rawTherapee/rtengine/cplx_wavelet_dec.h

270 lines
7.9 KiB
C++

/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* 2010 Ilya Popov <ilia_popov@rambler.ru>
* 2012 Emil Martinec <ejmartin@uchicago.edu>
*/
#ifndef CPLX_WAVELET_DEC_H_INCLUDED
#define CPLX_WAVELET_DEC_H_INCLUDED
#include <cstddef>
#include <math.h>
#include "cplx_wavelet_level.h"
#include "cplx_wavelet_filter_coeffs.h"
namespace rtengine
{
class wavelet_decomposition
{
public:
typedef float internal_type;
float *coeff0;
bool memoryAllocationFailed;
private:
static const int maxlevels = 10;//should be greater than any conceivable order of decimation
int lvltot, subsamp;
int numThreads;
int m_w, m_h;//dimensions
int wavfilt_len, wavfilt_offset;
float *wavfilt_anal;
float *wavfilt_synth;
wavelet_level<internal_type> * wavelet_decomp[maxlevels];
public:
template<typename E>
wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling, int skipcrop = 1, int numThreads = 1, int Daub4Len = 6);
~wavelet_decomposition();
internal_type ** level_coeffs(int level) const
{
return wavelet_decomp[level]->subbands();
}
int level_W(int level) const
{
return wavelet_decomp[level]->width();
}
int level_H(int level) const
{
return wavelet_decomp[level]->height();
}
int level_stride(int level) const
{
return wavelet_decomp[level]->stride();
}
int maxlevel() const
{
return lvltot + 1;
}
int subsample() const
{
return subsamp;
}
template<typename E>
void reconstruct(E * dst, const float blend = 1.f);
};
template<typename E>
wavelet_decomposition::wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling, int skipcrop, int numThreads, int Daub4Len)
: coeff0(NULL), memoryAllocationFailed(false), lvltot(0), subsamp(subsampling), numThreads(numThreads), m_w(width), m_h(height)
{
//initialize wavelet filters
wavfilt_len = Daub4Len;
wavfilt_offset = Daub4_offset;
wavfilt_anal = new float[2 * wavfilt_len];
wavfilt_synth = new float[2 * wavfilt_len];
if(wavfilt_len == 6) {
for (int n = 0; n < 2; n++) {
for (int i = 0; i < wavfilt_len; i++) {
wavfilt_anal[wavfilt_len * (n) + i] = Daub4_anal[n][i];
wavfilt_synth[wavfilt_len * (n) + i] = Daub4_anal[n][wavfilt_len - 1 - i];
//n=0 lopass, n=1 hipass
}
}
} else if(wavfilt_len == 8) {
for (int n = 0; n < 2; n++) {
for (int i = 0; i < wavfilt_len; i++) {
wavfilt_anal[wavfilt_len * (n) + i] = Daub4_anal8[n][i];
wavfilt_synth[wavfilt_len * (n) + i] = Daub4_anal8[n][wavfilt_len - 1 - i];
//n=0 lopass, n=1 hipass
}
}
} else if(wavfilt_len == 12) {
for (int n = 0; n < 2; n++) {
for (int i = 0; i < wavfilt_len; i++) {
wavfilt_anal[wavfilt_len * (n) + i] = Daub4_anal12[n][i];
wavfilt_synth[wavfilt_len * (n) + i] = Daub4_anal12[n][wavfilt_len - 1 - i];
//n=0 lopass, n=1 hipass
}
}
} else if(wavfilt_len == 16) {
for (int n = 0; n < 2; n++) {
for (int i = 0; i < wavfilt_len; i++) {
wavfilt_anal[wavfilt_len * (n) + i] = Daub4_anal16[n][i];
wavfilt_synth[wavfilt_len * (n) + i] = Daub4_anal16[n][wavfilt_len - 1 - i];
//n=0 lopass, n=1 hipass
}
}
} else if(wavfilt_len == 4) {
for (int n = 0; n < 2; n++) {
for (int i = 0; i < wavfilt_len; i++) {
wavfilt_anal[wavfilt_len * (n) + i] = Daub4_anal0[n][i];
wavfilt_synth[wavfilt_len * (n) + i] = Daub4_anal0[n][wavfilt_len - 1 - i];
//n=0 lopass, n=1 hipass
}
}
}
// after coefficient rotation, data structure is:
// wavelet_decomp[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
lvltot = 0;
E *buffer[2];
buffer[0] = new (std::nothrow) E[(m_w / 2 + 1) * (m_h / 2 + 1)];
if(buffer[0] == NULL) {
memoryAllocationFailed = true;
return;
}
buffer[1] = new (std::nothrow) E[(m_w / 2 + 1) * (m_h / 2 + 1)];
if(buffer[1] == NULL) {
memoryAllocationFailed = true;
delete[] buffer[0];
buffer[0] = NULL;
return;
}
int bufferindex = 0;
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(src, buffer[bufferindex ^ 1], lvltot/*level*/, subsamp, m_w, m_h, \
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset, skipcrop, numThreads);
if(wavelet_decomp[lvltot]->memoryAllocationFailed) {
memoryAllocationFailed = true;
}
while(lvltot < maxlvl - 1) {
lvltot++;
bufferindex ^= 1;
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(buffer[bufferindex], buffer[bufferindex ^ 1]/*lopass*/, lvltot/*level*/, subsamp, \
wavelet_decomp[lvltot - 1]->width(), wavelet_decomp[lvltot - 1]->height(), \
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset, skipcrop, numThreads);
if(wavelet_decomp[lvltot]->memoryAllocationFailed) {
memoryAllocationFailed = true;
}
}
coeff0 = buffer[bufferindex ^ 1];
delete[] buffer[bufferindex];
}
template<typename E>
void wavelet_decomposition::reconstruct(E * dst, const float blend)
{
if(memoryAllocationFailed) {
return;
}
// data structure is wavcoeffs[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
if(lvltot >= 1) {
int width = wavelet_decomp[1]->m_w;
int height = wavelet_decomp[1]->m_h;
E *tmpHi = new (std::nothrow) E[width * height];
if(tmpHi == NULL) {
memoryAllocationFailed = true;
return;
}
for (int lvl = lvltot; lvl > 0; lvl--) {
E *tmpLo = wavelet_decomp[lvl]->wavcoeffs[2]; // we can use this as buffer
wavelet_decomp[lvl]->reconstruct_level(tmpLo, tmpHi, coeff0, coeff0, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
delete wavelet_decomp[lvl];
wavelet_decomp[lvl] = NULL;
}
delete[] tmpHi;
}
int width = wavelet_decomp[0]->m_w;
int height = wavelet_decomp[0]->m_h2;
E *tmpLo;
if(wavelet_decomp[0]->bigBlockOfMemoryUsed()) { // bigBlockOfMemoryUsed means that wavcoeffs[2] points to a block of memory big enough to hold the data
tmpLo = wavelet_decomp[0]->wavcoeffs[2];
} else { // allocate new block of memory
tmpLo = new (std::nothrow) E[width * height];
if(tmpLo == NULL) {
memoryAllocationFailed = true;
return;
}
}
E *tmpHi = new (std::nothrow) E[width * height];
if(tmpHi == NULL) {
memoryAllocationFailed = true;
if(!wavelet_decomp[0]->bigBlockOfMemoryUsed()) {
delete[] tmpLo;
}
return;
}
wavelet_decomp[0]->reconstruct_level(tmpLo, tmpHi, coeff0, dst, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset, blend);
if(!wavelet_decomp[0]->bigBlockOfMemoryUsed()) {
delete[] tmpLo;
}
delete[] tmpHi;
delete wavelet_decomp[0];
wavelet_decomp[0] = NULL;
delete[] coeff0;
coeff0 = NULL;
}
};
#endif