rawTherapee/rtengine/ipresize.cc

438 lines
12 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "improcfun.h"
#include "alignedbuffer.h"
#include "opthelper.h"
#include "rt_math.h"
#include "sleef.c"
//#define PROFILE
#ifdef PROFILE
# include <iostream>
#endif
namespace rtengine
{
static inline float Lanc (float x, float a)
{
if (x * x < 1e-6f) {
return 1.0f;
} else if (x * x > a * a) {
return 0.0f;
} else {
x = static_cast<float> (rtengine::RT_PI) * x;
return a * xsinf (x) * xsinf (x / a) / (x * x);
}
}
void ImProcFunctions::Lanczos (const Imagefloat* src, Imagefloat* dst, float scale)
{
const float delta = 1.0f / scale;
const float a = 3.0f;
const float sc = min (scale, 1.0f);
const int support = static_cast<int> (2.0f * a / sc) + 1;
#pragma omp parallel
{
// storage for precomputed parameters for horisontal interpolation
float * wwh = new float[support * dst->getWidth()];
int * jj0 = new int[dst->getWidth()];
int * jj1 = new int[dst->getWidth()];
// temporal storage for vertically-interpolated row of pixels
float * lr = new float[src->getWidth()];
float * lg = new float[src->getWidth()];
float * lb = new float[src->getWidth()];
// Phase 1: precompute coefficients for horisontal interpolation
for (int j = 0; j < dst->getWidth(); j++) {
// x coord of the center of pixel on src image
float x0 = (static_cast<float> (j) + 0.5f) * delta - 0.5f;
// weights for interpolation in horisontal direction
float * w = wwh + j * support;
// sum of weights used for normalization
float ws = 0.0f;
jj0[j] = max (0, static_cast<int> (floorf (x0 - a / sc)) + 1);
jj1[j] = min (src->getWidth(), static_cast<int> (floorf (x0 + a / sc)) + 1);
// calculate weights
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
float z = sc * (x0 - static_cast<float> (jj));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
}
// Phase 2: do actual interpolation
#pragma omp for
for (int i = 0; i < dst->getHeight(); i++) {
// y coord of the center of pixel on src image
float y0 = (static_cast<float> (i) + 0.5f) * delta - 0.5f;
// weights for interpolation in y direction
float w[support];
for (auto& f : w) {
f = 0.f;
}
// sum of weights used for normalization
float ws = 0.0f;
int ii0 = max (0, static_cast<int> (floorf (y0 - a / sc)) + 1);
int ii1 = min (src->getHeight(), static_cast<int> (floorf (y0 + a / sc)) + 1);
// calculate weights for vertical interpolation
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
float z = sc * (y0 - static_cast<float> (ii));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
// Do vertical interpolation. Store results.
for (int j = 0; j < src->getWidth(); j++) {
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
r += w[k] * src->r (ii, j);
g += w[k] * src->g (ii, j);
b += w[k] * src->b (ii, j);
}
lr[j] = r;
lg[j] = g;
lb[j] = b;
}
// Do horizontal interpolation
for (int j = 0; j < dst->getWidth(); j++) {
float * wh = wwh + support * j;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
r += wh[k] * lr[jj];
g += wh[k] * lg[jj];
b += wh[k] * lb[jj];
}
dst->r (i, j) = /*CLIP*/ (r);//static_cast<int> (r));
dst->g (i, j) = /*CLIP*/ (g);//static_cast<int> (g));
dst->b (i, j) = /*CLIP*/ (b);//static_cast<int> (b));
}
}
delete[] wwh;
delete[] jj0;
delete[] jj1;
delete[] lr;
delete[] lg;
delete[] lb;
}
}
void ImProcFunctions::Lanczos (const LabImage* src, LabImage* dst, float scale)
{
const float delta = 1.0f / scale;
const float a = 3.0f;
const float sc = min (scale, 1.0f);
const int support = static_cast<int> (2.0f * a / sc) + 1;
// storage for precomputed parameters for horizontal interpolation
float* const wwh = new float[support * dst->W];
int* const jj0 = new int[dst->W];
int* const jj1 = new int[dst->W];
// Phase 1: precompute coefficients for horizontal interpolation
for (int j = 0; j < dst->W; j++) {
// x coord of the center of pixel on src image
float x0 = (static_cast<float> (j) + 0.5f) * delta - 0.5f;
// weights for interpolation in horizontal direction
float * w = wwh + j * support;
// sum of weights used for normalization
float ws = 0.0f;
jj0[j] = max (0, static_cast<int> (floorf (x0 - a / sc)) + 1);
jj1[j] = min (src->W, static_cast<int> (floorf (x0 + a / sc)) + 1);
// calculate weights
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
float z = sc * (x0 - static_cast<float> (jj));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// temporal storage for vertically-interpolated row of pixels
AlignedBuffer<float> aligned_buffer_ll(src->W);
AlignedBuffer<float> aligned_buffer_la(src->W);
AlignedBuffer<float> aligned_buffer_lb(src->W);
float* const lL = aligned_buffer_ll.data;
float* const la = aligned_buffer_la.data;
float* const lb = aligned_buffer_lb.data;
// weights for interpolation in y direction
float w[support] ALIGNED64;
// Phase 2: do actual interpolation
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < dst->H; i++) {
// y coord of the center of pixel on src image
float y0 = (static_cast<float> (i) + 0.5f) * delta - 0.5f;
// sum of weights used for normalization
float ws = 0.0f;
int ii0 = max (0, static_cast<int> (floorf (y0 - a / sc)) + 1);
int ii1 = min (src->H, static_cast<int> (floorf (y0 + a / sc)) + 1);
// calculate weights for vertical interpolation
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
float z = sc * (y0 - static_cast<float> (ii));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
// Do vertical interpolation. Store results.
#ifdef __SSE2__
int j;
__m128 Lv, av, bv, wkv;
for (j = 0; j < src->W - 3; j += 4) {
Lv = _mm_setzero_ps();
av = _mm_setzero_ps();
bv = _mm_setzero_ps();
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
wkv = _mm_set1_ps (w[k]);
Lv += wkv * LVFU (src->L[ii][j]);
av += wkv * LVFU (src->a[ii][j]);
bv += wkv * LVFU (src->b[ii][j]);
}
STVF (lL[j], Lv);
STVF (la[j], av);
STVF (lb[j], bv);
}
#else
int j = 0;
#endif
for (; j < src->W; j++) {
float L = 0.0f, a = 0.0f, b = 0.0f;
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
L += w[k] * src->L[ii][j];
a += w[k] * src->a[ii][j];
b += w[k] * src->b[ii][j];
}
lL[j] = L;
la[j] = a;
lb[j] = b;
}
// Do horizontal interpolation
for (int j = 0; j < dst->W; j++) {
float * wh = wwh + support * j;
float L = 0.0f, a = 0.0f, b = 0.0f;
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
L += wh[k] * lL[jj];
a += wh[k] * la[jj];
b += wh[k] * lb[jj];
}
dst->L[i][j] = L;
dst->a[i][j] = a;
dst->b[i][j] = b;
}
}
}
delete[] jj0;
delete[] jj1;
delete[] wwh;
}
float ImProcFunctions::resizeScale (const ProcParams* params, int fw, int fh, int &imw, int &imh)
{
imw = fw;
imh = fh;
if (!params || !params->resize.enabled) {
return 1.0;
}
// get the resize parameters
int refw, refh;
double dScale;
if (params->crop.enabled && params->resize.appliesTo == "Cropped area") {
// the resize values applies to the crop dimensions
refw = params->crop.w;
refh = params->crop.h;
} else {
// the resize values applies to the image dimensions
// if a crop exists, it will be resized to the calculated scale
refw = fw;
refh = fh;
}
switch (params->resize.dataspec) {
case (1):
// Width
dScale = (double)params->resize.width / (double)refw;
break;
case (2):
// Height
dScale = (double)params->resize.height / (double)refh;
break;
case (3):
// FitBox
if ((double)refw / (double)refh > (double)params->resize.width / (double)params->resize.height) {
dScale = (double)params->resize.width / (double)refw;
} else {
dScale = (double)params->resize.height / (double)refh;
}
break;
default:
// Scale
dScale = params->resize.scale;
break;
}
if (fabs (dScale - 1.0) <= 1e-5) {
return 1.0;
}
if (params->crop.enabled && params->resize.appliesTo == "Full image") {
imw = params->crop.w;
imh = params->crop.h;
} else {
imw = refw;
imh = refh;
}
imw = (int) ( (double)imw * dScale + 0.5 );
imh = (int) ( (double)imh * dScale + 0.5 );
return (float)dScale;
}
void ImProcFunctions::resize (Imagefloat* src, Imagefloat* dst, float dScale)
{
#ifdef PROFILE
time_t t1 = clock();
#endif
if (params->resize.method != "Nearest" ) {
Lanczos (src, dst, dScale);
} else {
// Nearest neighbour algorithm
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < dst->getHeight(); i++) {
int sy = i / dScale;
sy = LIM (sy, 0, src->getHeight() - 1);
for (int j = 0; j < dst->getWidth(); j++) {
int sx = j / dScale;
sx = LIM (sx, 0, src->getWidth() - 1);
dst->r (i, j) = src->r (sy, sx);
dst->g (i, j) = src->g (sy, sx);
dst->b (i, j) = src->b (sy, sx);
}
}
}
#ifdef PROFILE
time_t t2 = clock();
std::cout << "Resize: " << params->resize.method << ": "
<< (float) (t2 - t1) / CLOCKS_PER_SEC << std::endl;
#endif
}
}