[pm];
}
if (
aPersModel[pm]->focLen == bestFocLenHigh
&& (
(
aper == aperture
&& highMeanErr > meanErr
)
|| (
aper <= aperture
&& aper > pHigh->aperture
&& pHigh->aperture < aperture
)
|| (
aper >= aperture
&& (
pHigh->aperture < aperture
|| fabs(aperture - aper) < fabs(aperture - pHigh->aperture)
)
)
)
) {
pHigh = aPersModel[pm];
}
}
else if (focusDist > 0 && mode != LCPCorrectionMode::VIGNETTE) {
// by focus distance
if (
aPersModel[pm]->focLen == bestFocLenLow
&& (
(
focDist == focusDist
&& lowMeanErr > meanErr
)
|| (
focDist >= focusDist
&& focDist < pLow->focDist
&& pLow->focDist > focusDist
)
|| (
focDist <= focusDist
&& (
pLow->focDist > focusDist
|| fabs(focusDistLog - focDistLog) < fabs(focusDistLog - (std::log(pLow->focDist) + euler))
)
)
)
) {
pLow = aPersModel[pm];
}
if (
aPersModel[pm]->focLen == bestFocLenHigh
&& (
(
focDist == focusDist
&& highMeanErr > meanErr
)
|| (
focDist <= focusDist
&& focDist > pHigh->focDist
&& pHigh->focDist < focusDist
)
|| (
focDist >= focusDist
&& (
pHigh->focDist < focusDist
|| fabs(focusDistLog - focDistLog) < fabs(focusDistLog - (std::log(pHigh->focDist) + euler))
)
)
)
) {
pHigh = aPersModel[pm];
}
}
else {
// no focus distance available, just error
if (aPersModel[pm]->focLen == bestFocLenLow && lowMeanErr > meanErr) {
pLow = aPersModel[pm];
}
if (aPersModel[pm]->focLen == bestFocLenHigh && highMeanErr > meanErr) {
pHigh = aPersModel[pm];
}
}
}
}
}
if (pLow != nullptr && pHigh != nullptr) {
// average out the factors, linear interpolation in logarithmic scale
float facLow = 0.5f;
bool focLenOnSpot = false; // pretty often, since max/min are often as frames in LCP
// There is as foclen range, take that as basis
if (pLow->focLen < pHigh->focLen) {
facLow = (std::log(pHigh->focLen) - focalLengthLog) / (std::log(pHigh->focLen) - std::log(pLow->focLen));
} else {
focLenOnSpot = pLow->focLen == pHigh->focLen && pLow->focLen == focalLength;
}
// and average the other factor if available
if (
mode == LCPCorrectionMode::VIGNETTE
&& pLow->aperture < aperture
&& pHigh->aperture > aperture
) {
// Mix in aperture
const float facAperLow = (pHigh->aperture - aperture) / (pHigh->aperture - pLow->aperture);
facLow = focLenOnSpot ? facAperLow : (0.5 * facLow + 0.5 * facAperLow);
}
else if (
mode != LCPCorrectionMode::VIGNETTE
&& focusDist > 0
&& pLow->focDist < focusDist
&& pHigh->focDist > focusDist
) {
// focus distance for all else (if focus distance is given)
const float facDistLow = (std::log(pHigh->focDist) + euler - focusDistLog) / (std::log(pHigh->focDist) - std::log(pLow->focDist));
facLow = focLenOnSpot ? facDistLow : (0.8 * facLow + 0.2 * facDistLow);
}
switch (mode) {
case LCPCorrectionMode::VIGNETTE: {
pCorr1->merge(pLow->vignette, pHigh->vignette, facLow);
break;
}
case LCPCorrectionMode::DISTORTION: {
pCorr1->merge(pLow->base, pHigh->base, facLow);
break;
}
case LCPCorrectionMode::CA: {
pCorr1->merge(pLow->chromRG, pHigh->chromRG, facLow);
pCorr2->merge(pLow->chromG, pHigh->chromG, facLow);
pCorr3->merge(pLow->chromBG, pHigh->chromBG, facLow);
break;
}
}
if (settings->verbose) {
std::printf("LCP mode=%i, dist: %g found frames: Fno %g-%g; FocLen %g-%g; Dist %g-%g with weight %g\n", toUnderlying(mode), focusDist, pLow->aperture, pHigh->aperture, pLow->focLen, pHigh->focLen, pLow->focDist, pHigh->focDist, facLow);
}
} else {
if (settings->verbose) {
std::printf("Error: LCP file contained no %s parameters\n", mode == LCPCorrectionMode::VIGNETTE ? "vignette" : mode == LCPCorrectionMode::DISTORTION ? "distortion" : "CA" );
}
}
}
void rtengine::LCPProfile::print() const
{
std::printf("=== Profile %s\n", profileName.c_str());
std::printf("Frames: %i, RAW: %i; Fisheye: %i; Sensorformat: %f\n", persModelCount, isRaw, isFisheye, sensorFormatFactor);
for (int pm = 0; pm < persModelCount; ++pm) {
aPersModel[pm]->print();
}
}
// from all frames not marked as bad already, take average and filter out frames with higher deviation than this if there are enough values
int rtengine::LCPProfile::filterBadFrames(LCPCorrectionMode mode, double maxAvgDevFac, int minFramesLeft)
{
// take average error, then calculated the maximum deviation allowed
double err = 0.0;
int count = 0;
for (int pm = 0; pm < MaxPersModelCount && aPersModel[pm]; ++pm) {
if (aPersModel[pm]->hasModeData(mode)) {
++count;
switch (mode) {
case LCPCorrectionMode::VIGNETTE: {
err += aPersModel[pm]->vignette.mean_error;
break;
}
case LCPCorrectionMode::DISTORTION: {
err += aPersModel[pm]->base.mean_error;
break;
}
case LCPCorrectionMode::CA: {
err += rtengine::max(aPersModel[pm]->chromRG.mean_error, aPersModel[pm]->chromG.mean_error, aPersModel[pm]->chromBG.mean_error);
break;
}
}
}
}
// Only if we have enough frames, filter out errors
int filtered = 0;
if (count >= minFramesLeft) {
if (count > 0) {
err /= count;
}
// Now mark all the bad ones as bad, and hasModeData will return false;
for (int pm = 0; pm < MaxPersModelCount && aPersModel[pm]; ++pm) {
if (aPersModel[pm]->hasModeData(mode)) {
switch (mode) {
case LCPCorrectionMode::VIGNETTE: {
if (aPersModel[pm]->vignette.mean_error > maxAvgDevFac * err) {
aPersModel[pm]->vignette.bad_error = true;
filtered++;
}
break;
}
case LCPCorrectionMode::DISTORTION: {
if (aPersModel[pm]->base.mean_error > maxAvgDevFac * err) {
aPersModel[pm]->base.bad_error = true;
filtered++;
}
break;
}
case LCPCorrectionMode::CA: {
if (
aPersModel[pm]->chromRG.mean_error > maxAvgDevFac * err
|| aPersModel[pm]->chromG.mean_error > maxAvgDevFac * err
|| aPersModel[pm]->chromBG.mean_error > maxAvgDevFac * err
) {
aPersModel[pm]->chromRG.bad_error = true;
aPersModel[pm]->chromG.bad_error = true;
aPersModel[pm]->chromBG.bad_error = true;
++filtered;
}
break;
}
}
}
}
if (settings->verbose && count) {
std::printf("Filtered %.1f%% frames for maxAvgDevFac %g leaving %i\n", filtered * 100.f / count, maxAvgDevFac, count - filtered);
}
}
return filtered;
}
void rtengine::LCPProfile::handle_text(const std::string& text)
{
// Check if it contains non-whitespaces (there are several calls to this for one tag unfortunately)
bool onlyWhiteSpace = true;
for (auto c : text) {
if (!std::isspace(c)) {
onlyWhiteSpace = false;
break;
}
}
if (onlyWhiteSpace) {
return;
}
LCPProfile* const pProf = this;
// convert to null terminated
const std::string tag = pProf->lastTag;
// Common data section
if (!pProf->firstLIDone) {
// Generic tags are the same for all
if (tag == "ProfileName") {
pProf->profileName = text;
} else if (tag == "Model") {
pProf->camera = text;
} else if (tag == "Lens") {
pProf->lens = text;
} else if (tag == "CameraPrettyName") {
pProf->cameraPrettyName = text;
} else if (tag == "LensPrettyName") {
pProf->lensPrettyName = text;
} else if (tag == "CameraRawProfile") {
pProf->isRaw = text == "True";
}
}
// Locale should be already set
assert(std::atof("1.2345") == 1.2345);
if (!pProf->firstLIDone) {
if (tag == "SensorFormatFactor") {
pProf->sensorFormatFactor = std::atof(text.c_str());
}
}
// Perspective model base data
if (tag == "FocalLength") {
pProf->pCurPersModel->focLen = std::atof(text.c_str());
} else if (tag == "FocusDistance") {
double focDist = std::atof(text.c_str());
pProf->pCurPersModel->focDist = focDist < 10000 ? focDist : 10000;
} else if (tag == "ApertureValue") {
pProf->pCurPersModel->aperture = std::atof(text.c_str());
}
// Section depended
if (tag == "FocalLengthX") {
pProf->pCurCommon->foc_len_x = std::atof(text.c_str());
} else if (tag == "FocalLengthY") {
pProf->pCurCommon->foc_len_y = std::atof(text.c_str());
} else if (tag == "ImageXCenter") {
pProf->pCurCommon->img_center_x = std::atof(text.c_str());
} else if (tag == "ImageYCenter") {
pProf->pCurCommon->img_center_y = std::atof(text.c_str());
} else if (tag == "ScaleFactor") {
pProf->pCurCommon->scale_factor = std::atof(text.c_str());
} else if (tag == "ResidualMeanError") {
pProf->pCurCommon->mean_error = std::atof(text.c_str());
} else if (tag == "RadialDistortParam1" || tag == "VignetteModelParam1") {
pProf->pCurCommon->param[0] = std::atof(text.c_str());
} else if (tag == "RadialDistortParam2" || tag == "VignetteModelParam2") {
pProf->pCurCommon->param[1] = std::atof(text.c_str());
} else if (tag == "RadialDistortParam3" || tag == "VignetteModelParam3") {
pProf->pCurCommon->param[2] = std::atof(text.c_str());
} else if (tag == "RadialDistortParam4" || tag == "TangentialDistortParam1") {
pProf->pCurCommon->param[3] = std::atof(text.c_str());
} else if (tag == "RadialDistortParam5" || tag == "TangentialDistortParam2") {
pProf->pCurCommon->param[4] = std::atof(text.c_str());
}
}
void XMLCALL rtengine::LCPProfile::XmlStartHandler(void* pLCPProfile, const char* el, const char** attr)
{
LCPProfile* const pProf = static_cast<LCPProfile*>(pLCPProfile);
bool parseAttr = false;
if (*pProf->inInvalidTag) {
return; // We ignore everything in dirty tag till it's gone
}
// clean up tagname
const char* src = strrchr(el, ':');
if (src == nullptr) {
src = el;
} else {
++src;
}
strncpy(pProf->lastTag, src, sizeof(pProf->lastTag) - 1);
pProf->lastTag[sizeof(pProf->lastTag) - 1] = 0;
const std::string src_str = src;
if (src_str == "VignetteModelPiecewiseParam") {
strncpy(pProf->inInvalidTag, src, sizeof(pProf->inInvalidTag) - 1);
pProf->inInvalidTag[sizeof(pProf->inInvalidTag) - 1] = 0;
}
if (src_str == "CameraProfiles") {
pProf->inCamProfiles = true;
}
if (src_str == "AlternateLensIDs") {
pProf->inAlternateLensID = true;
}
if (src_str == "AlternateLensNames") {
pProf->inAlternateLensNames = true;
}
if (
!pProf->inCamProfiles
|| pProf->inAlternateLensID
|| pProf->inAlternateLensNames
) {
return;
}
if (src_str == "li") {
pProf->pCurPersModel = new LCPPersModel();
pProf->pCurCommon = &pProf->pCurPersModel->base; // iterated to next tags within persModel
return;
}
if (src_str == "PerspectiveModel") {
pProf->firstLIDone = true;
pProf->inPerspect = true;
parseAttr = true;
} else if (src_str == "FisheyeModel") {
pProf->firstLIDone = true;
pProf->inPerspect = true;
pProf->isFisheye = true; // just misses third param, and different path, rest is the same
parseAttr = true;
} else if (src_str == "Description") {
parseAttr = true;
}
// Move pointer to general section
if (pProf->inPerspect) {
if (src_str == "ChromaticRedGreenModel") {
pProf->pCurCommon = &pProf->pCurPersModel->chromRG;
parseAttr = true;
} else if (src_str == "ChromaticGreenModel") {
pProf->pCurCommon = &pProf->pCurPersModel->chromG;
parseAttr = true;
} else if (src_str == "ChromaticBlueGreenModel") {
pProf->pCurCommon = &pProf->pCurPersModel->chromBG;
parseAttr = true;
} else if (src_str == "VignetteModel") {
pProf->pCurCommon = &pProf->pCurPersModel->vignette;
parseAttr = true;
}
}
// some profiles (espc. Pentax) have a different structure that is attributes based
// simulate tags by feeding them in
if (parseAttr && attr != nullptr) {
for (int i = 0; attr[i]; i += 2) {
const char* nameStart = strrchr(attr[i], ':');
if (nameStart == nullptr) {
nameStart = attr[i];
} else {
++nameStart;
}
strncpy(pProf->lastTag, nameStart, 255);
pProf->handle_text(attr[i + 1]);
}
}
}
void XMLCALL rtengine::LCPProfile::XmlTextHandler(void* pLCPProfile, const XML_Char* s, int len)
{
LCPProfile* const pProf = static_cast<LCPProfile*>(pLCPProfile);
if (
!pProf->inCamProfiles
|| pProf->inAlternateLensID
|| pProf->inAlternateLensNames
|| *pProf->inInvalidTag
) {
return;
}
for (int i = 0; i < len; ++i) {
pProf->textbuf << s[i];
}
}
void XMLCALL rtengine::LCPProfile::XmlEndHandler(void* pLCPProfile, const char* el)
{
LCPProfile* const pProf = static_cast<LCPProfile*>(pLCPProfile);
pProf->handle_text(pProf->textbuf.str());
pProf->textbuf.str("");
// We ignore everything in dirty tag till it's gone
if (*pProf->inInvalidTag) {
if (std::strstr(el, pProf->inInvalidTag)) {
*pProf->inInvalidTag = 0;
}
return;
}
if (std::strstr(el, ":CameraProfiles")) {
pProf->inCamProfiles = false;
}
if (std::strstr(el, ":AlternateLensIDs")) {
pProf->inAlternateLensID = false;
}
if (std::strstr(el, ":AlternateLensNames")) {
pProf->inAlternateLensNames = false;
}
if (
!pProf->inCamProfiles
|| pProf->inAlternateLensID
|| pProf->inAlternateLensNames
) {
return;
}
if (std::strstr(el, ":PerspectiveModel") || std::strstr(el, ":FisheyeModel")) {
pProf->inPerspect = false;
} else if (std::strstr(el, ":li")) {
pProf->aPersModel[pProf->persModelCount] = pProf->pCurPersModel;
pProf->pCurPersModel = nullptr;
++pProf->persModelCount;
}
}
// Generates as singleton
rtengine::LCPStore* rtengine::LCPStore::getInstance()
{
static LCPStore instance_;
return &instance_;
}
bool rtengine::LCPStore::isValidLCPFileName(const Glib::ustring& filename) const
{
if (!Glib::file_test(filename, Glib::FILE_TEST_EXISTS) || Glib::file_test (filename, Glib::FILE_TEST_IS_DIR)) {
return false;
}
const size_t pos = filename.find_last_of ('.');
return pos > 0 && !filename.casefold().compare(pos, 4, ".lcp");
}
std::shared_ptr<rtengine::LCPProfile> rtengine::LCPStore::getProfile(const Glib::ustring& filename) const
{
if (filename.length() == 0 || !isValidLCPFileName(filename)) {
return nullptr;
}
std::shared_ptr<LCPProfile> res;
if (!cache.get(filename, res)) {
try {
res.reset(new LCPProfile(filename));
} catch (...) {
return nullptr;
}
cache.set(filename, res);
}
return res;
}
Glib::ustring rtengine::LCPStore::getDefaultCommonDirectory() const
{
Glib::ustring dir;
#ifdef WIN32
WCHAR pathW[MAX_PATH] = {0};
if (SHGetSpecialFolderPathW(NULL, pathW, CSIDL_COMMON_APPDATA, false)) {
char pathA[MAX_PATH];
WideCharToMultiByte(CP_UTF8, 0, pathW, -1, pathA, MAX_PATH, 0, 0);
Glib::ustring fullDir = Glib::ustring(pathA) + Glib::ustring("\\Adobe\\CameraRaw\\LensProfiles\\1.0");
if (Glib::file_test (fullDir, Glib::FILE_TEST_IS_DIR)) {
dir = fullDir;
}
}
#endif
// TODO: Add Mac paths here
return dir;
}
rtengine::LCPStore::LCPStore(unsigned int _cache_size) :
cache(_cache_size)
{
}
// if !vignette then geometric and CA
rtengine::LCPMapper::LCPMapper(
const std::shared_ptr<LCPProfile>& pProf,
float focalLength,
float focalLength35mm,
float focusDist,
float aperture,
bool vignette,
bool useCADistP,
int fullWidth,
int fullHeight,
const procparams::CoarseTransformParams& coarse,
int rawRotationDeg
) :
enableCA(false),
useCADist(useCADistP),
swapXY(false),
isFisheye(false)
{
if (!pProf) {
return;
}
// determine in what the image with the RAW landscape in comparison (calibration target)
// in vignetting, the rotation has not taken place yet
int rot = 0;
if (rawRotationDeg >= 0) {
rot = (coarse.rotate + rawRotationDeg) % 360;
}
swapXY = (rot == 90 || rot == 270);
const bool mirrorX = (rot == 90 || rot == 180);
const bool mirrorY = (rot == 180 || rot == 270);
if (settings->verbose) {
std::printf("Vign: %i, fullWidth: %i/%i, focLen %g SwapXY: %i / MirX/Y %i / %i on rot:%i from %i\n",vignette, fullWidth, fullHeight, focalLength, swapXY, mirrorX, mirrorY, rot, rawRotationDeg);
}
pProf->calcParams(vignette ? LCPCorrectionMode::VIGNETTE : LCPCorrectionMode::DISTORTION, focalLength, focusDist, aperture, &mc, nullptr, nullptr);
mc.prepareParams(fullWidth, fullHeight, focalLength, focalLength35mm, pProf->sensorFormatFactor, swapXY, mirrorX, mirrorY);
if (!vignette) {
pProf->calcParams(LCPCorrectionMode::CA, focalLength, focusDist, aperture, &chrom[0], &chrom[1], &chrom[2]);
for (int i = 0; i < 3; ++i) {
chrom[i].prepareParams(fullWidth, fullHeight, focalLength, focalLength35mm, pProf->sensorFormatFactor, swapXY, mirrorX, mirrorY);
}
}
enableCA = !vignette && focusDist > 0.f;
isFisheye = pProf->isFisheye;
}
bool rtengine::LCPMapper::isCACorrectionAvailable() const
{
return enableCA;
}
void rtengine::LCPMapper::correctDistortion(double &x, double &y, int cx, int cy, double scale) const
{
x += cx;
y += cy;
if (isFisheye) {
const double u = x * scale;
const double v = y * scale;
const double u0 = mc.x0 * scale;
const double v0 = mc.y0 * scale;
const double du = (u - u0);
const double dv = (v - v0);
const double fx = mc.fx;
const double fy = mc.fy;
const double k1 = mc.param[0];
const double k2 = mc.param[1];
const double r = sqrt(du * du + dv * dv);
const double f = sqrt(fx*fy / (scale * scale));
const double th = atan2(r, f);
const double th2 = th * th;
const double cfact = (((k2 * th2 + k1) * th2 + 1) * th) / r;
const double ud = cfact * fx * du + u0;
const double vd = cfact * fy * dv + v0;
x = ud;
y = vd;
} else {
x *= scale;
y *= scale;
const double x0 = mc.x0 * scale;
const double y0 = mc.y0 * scale;
const double xd = (x - x0) / mc.fx, yd = (y - y0) / mc.fy;
const LCPModelCommon::Param aDist = mc.param;
const double rsqr = xd * xd + yd * yd;
const double xfac = aDist[swapXY ? 3 : 4], yfac = aDist[swapXY ? 4 : 3];
const double commonFac = (((aDist[2] * rsqr + aDist[1]) * rsqr + aDist[0]) * rsqr + 1.)
+ 2. * (yfac * yd + xfac * xd);
const double xnew = xd * commonFac + xfac * rsqr;
const double ynew = yd * commonFac + yfac * rsqr;
x = xnew * mc.fx + x0;
y = ynew * mc.fy + y0;
}
x -= cx * scale;
y -= cy * scale;
}
void rtengine::LCPMapper::correctCA(double& x, double& y, int cx, int cy, int channel) const
{
if (!enableCA) {
return;
}
x += cx;
y += cy;
double xgreen, ygreen;
// First calc the green channel like normal distortion
// the other are just deviations from it
double xd = (x - chrom[1].x0) / chrom[1].fx;
double yd = (y - chrom[1].y0) / chrom[1].fy;
// Green contains main distortion, just like base
if (useCADist) {
const LCPModelCommon::Param aDist = chrom[1].param;
double rsqr = xd * xd + yd * yd;
double xfac = aDist[swapXY ? 3 : 4], yfac = aDist[swapXY ? 4 : 3];
double commonFac = (((aDist[2] * rsqr + aDist[1]) * rsqr + aDist[0]) * rsqr + 1.)
+ 2. * (yfac * yd + xfac * xd);
xgreen = xd * commonFac + aDist[4] * rsqr;
ygreen = yd * commonFac + aDist[3] * rsqr;
} else {
xgreen = xd;
ygreen = yd;
}
if (channel == 1) {
// green goes directly
x = xgreen * chrom[1].fx + chrom[1].x0;
y = ygreen * chrom[1].fy + chrom[1].y0;
} else {
// others are diffs from green
xd = xgreen;
yd = ygreen;
const double rsqr = xd * xd + yd * yd;
const LCPModelCommon::Param aCA = chrom[channel].param;
const double xfac = aCA[swapXY ? 3 : 4], yfac = aCA[swapXY ? 4 : 3];
const double commonSum = 1. + rsqr * (aCA[0] + rsqr * (aCA[1] + aCA[2] * rsqr)) + 2. * (yfac * yd + xfac * xd);
x = (chrom[channel].scale_factor * ( xd * commonSum + xfac * rsqr )) * chrom[channel].fx + chrom[channel].x0;
y = (chrom[channel].scale_factor * ( yd * commonSum + yfac * rsqr )) * chrom[channel].fy + chrom[channel].y0;
}
x -= cx;
y -= cy;
}
void rtengine::LCPMapper::processVignetteLine(int width, int y, float* line) const
{
// No need for swapXY, since vignette is in RAW and always before rotation
float yd = ((float)y - mc.y0) * mc.rfy;
yd *= yd;
int x = 0;
#ifdef __SSE2__
const vfloat fourv = F2V(4.f);
const vfloat zerov = F2V(0.f);
const vfloat ydv = F2V(yd);
const vfloat p0 = F2V(mc.vign_param[0]);
const vfloat p1 = F2V(mc.vign_param[1]);
const vfloat p2 = F2V(mc.vign_param[2]);
const vfloat p3 = F2V(mc.vign_param[3]);
const vfloat x0v = F2V(mc.x0);
const vfloat rfxv = F2V(mc.rfx);
vfloat xv = _mm_setr_ps(0.f, 1.f, 2.f, 3.f);
for (; x < width-3; x+=4) {
const vfloat xdv = (xv - x0v) * rfxv;
const vfloat rsqr = xdv * xdv + ydv;
const vfloat vignFactorv = rsqr * (p0 + rsqr * (p1 - p2 * rsqr + p3 * rsqr * rsqr));
vfloat valv = LVFU(line[x]);
valv += valv * vselfzero(vmaskf_gt(valv, zerov), vignFactorv);
STVFU(line[x], valv);
xv += fourv;
}
#endif // __SSE2__
for (; x < width; x++) {
if (line[x] > 0) {
const float xd = ((float)x - mc.x0) * mc.rfx;
const LCPModelCommon::VignParam vignParam = mc.vign_param;
const float rsqr = xd * xd + yd;
line[x] += line[x] * rsqr * (vignParam[0] + rsqr * ((vignParam[1]) - (vignParam[2]) * rsqr + (vignParam[3]) * rsqr * rsqr));
}
}
}
void rtengine::LCPMapper::processVignetteLine3Channels(int width, int y, float* line) const
{
// No need for swapXY, since vignette is in RAW and always before rotation
float yd = ((float)y - mc.y0) * mc.rfy;
yd *= yd;
const LCPModelCommon::VignParam vignParam = mc.vign_param;
for (int x = 0; x < width; x++) {
const float xd = ((float)x - mc.x0) * mc.rfx;
const float rsqr = xd * xd + yd;
const float vignetteFactor = rsqr * (vignParam[0] + rsqr * ((vignParam[1]) - (vignParam[2]) * rsqr + (vignParam[3]) * rsqr * rsqr));
for(int c = 0;c < 3; ++c) {
if (line[3*x+c] > 0) {
line[3*x+c] += line[3*x+c] * vignetteFactor;
}
}
}
}