Files
rawTherapee/rtengine/iplocallab.cc
2019-07-19 08:17:54 +02:00

8575 lines
347 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
* 2016 Jacques Desmis <jdesmis@gmail.com>
* 2016 Ingo Weyrich <heckflosse@i-weyrich.de>
*/
#include <cmath>
#include <fftw3.h>
#include "improcfun.h"
#include "curves.h"
#include "gauss.h"
#include "iccmatrices.h"
#include "color.h"
#include "rt_math.h"
#include "jaggedarray.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "../rtgui/thresholdselector.h"
#include "cplx_wavelet_dec.h"
#include "ciecam02.h"
#define BENCHMARK
#include "StopWatch.h"
#include "guidedfilter.h"
#define TS 64 // Tile size
#define offset 25 // shift between tiles
#define fTS ((TS/2+1)) // second dimension of Fourier tiles
#define blkrad 1 // radius of block averaging
#define offset2 25 // shift between tiles
#define epsilon 0.001f/(TS*TS) //tolerance
#define MAXSCOPE 1.25f
#define MINSCOPE 0.025f
#define CLIPC(a) LIM(a, -42000.f, 42000.f) // limit a and b to 130 probably enough ?
#define CLIPL(x) LIM(x,0.f,40000.f) // limit L to about L=120 probably enough ?
#define CLIPLOC(x) LIM(x,0.f,32767.f)
#define CLIPLIG(x) LIM(x,-99.5f, 99.5f)
#define CLIPCHRO(x) LIM(x,0.f, 140.f)
#define CLIPRET(x) LIM(x,-99.5f, 99.5f)
#define CLIP1(x) LIM(x, 0.f, 1.f)
//define to prevent crash with old pp3 with integer range 100 instead of double range 1.
#define CLIP24(x) LIM(x, -2., 4.)
#define CLIP04(x) LIM(x, 0.f, 4.f)
#define CLIP42_35(x) LIM(x, 0.42, 3.5)
#define CLIP2_30(x) LIM(x, 0.2, 3.)
#define CLIPMAX(x) LIM(x,0.f,500000.f)
#pragma GCC diagnostic warning "-Wall"
#pragma GCC diagnostic warning "-Wextra"
namespace
{
void calcGammaLut(double gamma, double ts, LUTf &gammaLut)
{
double pwr = 1.0 / gamma;
double gamm = gamma;
const double gamm2 = gamma;
rtengine::GammaValues g_a;
if (gamm2 < 1.0) {
std::swap(pwr, gamm);
}
rtengine::Color::calcGamma(pwr, ts, 0, g_a); // call to calcGamma with selected gamma and slope
const double start = gamm2 < 1. ? g_a[2] : g_a[3];
const double add = g_a[4];
const double mul = 1.0 + g_a[4];
if (gamm2 < 1.) {
#pragma omp parallel for schedule(dynamic, 1024)
for (int i = 0; i < 65536; i++) {
const double x = rtengine::Color::igammareti(i / 65535.0, gamm, start, ts, mul, add);
gammaLut[i] = 0.5 * rtengine::CLIP(x * 65535.0); // CLIP avoid in some case extra values
}
} else {
#pragma omp parallel for schedule(dynamic, 1024)
for (int i = 0; i < 65536; i++) {
const double x = rtengine::Color::gammareti(i / 65535.0, gamm, start, ts, mul, add);
gammaLut[i] = 0.5 * rtengine::CLIP(x * 65535.0); // CLIP avoid in some case extra values
}
}
}
float calcLocalFactor(const float lox, const float loy, const float lcx, const float dx, const float lcy, const float dy, const float ach, const float gradient)
{
//elipse x2/a2 + y2/b2=1
//transition elipsoidal
//x==>lox y==>loy
// a==> dx b==>dy
//printf("grad=%f", gradient);
float eps = 0.0001f;
float kelip = dx / dy;
float belip = sqrt((rtengine::SQR((lox - lcx) / kelip) + rtengine::SQR(loy - lcy))); //determine position ellipse ==> a and b
if (belip == 0.f) {
belip = eps;
}
//gradient allows differenciation between transition x and y
float rapy = fabs((loy - lcy) / belip);
float aelip = belip * kelip;
float degrad = aelip / dx;
float gradreal = gradient * rapy + 1.f;
float ap = rtengine::RT_PI_F / (1.f - ach);
float bp = rtengine::RT_PI_F - ap;
float retreal = pow(0.5f * (1.f + xcosf(degrad * ap + bp)), rtengine::SQR(gradreal));
return retreal; //trigo cos transition
}
float calcLocalFactorrect(const float lox, const float loy, const float lcx, const float dx, const float lcy, const float dy, const float ach, const float gradient)
{
float eps = 0.0001f;
float krap = fabs(dx / dy);
float kx = (lox - lcx);
float ky = (loy - lcy);
float ref = 0.f;
//gradient allows differenciation between transition x and y
if (fabs(kx / (ky + eps)) < krap) {
ref = sqrt(rtengine::SQR(dy) * (1.f + rtengine::SQR(kx / (ky + eps))));
} else {
ref = sqrt(rtengine::SQR(dx) * (1.f + rtengine::SQR(ky / (kx + eps))));
}
float rad = sqrt(rtengine::SQR(kx) + rtengine::SQR(ky));
if (rad == 0.f) {
rad = eps;
}
float rapy = fabs((loy - lcy) / rad);
float gradreal = gradient * rapy + 1.f;
float coef = rad / ref;
float ac = 1.f / (ach - 1.f);
float fact = ac * (coef - 1.f);
return pow(fact, rtengine::SQR(gradreal));
}
}
namespace rtengine
{
extern MyMutex *fftwMutex;
using namespace procparams;
extern const Settings* settings;
struct local_params {
float yc, xc;
float ycbuf, xcbuf;
float lx, ly;
float lxL, lyT;
float dxx, dyy;
float iterat;
float balance;
int cir;
float thr;
float stru;
int chro, cont, sens, sensh, senscb, sensbn, senstm, sensex, sensexclu, sensden, senslc, senssf, senshs;
float clarityml;
float contresid;
float blurcbdl;
float struco;
float strengrid;
float struexc;
float blendmacol;
float radmacol;
float chromacol;
float gammacol;
float slomacol;
float radmaexp;
float chromaexp;
float gammaexp;
float slomaexp;
float softradiusexp;
float softradiuscol;
float softradiuscb;
float softradiusret;
float softradiustm;
float blendmaexp;
float radmaSH;
float blendmaSH;
float chromaSH;
float gammaSH;
float slomaSH;
float radmacb;
float blendmacb;
float chromacbm;
float gammacb;
float slomacb;
float struexp;
float blurexp;
float blurcol;
float blurSH;
float ligh;
float lowA, lowB, highA, highB;
int shamo, shdamp, shiter, senssha, sensv;
float neig;
float strng;
float lap;
float lcamount;
double shrad;
double shblurr;
double rad;
double stren;
int trans;
float transweak;
float transgrad;
int dehaze;
bool inv;
bool invex;
bool invsh;
bool curvact;
bool invrad;
bool invret;
bool equret;
bool equtm;
bool invshar;
bool actsp;
bool ftwlc;
bool ftwreti;
float str;
int qualmet;
int qualcurvemet;
int gridmet;
int showmaskcolmet;
int showmaskexpmet;
int showmaskSHmet;
int showmaskcbmet;
int showmaskretimet;
int showmasksoftmet;
float laplacexp;
float balanexp;
float linear;
int expmet;
int softmet;
int blurmet;
float noiself;
float noiself0;
float noiself2;
float noiseldetail;
int noiselequal;
float noisechrodetail;
float bilat;
float noiselc;
float noisecf;
float noisecc;
float mulloc[6];
float threshol;
float chromacb;
float strengt;
float gamm;
float esto;
float scalt;
float rewe;
float amo;
bool colorena;
bool blurena;
bool tonemapena;
bool retiena;
bool sharpena;
bool lcena;
bool sfena;
bool cbdlena;
bool denoiena;
bool expvib;
bool exposena;
bool hsena;
bool cut_past;
float past;
float satur;
int blac;
int shcomp;
int shadex;
int hlcomp;
int hlcompthr;
double expcomp;
float expchroma;
int excmet;
int war;
float adjch;
int shapmet;
bool enaColorMask;
bool enaExpMask;
bool enaSHMask;
bool enacbMask;
bool enaretiMask;
bool enaretiMasktmap;
int highlihs;
int shadowhs;
int radiushs;
int hltonalhs;
int shtonalhs;
float radmareti;
float blendmareti;
float chromareti;
float gammareti;
float slomareti;
int scalereti;
};
static void SobelCannyLuma(float **sobelL, float **luma, int bfw, int bfh, float radius, bool multiThread = false)
{
// base of the process to detect shape in complement of deltaE
// use for calculate Spot reference
// and for structure of the shape
// actually , as the program don't use these function, I just create a simple "Canny" near of Sobel. This can be completed after with teta, etc.
array2D<float> tmL(bfw, bfh);
//inspired from Chen Guanghua Zhang Xiaolong
//Sobel Horizontal
constexpr float GX[3][3] = {
{1.f, 0.f, -1.f},
{2.f, 0.f, -2.f},
{1.f, 0.f, -1.f}
};
//Sobel Vertical
constexpr float GY[3][3] = {
{1.f, 2.f, 1.f},
{0.f, 0.f, 0.f},
{-1.f, -2.f, -1.f}
};
if (radius > 0.f) {
radius = rtengine::max(radius / 2.f, 0.5f);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(luma, tmL, bfw, bfh, radius);
}
} else {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw ; x++) {
sobelL[y][x] = 0.f;
tmL[y][x] = luma[y][x];
}
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 16) if (multiThread)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw ; x++) {
float sumXL = 0.f;
float sumYL = 0.f;
float SUML;
if (y == 0 || y == bfh - 1) {
SUML = 0.f;
} else if (x == 0 || x == bfw - 1) {
SUML = 0.f;
} else {
for (int i = -1; i < 2; i++) {
for (int j = -1; j < 2; j += 2) {
sumXL += GX[j + 1][i + 1] * tmL[y + i][x + j];
}
}
for (int i = -1; i < 2; i += 2) {
for (int j = -1; j < 2; j++) {
sumYL += GY[j + 1][i + 1] * tmL[y + i][x + j];
}
}
//Edge strength
SUML = sqrt(SQR(sumXL) + SQR(sumYL));
//we can add if need teta = atan2 (sumYr, sumXr)
}
sobelL[y][x] = CLIPLOC(SUML);
}
}
}
static void calcLocalParams(int sp, int oW, int oH, const LocallabParams& locallab, struct local_params& lp, int llColorMask, int llExpMask, int llSHMask, int llcbMask, int llretiMask, int llsoftMask)
{
int w = oW;
int h = oH;
int circr = locallab.spots.at(sp).circrad;
float streng = ((float)locallab.spots.at(sp).stren);
float gam = ((float)locallab.spots.at(sp).gamma);
float est = ((float)locallab.spots.at(sp).estop);
float scal_tm = ((float)locallab.spots.at(sp).scaltm);
float rewe = ((float)locallab.spots.at(sp).rewei);
float amo = ((float)locallab.spots.at(sp).amount);
float strlight = ((float)locallab.spots.at(sp).streng);
float strucc = locallab.spots.at(sp).struc;
float laplac = ((float)locallab.spots.at(sp).laplace);
float thre = locallab.spots.at(sp).thresh;
if (thre > 8.f || thre < 0.f) {//to avoid artifacts if user does not clear cache with new settings. Can be suppressed after
thre = 2.f;
}
double local_x = locallab.spots.at(sp).locX / 2000.0;
double local_y = locallab.spots.at(sp).locY / 2000.0;
double local_xL = locallab.spots.at(sp).locXL / 2000.0;
double local_yT = locallab.spots.at(sp).locYT / 2000.0;
double local_center_x = locallab.spots.at(sp).centerX / 2000.0 + 0.5;
double local_center_y = locallab.spots.at(sp).centerY / 2000.0 + 0.5;
double local_center_xbuf = 0.0; // Provision
double local_center_ybuf = 0.0; // Provision
double local_dxy = locallab.spots.at(sp).iter / 8000.0; //for proxi = 2==> # 1 pixel
float iterati = (float) locallab.spots.at(sp).iter;
float balanc = (float) locallab.spots.at(sp).balan;
if (iterati > 4.f || iterati < 0.2f) {//to avoid artifacts if user does not clear cache with new settings Can be suppressed after
iterati = 2.f;
}
float neigh = float (locallab.spots.at(sp).neigh);
float chromaPastel = float (locallab.spots.at(sp).pastels) / 100.0f;
float chromaSatur = float (locallab.spots.at(sp).saturated) / 100.0f;
int local_sensiv = locallab.spots.at(sp).sensiv;
int local_sensiex = locallab.spots.at(sp).sensiex;
if (locallab.spots.at(sp).qualityMethod == "enh") {
lp.qualmet = 1;
} else if (locallab.spots.at(sp).qualityMethod == "enhden") {
lp.qualmet = 2;
}
if (locallab.spots.at(sp).qualitycurveMethod == "none") {
lp.qualcurvemet = 0;
} else if (locallab.spots.at(sp).qualitycurveMethod == "std") {
lp.qualcurvemet = 1;
}
if (locallab.spots.at(sp).gridMethod == "one") {
lp.gridmet = 0;
} else if (locallab.spots.at(sp).gridMethod == "two") {
lp.gridmet = 1;
}
if (locallab.spots.at(sp).expMethod == "std") {
lp.expmet = 0;
} else if (locallab.spots.at(sp).expMethod == "pde") {
lp.expmet = 1;
}
lp.laplacexp = locallab.spots.at(sp).laplacexp;
lp.balanexp = locallab.spots.at(sp).balanexp;
lp.linear = locallab.spots.at(sp).linear;
lp.showmaskcolmet = llColorMask;
lp.showmaskexpmet = llExpMask;
lp.showmaskSHmet = llSHMask;
lp.showmaskcbmet = llcbMask;
lp.showmaskretimet = llretiMask;
lp.showmasksoftmet = llsoftMask;
//if(locallab.spots.at(sp).enaretiMask) printf("enaritrue\n"); else printf("enaritfalse\n");
lp.enaExpMask = locallab.spots.at(sp).enaExpMask && llExpMask == 0 && llColorMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0;// Exposure mask is deactivated if Color & Light mask is visible
lp.enaSHMask = locallab.spots.at(sp).enaSHMask && llSHMask == 0 && llColorMask == 0 && llExpMask == 0 && llcbMask == 0 && llretiMask == 0;
lp.enacbMask = locallab.spots.at(sp).enacbMask && llcbMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llretiMask == 0;
lp.enaretiMask = locallab.spots.at(sp).enaretiMask && llretiMask == 0 && llColorMask == 0 && llExpMask == 0 && llSHMask == 0 && llcbMask == 0;
// if(lp.enaretiMask) printf("lp.enaretiMasktrue\n"); else printf("lp.enaretiMaskfalse\n");
if (locallab.spots.at(sp).softMethod == "soft") {
lp.softmet = 0;
} else if (locallab.spots.at(sp).softMethod == "reti") {
lp.softmet = 1;
}
if (locallab.spots.at(sp).blurMethod == "norm") {
lp.blurmet = 0;
} else if (locallab.spots.at(sp).blurMethod == "inv") {
lp.blurmet = 1;
}
if (locallab.spots.at(sp).spotMethod == "norm") {
lp.excmet = 0;
} else if (locallab.spots.at(sp).spotMethod == "exc") {
lp.excmet = 1;
}
if (locallab.spots.at(sp).shape == "ELI") {
lp.shapmet = 0;
} else if (locallab.spots.at(sp).shape == "RECT") {
lp.shapmet = 1;
}
float local_noiself = (float)locallab.spots.at(sp).noiselumf;
float local_noiself0 = (float)locallab.spots.at(sp).noiselumf0;
float local_noiself2 = (float)locallab.spots.at(sp).noiselumf2;
float local_noiselc = (float)locallab.spots.at(sp).noiselumc;
float local_noiseldetail = (float)locallab.spots.at(sp).noiselumdetail;
int local_noiselequal = locallab.spots.at(sp).noiselequal;
float local_noisechrodetail = (float)locallab.spots.at(sp).noisechrodetail;
int local_sensiden = locallab.spots.at(sp).sensiden;
float local_noisecf = ((float)locallab.spots.at(sp).noisechrof) / 10.f;
float local_noisecc = ((float)locallab.spots.at(sp).noisechroc) / 10.f;
float multi[6];
for (int y = 0; y < 6; y++) {
multi[y] = ((float) locallab.spots.at(sp).mult[y]);
}
float thresho = ((float)locallab.spots.at(sp).threshold);
float chromcbdl = (float)locallab.spots.at(sp).chromacbdl;
int local_chroma = locallab.spots.at(sp).chroma;
int local_sensi = locallab.spots.at(sp).sensi;
int local_sensibn = locallab.spots.at(sp).sensibn;
int local_sensitm = locallab.spots.at(sp).sensitm;
int local_sensiexclu = locallab.spots.at(sp).sensiexclu;
float structexclude = (float) locallab.spots.at(sp).structexclu;
int local_sensilc = locallab.spots.at(sp).sensilc;
// int local_struc = locallab.spots.at(sp).struc;
int local_warm = locallab.spots.at(sp).warm;
int local_sensih = locallab.spots.at(sp).sensih;
int local_dehaze = locallab.spots.at(sp).dehaz;
int local_sensicb = locallab.spots.at(sp).sensicb;
float local_clarityml = (float) locallab.spots.at(sp).clarityml;
float local_contresid = (float) locallab.spots.at(sp).contresid;
int local_blurcbdl = (float) locallab.spots.at(sp).blurcbdl;
int local_contrast = locallab.spots.at(sp).contrast;
float local_lightness = (float) locallab.spots.at(sp).lightness;
float labgridALowloc = locallab.spots.at(sp).labgridALow;
float labgridBLowloc = locallab.spots.at(sp).labgridBLow;
float labgridBHighloc = locallab.spots.at(sp).labgridBHigh;
float labgridAHighloc = locallab.spots.at(sp).labgridAHigh;
float strengthgrid = (float) locallab.spots.at(sp).strengthgrid;
float structcolor = (float) locallab.spots.at(sp).structcol;
float blendmaskcolor = ((float) locallab.spots.at(sp).blendmaskcol) / 100.f ;
float radmaskcolor = ((float) locallab.spots.at(sp).radmaskcol);
float chromaskcolor = ((float) locallab.spots.at(sp).chromaskcol);
float gammaskcolor = ((float) locallab.spots.at(sp).gammaskcol);
float slomaskcolor = ((float) locallab.spots.at(sp).slomaskcol);
float blendmaskexpo = ((float) locallab.spots.at(sp).blendmaskexp) / 100.f ;
float radmaskexpo = ((float) locallab.spots.at(sp).radmaskexp);
float chromaskexpo = ((float) locallab.spots.at(sp).chromaskexp);
float gammaskexpo = ((float) locallab.spots.at(sp).gammaskexp);
float slomaskexpo = ((float) locallab.spots.at(sp).slomaskexp);
float softradiusexpo = ((float) locallab.spots.at(sp).softradiusexp);
float softradiuscolor = ((float) locallab.spots.at(sp).softradiuscol);
float softradiusreti = ((float) locallab.spots.at(sp).softradiusret);
float softradiustma = ((float) locallab.spots.at(sp).softradiustm);
float softradiuscbdl = ((float) locallab.spots.at(sp).softradiuscb);
float blendmaskSH = ((float) locallab.spots.at(sp).blendmaskSH) / 100.f ;
float radmaskSH = ((float) locallab.spots.at(sp).radmaskSH);
float chromaskSH = ((float) locallab.spots.at(sp).chromaskSH);
float gammaskSH = ((float) locallab.spots.at(sp).gammaskSH);
float slomaskSH = ((float) locallab.spots.at(sp).slomaskSH);
float structexpo = (float) locallab.spots.at(sp).structexp;
float blurexpo = (float) locallab.spots.at(sp).blurexpde;
float blurcolor = (float) locallab.spots.at(sp).blurcolde;
float blurSH = (float) locallab.spots.at(sp).blurSHde;
int local_transit = locallab.spots.at(sp).transit;
float local_transitweak = (float)locallab.spots.at(sp).transitweak;
float local_transitgrad = (float)locallab.spots.at(sp).transitgrad;
float radius = (float) locallab.spots.at(sp).radius;
double sharradius = ((double) locallab.spots.at(sp).sharradius);
sharradius = CLIP42_35(sharradius);
float lcamount = ((float) locallab.spots.at(sp).lcamount);
lcamount = CLIP1(lcamount); //to prevent crash with old pp3 integer
double sharblurr = ((double) locallab.spots.at(sp).sharblur);
sharblurr = CLIP2_30(sharblurr);//to prevent crash with old pp3 integer
int local_sensisha = locallab.spots.at(sp).sensisha;
int local_sharamount = locallab.spots.at(sp).sharamount;
int local_shardamping = locallab.spots.at(sp).shardamping;
int local_shariter = locallab.spots.at(sp).shariter;
bool inverse = locallab.spots.at(sp).invers;
bool curvacti = locallab.spots.at(sp).curvactiv;
bool acti = locallab.spots.at(sp).activlum;
bool cupas = false; // Provision
int local_sensisf = locallab.spots.at(sp).sensisf;
bool inverseex = locallab.spots.at(sp).inversex;
bool inversesh = locallab.spots.at(sp).inverssh;
bool equiltm = locallab.spots.at(sp).equiltm;
bool fftwlc = locallab.spots.at(sp).fftwlc;
bool fftwreti = locallab.spots.at(sp).fftwreti;
bool equilret = locallab.spots.at(sp).equilret;
bool inverserad = false; // Provision
bool inverseret = locallab.spots.at(sp).inversret;
bool inversesha = locallab.spots.at(sp).inverssha;
double strength = (double) locallab.spots.at(sp).strength;
float str = (float)locallab.spots.at(sp).str;
int scaleret = (float)locallab.spots.at(sp).scalereti;
int local_sensihs = locallab.spots.at(sp).sensihs;
int highhs = locallab.spots.at(sp).highlights;
int hltonahs = locallab.spots.at(sp).h_tonalwidth;
int shadhs = locallab.spots.at(sp).shadows;
int shtonals = locallab.spots.at(sp).s_tonalwidth;
int radhs = locallab.spots.at(sp).sh_radius;
float blendmaskcb = ((float) locallab.spots.at(sp).blendmaskcb) / 100.f ;
float radmaskcb = ((float) locallab.spots.at(sp).radmaskcb);
float chromaskcb = ((float) locallab.spots.at(sp).chromaskcb);
float gammaskcb = ((float) locallab.spots.at(sp).gammaskcb);
float slomaskcb = ((float) locallab.spots.at(sp).slomaskcb);
bool enaretiMasktm = locallab.spots.at(sp).enaretiMasktmap;
lp.enaretiMasktmap = enaretiMasktm;
lp.scalereti = scaleret;
lp.cir = circr;
lp.actsp = acti;
lp.xc = w * local_center_x;
lp.yc = h * local_center_y;
lp.xcbuf = w * local_center_xbuf;
lp.ycbuf = h * local_center_ybuf;
lp.lx = w * local_x;
lp.ly = h * local_y;
lp.lxL = w * local_xL;
lp.lyT = h * local_yT;
lp.chro = local_chroma;
lp.struco = structcolor;
lp.strengrid = strengthgrid;
lp.blendmacol = blendmaskcolor;
lp.radmacol = radmaskcolor;
lp.chromacol = chromaskcolor;
lp.gammacol = gammaskcolor;
lp.slomacol = slomaskcolor;
lp.radmaexp = radmaskexpo;
lp.chromaexp = chromaskexpo;
lp.gammaexp = gammaskexpo;
lp.slomaexp = slomaskexpo;
lp.softradiusexp = softradiusexpo;
lp.softradiuscol = softradiuscolor;
lp.softradiusret = softradiusreti;
lp.softradiuscb = softradiuscbdl;
lp.softradiustm = softradiustma;
lp.struexc = structexclude;
lp.blendmaexp = blendmaskexpo;
lp.blendmaSH = blendmaskSH;
lp.radmaSH = radmaskSH;
lp.chromaSH = chromaskSH;
lp.gammaSH = gammaskSH;
lp.slomaSH = slomaskSH;
lp.blendmacb = blendmaskcb;
lp.radmacb = radmaskcb;
lp.chromacbm = chromaskcb;
lp.gammacb = gammaskcb;
lp.slomacb = slomaskcb;
lp.struexp = structexpo;
lp.blurexp = blurexpo;
lp.blurcol = blurcolor;
lp.blurSH = blurSH;
lp.sens = local_sensi;
lp.sensh = local_sensih;
lp.dehaze = local_dehaze;
lp.senscb = local_sensicb;
lp.clarityml = local_clarityml;
//printf("lpclari=%f \n", lp.clarityml);
lp.contresid = local_contresid;
lp.blurcbdl = local_blurcbdl;
lp.cont = local_contrast;
lp.ligh = local_lightness;
lp.lowA = labgridALowloc;
lp.lowB = labgridBLowloc;
lp.highB = labgridBHighloc;
lp.highA = labgridAHighloc;
lp.senssf = local_sensisf;
lp.strng = strlight;
lp.neig = neigh;
lp.lap = laplac;
if (lp.ligh >= -2.f && lp.ligh <= 2.f) {
lp.ligh /= 5.f;
}
lp.trans = local_transit;
lp.transweak = local_transitweak;
lp.transgrad = local_transitgrad;
lp.rad = radius;
lp.stren = strength;
lp.sensbn = local_sensibn;
lp.sensexclu = local_sensiexclu;
lp.senslc = local_sensilc;
lp.lcamount = lcamount;
lp.inv = inverse;
lp.invex = inverseex;
lp.invsh = inversesh;
lp.curvact = curvacti;
lp.invrad = inverserad;
lp.invret = inverseret;
lp.equret = equilret;
lp.equtm = equiltm;
lp.invshar = inversesha;
lp.str = str;
lp.shrad = sharradius;
lp.shblurr = sharblurr;
lp.senssha = local_sensisha;
lp.shamo = local_sharamount;
lp.shdamp = local_shardamping;
lp.shiter = local_shariter;
lp.iterat = iterati;
lp.balance = balanc;
lp.dxx = w * local_dxy;
lp.dyy = h * local_dxy;
lp.thr = thre;
lp.stru = strucc;
lp.noiself = local_noiself;
lp.noiself0 = local_noiself0;
lp.noiself2 = local_noiself2;
lp.noiseldetail = local_noiseldetail;
lp.noiselequal = local_noiselequal;
lp.noisechrodetail = local_noisechrodetail;
lp.noiselc = local_noiselc;
lp.noisecf = local_noisecf;
lp.noisecc = local_noisecc;
lp.sensden = local_sensiden;
lp.bilat = locallab.spots.at(sp).bilateral;
lp.adjch = (float) locallab.spots.at(sp).adjblur;
lp.strengt = streng;
lp.gamm = gam;
lp.esto = est;
lp.scalt = scal_tm;
lp.rewe = rewe;
lp.senstm = local_sensitm;
lp.amo = amo;
for (int y = 0; y < 6; y++) {
lp.mulloc[y] = CLIP04(multi[y]);//to prevent crash with old pp3 integer
}
lp.threshol = thresho;
lp.chromacb = chromcbdl;
lp.colorena = locallab.spots.at(sp).expcolor && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0; // Color & Light tool is deactivated if Exposure mask is visible or SHMask
lp.blurena = locallab.spots.at(sp).expblur;
lp.tonemapena = locallab.spots.at(sp).exptonemap;
lp.retiena = locallab.spots.at(sp).expreti && llExpMask == 0 && llSHMask == 0 && llcbMask == 0 && llColorMask == 0;
lp.sharpena = locallab.spots.at(sp).expsharp;
lp.lcena = locallab.spots.at(sp).expcontrast;
lp.sfena = locallab.spots.at(sp).expsoft;
lp.cbdlena = locallab.spots.at(sp).expcbdl && llExpMask == 0 && llSHMask == 0 && llretiMask == 0 && llColorMask == 0 ;
lp.denoiena = locallab.spots.at(sp).expdenoi;
lp.expvib = locallab.spots.at(sp).expvibrance;
lp.sensv = local_sensiv;
lp.past = chromaPastel;
lp.satur = chromaSatur;
lp.exposena = locallab.spots.at(sp).expexpose && llColorMask == 0 && llSHMask == 0 && llcbMask == 0 && llretiMask == 0; // Exposure tool is deactivated if Color & Light mask SHmask is visible
lp.cut_past = cupas;
lp.blac = locallab.spots.at(sp).black;
lp.shcomp = locallab.spots.at(sp).shcompr;
lp.shadex = locallab.spots.at(sp).shadex;
lp.hlcomp = locallab.spots.at(sp).hlcompr;
lp.hlcompthr = locallab.spots.at(sp).hlcomprthresh;
lp.expcomp = locallab.spots.at(sp).expcomp;
lp.expcomp = CLIP24(lp.expcomp); //to prevent crash with Old pp3 with integer
lp.expchroma = locallab.spots.at(sp).expchroma / 100.;
lp.sensex = local_sensiex;
lp.war = local_warm;
lp.hsena = locallab.spots.at(sp).expshadhigh && llColorMask == 0 && llExpMask == 0 && llcbMask == 0 && llretiMask == 0 && llcbMask == 0;// Shadow Highlight tool is deactivated if Color & Light mask or SHmask is visible
lp.highlihs = highhs;
lp.shadowhs = shadhs;
lp.radiushs = radhs;
lp.hltonalhs = hltonahs;
lp.shtonalhs = shtonals;
lp.senshs = local_sensihs;
lp.ftwlc = fftwlc;
lp.ftwreti = fftwreti;
}
static void calcTransitionrect(const float lox, const float loy, const float ach, const local_params& lp, int &zone, float &localFactor)
{
zone = 0;
if (lox >= lp.xc && lox < (lp.xc + lp.lx) && loy >= lp.yc && loy < lp.yc + lp.ly) {
if (lox < (lp.xc + lp.lx * ach) && loy < (lp.yc + lp.ly * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lx, lp.yc, lp.ly, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox >= lp.xc && lox < lp.xc + lp.lx && loy < lp.yc && loy > lp.yc - lp.lyT) {
if (lox < (lp.xc + lp.lx * ach) && loy > (lp.yc - lp.lyT * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lx, lp.yc, lp.lyT, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy <= lp.yc && loy > lp.yc - lp.lyT) {
if (lox > (lp.xc - lp.lxL * ach) && loy > (lp.yc - lp.lyT * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lxL, lp.yc, lp.lyT, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy > lp.yc && loy < lp.yc + lp.ly) {
if (lox > (lp.xc - lp.lxL * ach) && loy < (lp.yc + lp.ly * ach)) {
zone = 2;
} else {
zone = 1;
localFactor = calcLocalFactorrect(lox, loy, lp.xc, lp.lxL, lp.yc, lp.ly, ach, lp.transgrad);
localFactor = pow(localFactor, lp.transweak);
}
}
}
static void calcTransition(const float lox, const float loy, const float ach, const local_params& lp, int &zone, float &localFactor)
{
// returns the zone (0 = outside selection, 1 = transition zone between outside and inside selection, 2 = inside selection)
// and a factor to calculate the transition in case zone == 1
zone = 0;
if (lox >= lp.xc && lox < (lp.xc + lp.lx) && loy >= lp.yc && loy < lp.yc + lp.ly) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lx)) + SQR((loy - lp.yc) / (ach * lp.ly));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lx)) + SQR((loy - lp.yc) / (lp.ly))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lx, lp.yc, lp.ly, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox >= lp.xc && lox < lp.xc + lp.lx && loy < lp.yc && loy > lp.yc - lp.lyT) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lx)) + SQR((loy - lp.yc) / (ach * lp.lyT));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lx)) + SQR((loy - lp.yc) / (lp.lyT))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lx, lp.yc, lp.lyT, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy <= lp.yc && loy > lp.yc - lp.lyT) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lxL)) + SQR((loy - lp.yc) / (ach * lp.lyT));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lxL)) + SQR((loy - lp.yc) / (lp.lyT))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lxL, lp.yc, lp.lyT, ach, lp.transgrad), lp.transweak);
}
}
} else if (lox < lp.xc && lox > lp.xc - lp.lxL && loy > lp.yc && loy < lp.yc + lp.ly) {
float zoneVal = SQR((lox - lp.xc) / (ach * lp.lxL)) + SQR((loy - lp.yc) / (ach * lp.ly));
zone = zoneVal < 1.f ? 2 : 0;
if (!zone) {
zone = (zoneVal > 1.f && ((SQR((lox - lp.xc) / (lp.lxL)) + SQR((loy - lp.yc) / (lp.ly))) < 1.f)) ? 1 : 0;
if (zone == 1) {
localFactor = pow(calcLocalFactor(lox, loy, lp.xc, lp.lxL, lp.yc, lp.ly, ach, lp.transgrad), lp.transweak);
}
}
}
}
void ImProcFunctions::ciecamloc_02float(int sp, LabImage* lab)
{
//be carefull quasi duplicate with branch cat02wb
BENCHFUN
int width = lab->W, height = lab->H;
float Yw;
Yw = 1.0f;
double Xw, Zw;
float f = 0.f, nc = 0.f, la, c = 0.f, xw, yw, zw, f2 = 1.f, c2 = 1.f, nc2 = 1.f, yb2;
float fl, n, nbb, ncb, aw; //d
float xwd, ywd, zwd, xws, yws, zws;
// int alg = 0;
double Xwout, Zwout;
double Xwsc, Zwsc;
int tempo;
if (params->locallab.spots.at(sp).warm > 0) {
tempo = 5000 - 30 * params->locallab.spots.at(sp).warm;
} else {
tempo = 5000 - 49 * params->locallab.spots.at(sp).warm;
}
ColorTemp::temp2mulxyz(params->wb.temperature, params->wb.method, Xw, Zw); //compute white Xw Yw Zw : white current WB
ColorTemp::temp2mulxyz(tempo, "Custom", Xwout, Zwout);
ColorTemp::temp2mulxyz(5000, "Custom", Xwsc, Zwsc);
//viewing condition for surrsrc
f = 1.00f;
c = 0.69f;
nc = 1.00f;
//viewing condition for surround
f2 = 1.0f, c2 = 0.69f, nc2 = 1.0f;
//with which algorithm
// alg = 0;
xwd = 100.f * Xwout;
zwd = 100.f * Zwout;
ywd = 100.f;
xws = 100.f * Xwsc;
zws = 100.f * Zwsc;
yws = 100.f;
yb2 = 18;
//La and la2 = ambiant luminosity scene and viewing
la = 400.f;
const float la2 = 400.f;
const float pilot = 2.f;
const float pilotout = 2.f;
//algoritm's params
// const float rstprotection = 100. ;//- params->colorappearance.rstprotection;
LUTu hist16J;
LUTu hist16Q;
float yb = 18.f;
float d, dj;
// const int gamu = 0; //(params->colorappearance.gamut) ? 1 : 0;
xw = 100.0f * Xw;
yw = 100.0f * Yw;
zw = 100.0f * Zw;
float xw1 = xws, yw1 = yws, zw1 = zws, xw2 = xwd, yw2 = ywd, zw2 = zwd;
float cz, wh, pfl;
Ciecam02::initcam1float(yb, pilot, f, la, xw, yw, zw, n, d, nbb, ncb, cz, aw, wh, pfl, fl, c);
// const float chr = 0.f;
const float pow1 = pow_F(1.64f - pow_F(0.29f, n), 0.73f);
float nj, nbbj, ncbj, czj, awj, flj;
Ciecam02::initcam2float(yb2, pilotout, f2, la2, xw2, yw2, zw2, nj, dj, nbbj, ncbj, czj, awj, flj);
#ifdef __SSE2__
const float reccmcz = 1.f / (c2 * czj);
#endif
const float pow1n = pow_F(1.64f - pow_F(0.29f, nj), 0.73f);
// const float QproFactor = (0.4f / c) * (aw + 4.0f) ;
const bool LabPassOne = true;
#ifdef __SSE2__
int bufferLength = ((width + 3) / 4) * 4; // bufferLength has to be a multiple of 4
#endif
#ifndef _DEBUG
#pragma omp parallel
#endif
{
#ifdef __SSE2__
// one line buffer per channel and thread
float Jbuffer[bufferLength] ALIGNED16;
float Cbuffer[bufferLength] ALIGNED16;
float hbuffer[bufferLength] ALIGNED16;
float Qbuffer[bufferLength] ALIGNED16;
float Mbuffer[bufferLength] ALIGNED16;
float sbuffer[bufferLength] ALIGNED16;
#endif
#ifndef _DEBUG
#pragma omp for schedule(dynamic, 16)
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
// vectorized conversion from Lab to jchqms
int k;
vfloat x, y, z;
vfloat J, C, h, Q, M, s;
vfloat c655d35 = F2V(655.35f);
for (k = 0; k < width - 3; k += 4) {
Color::Lab2XYZ(LVFU(lab->L[i][k]), LVFU(lab->a[i][k]), LVFU(lab->b[i][k]), x, y, z);
x = x / c655d35;
y = y / c655d35;
z = z / c655d35;
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, F2V(aw), F2V(fl), F2V(wh),
x, y, z,
F2V(xw1), F2V(yw1), F2V(zw1),
F2V(c), F2V(nc), F2V(pow1), F2V(nbb), F2V(ncb), F2V(pfl), F2V(cz), F2V(d));
STVF(Jbuffer[k], J);
STVF(Cbuffer[k], C);
STVF(hbuffer[k], h);
STVF(Qbuffer[k], Q);
STVF(Mbuffer[k], M);
STVF(sbuffer[k], s);
}
for (; k < width; k++) {
float L = lab->L[i][k];
float a = lab->a[i][k];
float b = lab->b[i][k];
float x, y, z;
//convert Lab => XYZ
Color::Lab2XYZ(L, a, b, x, y, z);
x = x / 655.35f;
y = y / 655.35f;
z = z / 655.35f;
float J, C, h, Q, M, s;
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, aw, fl, wh,
x, y, z,
xw1, yw1, zw1,
c, nc, pow1, nbb, ncb, pfl, cz, d);
Jbuffer[k] = J;
Cbuffer[k] = C;
hbuffer[k] = h;
Qbuffer[k] = Q;
Mbuffer[k] = M;
sbuffer[k] = s;
}
#endif // __SSE2__
for (int j = 0; j < width; j++) {
float J, C, h, Q, M, s;
#ifdef __SSE2__
// use precomputed values from above
J = Jbuffer[j];
C = Cbuffer[j];
h = hbuffer[j];
Q = Qbuffer[j];
M = Mbuffer[j];
s = sbuffer[j];
#else
float x, y, z;
float L = lab->L[i][j];
float a = lab->a[i][j];
float b = lab->b[i][j];
float x1, y1, z1;
//convert Lab => XYZ
Color::Lab2XYZ(L, a, b, x1, y1, z1);
x = (float)x1 / 655.35f;
y = (float)y1 / 655.35f;
z = (float)z1 / 655.35f;
//process source==> normal
Ciecam02::xyz2jchqms_ciecam02float(J, C, h,
Q, M, s, aw, fl, wh,
x, y, z,
xw1, yw1, zw1,
c, nc, pow1, nbb, ncb, pfl, cz, d);
#endif
float Jpro, Cpro, hpro, Qpro, Mpro, spro;
Jpro = J;
Cpro = C;
hpro = h;
Qpro = Q;
Mpro = M;
spro = s;
/*
*/
//retrieve values C,J...s
C = Cpro;
J = Jpro;
Q = Qpro;
M = Mpro;
h = hpro;
s = spro;
if (LabPassOne) {
#ifdef __SSE2__
// write to line buffers
Jbuffer[j] = J;
Cbuffer[j] = C;
hbuffer[j] = h;
#else
float xx, yy, zz;
//process normal==> viewing
Ciecam02::jch2xyz_ciecam02float(xx, yy, zz,
J, C, h,
xw2, yw2, zw2,
c2, nc2, pow1n, nbbj, ncbj, flj, czj, dj, awj);
float x, y, z;
x = xx * 655.35f;
y = yy * 655.35f;
z = zz * 655.35f;
float Ll, aa, bb;
//convert xyz=>lab
Color::XYZ2Lab(x, y, z, Ll, aa, bb);
lab->L[i][j] = Ll;
lab->a[i][j] = aa;
lab->b[i][j] = bb;
#endif
}
// }
}
#ifdef __SSE2__
// process line buffers
float *xbuffer = Qbuffer;
float *ybuffer = Mbuffer;
float *zbuffer = sbuffer;
for (k = 0; k < bufferLength; k += 4) {
Ciecam02::jch2xyz_ciecam02float(x, y, z,
LVF(Jbuffer[k]), LVF(Cbuffer[k]), LVF(hbuffer[k]),
F2V(xw2), F2V(yw2), F2V(zw2),
F2V(nc2), F2V(pow1n), F2V(nbbj), F2V(ncbj), F2V(flj), F2V(dj), F2V(awj), F2V(reccmcz));
STVF(xbuffer[k], x * c655d35);
STVF(ybuffer[k], y * c655d35);
STVF(zbuffer[k], z * c655d35);
}
// XYZ2Lab uses a lookup table. The function behind that lut is a cube root.
// SSE can't beat the speed of that lut, so it doesn't make sense to use SSE
for (int j = 0; j < width; j++) {
float Ll, aa, bb;
//convert xyz=>lab
Color::XYZ2Lab(xbuffer[j], ybuffer[j], zbuffer[j], Ll, aa, bb);
lab->L[i][j] = Ll;
lab->a[i][j] = aa;
lab->b[i][j] = bb;
}
#endif
}
}
}
void ImProcFunctions::softproc(const LabImage* bufcolorig, const LabImage* bufcolfin, float rad, int bfh, int bfw, double epsilmax, double epsilmin, float thres, int sk, bool multiThread)
{
if (rad > 0.f) {
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
ble[ir][jr] = (bufcolfin->L[ir][jr]) / 32768.f;
guid[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * rad + bepsil;
float blur = 10.f / sk * (thres + 0.8f * rad);
rtengine::guidedFilter(guid, ble, ble, blur, epsil, multiThread, 4);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
bufcolfin->L[ir][jr] = 32768.f * ble[ir][jr];
}
}
}
void ImProcFunctions::softprocess(const LabImage* bufcolorig, array2D<float> &buflight, float rad, int bfh, int bfw, double epsilmax, double epsilmin, float thres, int sk, bool multiThread)
{
float minlig = buflight[0][0];
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minlig) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
minlig = rtengine::min(buflight[ir][jr], minlig);
}
}
array2D<float> guidsoft(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = LIM01((buflight[ir][jr] - minlig) / (100.f - minlig));
guidsoft[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
}
double aepsil = (epsilmax - epsilmin) / 90.f;
double bepsil = epsilmax - 100.f * aepsil;
double epsil = aepsil * rad + bepsil;
float blur = 1.f / sk * (thres + 0.8f * rad);
guidedFilter(guidsoft, buflight, buflight, blur, epsil, multiThread, 4);
// guidedFilter(guidsoft, buflight, buflight, rad * 100.f / sk, 0.001, multiThread, 4);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = (100.f - minlig) * buflight[ir][jr] + minlig;
}
}
}
void ImProcFunctions::exlabLocal(const local_params& lp, int bfh, int bfw, LabImage* bufexporig, LabImage* lab, LUTf & hltonecurve, LUTf & shtonecurve, LUTf & tonecurve, float mean)
{
BENCHFUN
//exposure local
constexpr float maxran = 65536.f;
float exp_scale = pow(2.0, lp.expcomp);
float comp = (max(0.0, lp.expcomp) + 1.0) * lp.hlcomp / 100.0;
float shoulder = ((maxran / max(1.0f, exp_scale)) * (lp.hlcompthr / 200.0)) + 0.1;
float hlrange = maxran - shoulder;
float linear = lp.linear;
// printf("linear=%f mean=%f expc=%f\n", linear, mean, lp.expcomp);
float kl = 1.5f;
float addcomp = 0.f;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float L = bufexporig->L[ir][jr];
if (L < mean && lp.expmet == 1 && lp.expcomp > 0.f && !lp.invex) {
float Llin = LIM01(L / 32768.f);
addcomp = linear * (-kl * Llin + kl);
exp_scale = pow(2.0, (lp.expcomp + addcomp));
shoulder = ((maxran / max(1.0f, (exp_scale + addcomp))) * (lp.hlcompthr / 200.0)) + 0.1;
comp = (max(0.0, (lp.expcomp + addcomp)) + 1.0) * lp.hlcomp / 100.0;
hlrange = maxran - shoulder;
}
// CurveFactory::Curvelocalhl(comp, lp.hlcomp, lp.hlcompthr, hltonecurve);//to change with comp(ir,jr) if need
//highlight
const float hlfactor = (2 * L < MAXVALF ? hltonecurve[2 * L] : CurveFactory::hlcurve(exp_scale, comp, hlrange, 2 * L));
L *= hlfactor * pow(2.0, addcomp);//approximation but pretty good with Laplacian
//shadow tone curve
const float shfactor = shtonecurve[2 * L];
//tonecurve
L *= shfactor;
lab->L[ir][jr] = 0.5f * tonecurve[2 * L];
}
}
}
void ImProcFunctions::addGaNoise(LabImage *lab, LabImage *dst, const float mean, const float variance, const int sk)
{
// BENCHFUN
//Box-Muller method.
// add luma noise to image
srand(1);
const float variaFactor = SQR(variance) / sk;
constexpr float randFactor1 = 1.f / RAND_MAX;
constexpr float randFactor2 = (2.f * rtengine::RT_PI_F) / RAND_MAX;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float z0, z1;
bool generate = false;
#ifdef _OPENMP
#pragma omp for schedule(static) // static scheduling is important to avoid artefacts
#endif
for (int y = 0; y < lab->H; y++) {
for (int x = 0; x < lab->W; x++) {
generate = !generate;
float kvar = 1.f;
if (lab->L[y][x] < 12000.f) {
constexpr float ah = -0.5f / 12000.f;
constexpr float bh = 1.5f;
kvar = ah * lab->L[y][x] + bh; //increase effect for low lights < 12000.f
} else if (lab->L[y][x] > 20000.f) {
constexpr float ah = -0.5f / 12768.f;
constexpr float bh = 1.f - 20000.f * ah;
kvar = ah * lab->L[y][x] + bh; //decrease effect for high lights > 20000.f
kvar = kvar < 0.5f ? 0.5f : kvar;
}
float varia = SQR(kvar) * variaFactor;
if (!generate) {
dst->L[y][x] = LIM(lab->L[y][x] + mean + varia * z1, 0.f, 32768.f);
continue;
}
int u1 = 0;
int u2;
while (u1 == 0) {
u1 = rand();
u2 = rand();
}
float u1f = u1 * randFactor1;
float u2f = u2 * randFactor2;
float2 sincosval = xsincosf(2.f * rtengine::RT_PI_F * u2f);
float factor = sqrtf(-2.f * xlogf(u1f));
z0 = factor * sincosval.y;
z1 = factor * sincosval.x;
dst->L[y][x] = LIM(lab->L[y][x] + mean + varia * z0, 0.f, 32768.f);
}
}
}
}
static void balancedeltaE(float kL, float &kab)
{
float mincurs = 0.3f;//minimum slider balan_
float maxcurs = 1.7f;//maximum slider balan_
float maxkab = 1.35;//0.5 * (3 - 0.3)
float minkab = 0.65;//0.5 * (3 - 1.7)
float abal = (maxkab - minkab) / (mincurs - maxcurs);
float bbal = maxkab - mincurs * abal;
kab = abal * kL + bbal;
}
static void calcreducdE(float dE, float maxdE, float mindE, float maxdElim, float mindElim, float iterat, float limscope, int scope, float &reducdE)
{
if (dE > maxdE) {
reducdE = 0.f;
} else if (dE > mindE && dE <= maxdE) {
const float ar = 1.f / (mindE - maxdE);
const float br = - ar * maxdE;
reducdE = pow(ar * dE + br, iterat);
} else {
reducdE = 1.f;
}
if (scope > limscope) {//80 arbitrary value, if we change we must change limscope
if (dE > maxdElim) {
reducdE = 0.f;
} else if (dE > mindElim && dE <= maxdElim) {
const float arlim = 1.f / (mindElim - maxdElim);
const float brlim = - arlim * maxdElim;
const float reducdElim = pow(arlim * dE + brlim, iterat);
const float aalim = (1.f - reducdElim) / 20.f;
const float bblim = 1.f - 100.f * aalim;
reducdE = aalim * scope + bblim;
} else {
reducdE = 1.f;
}
}
}
void ImProcFunctions::DeNoise_Local(int call, const struct local_params& lp, int levred, float hueref, float lumaref, float chromaref, LabImage* original, LabImage* transformed, LabImage &tmp1, int cx, int cy, int sk)
{
//warning, but I hope used it next
// local denoise and impulse
//simple algo , perhaps we can improve as the others, but noise is here and not good for hue detection
// BENCHFUN
const float ach = (float)lp.trans / 100.f;
const float factnoise1 = 1.f + (lp.noisecf) / 500.f;
const float factnoise2 = 1.f + (lp.noisecc) / 500.f;
const float factnoise = factnoise1 * factnoise2;
const int GW = transformed->W;
const int GH = transformed->H;
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
const int begx = int (lp.xc - lp.lxL);
const int begy = int (lp.yc - lp.lyT);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensden * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensden * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
for (int x = 0, lox = cx + x; x < transformed->W; x++, lox++) {
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float rL = original->L[y][x] / 327.6f;
float dEL = sqrt(0.9f * SQR(refa - origblur->a[y][x] / 327.6f) + 0.9f * SQR(refb - origblur->b[y][x] / 327.8f) + 1.2f * SQR(lumaref - rL));
float dEa = sqrt(1.2f * SQR(refa - origblur->a[y][x] / 327.6f) + 1.f * SQR(refb - origblur->b[y][x] / 327.8f) + 0.8f * SQR(lumaref - rL));
float dEb = sqrt(1.f * SQR(refa - origblur->a[y][x] / 327.6f) + 1.2f * SQR(refb - origblur->b[y][x] / 327.8f) + 0.8f * SQR(lumaref - rL));
float reducdEL = 1.f;
float reducdEa = 1.f;
float reducdEb = 1.f;
if (levred == 7) {
calcreducdE(dEL, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEL);
calcreducdE(dEa, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEa);
calcreducdE(dEb, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensden, reducdEb);
reducdEL = SQR(reducdEL);
reducdEa = SQR(reducdEa);
reducdEb = SQR(reducdEb);
}
switch (zone) {
case 1: { // inside transition zone
float difL, difa, difb;
if (call == 2 /*|| call == 1 || call == 3 */) { //simpleprocess
difL = tmp1.L[loy - begy][lox - begx] - original->L[y][x];
difa = tmp1.a[loy - begy][lox - begx] - original->a[y][x];
difb = tmp1.b[loy - begy][lox - begx] - original->b[y][x];
} else { //dcrop
difL = tmp1.L[y][x] - original->L[y][x];
difa = tmp1.a[y][x] - original->a[y][x];
difb = tmp1.b[y][x] - original->b[y][x];
}
difL *= localFactor * reducdEL;
difa *= localFactor * reducdEa;
difb *= localFactor * reducdEb;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
transformed->a[y][x] = CLIPC((original->a[y][x] + difa) * factnoise);
transformed->b[y][x] = CLIPC((original->b[y][x] + difb) * factnoise) ;
break;
}
case 2: { // inside selection => full effect, no transition
float difL, difa, difb;
if (call == 2 /*|| call == 1 || call == 3 */) { //simpleprocess
difL = tmp1.L[loy - begy][lox - begx] - original->L[y][x];
difa = tmp1.a[loy - begy][lox - begx] - original->a[y][x];
difb = tmp1.b[loy - begy][lox - begx] - original->b[y][x];
} else { //dcrop
difL = tmp1.L[y][x] - original->L[y][x];
difa = tmp1.a[y][x] - original->a[y][x];
difb = tmp1.b[y][x] - original->b[y][x];
}
difL *= reducdEL;
difa *= reducdEa;
difb *= reducdEb;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
transformed->a[y][x] = CLIPC((original->a[y][x] + difa) * factnoise);
transformed->b[y][x] = CLIPC((original->b[y][x] + difb) * factnoise);
}
}
}
}
}
}
void ImProcFunctions::BlurNoise_Local(LabImage *tmp1, const float hueref, const float chromaref, const float lumaref, const local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//local BLUR
BENCHFUN
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const float ach = lp.trans / 100.f;
const int GW = transformed->W;
const int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 4.f + MINSCOPE * lp.sensbn * lp.thr;//best usage ?? with blurnoise
const float maxdE = 5.f + MAXSCOPE * lp.sensbn * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
const int loy = cy + y;
for (int x = xstart, lox = cx + x; x < xend; x++, lox++) {
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
const float dE = sqrt(kab * (SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x])) + kL * SQR(refL - origblur->L[y][x]));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensbn, reducdE);
const float difL = (tmp1->L[y - ystart][x - xstart] - original->L[y][x]) * localFactor * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
if (!lp.actsp) {
const float difa = (tmp1->a[y - ystart][x - xstart] - original->a[y][x]) * localFactor * reducdE;;
const float difb = (tmp1->b[y - ystart][x - xstart] - original->b[y][x]) * localFactor * reducdE;;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
}
}
}
}
void ImProcFunctions::InverseReti_Local(const struct local_params & lp, const float hueref, const float chromaref, const float lumaref, LabImage * original, LabImage * transformed, const LabImage * const tmp1, int cx, int cy, int chro, int sk)
{
// BENCHFUN
//inverse local retinex
float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
float refa = chromaref * cos(hueref);
float refb = chromaref * sin(hueref);
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
LabImage *origblur = new LabImage(GW, GH);
float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensh * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensh * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
float rL = origblur->L[y][x] / 327.68f;
float reducdE = 0.f;
float dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensh, reducdE);
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
if (chro == 0) {
float difL = tmp1->L[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
}
if (chro == 1) {
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * reducdE);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * reducdE);
}
break;
}
case 1: { // inside transition zone
float factorx = 1.f - localFactor;
if (chro == 0) {
float difL = tmp1->L[y][x] - original->L[y][x];
difL *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
}
if (chro == 1) {
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
difa *= factorx;
difb *= factorx;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * reducdE);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * reducdE);
}
break;
}
case 2: { // inside selection => no effect, keep original values
if (chro == 0) {
transformed->L[y][x] = original->L[y][x];
}
if (chro == 1) {
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
}
}
}
}
}
}
delete origblur;
}
void ImProcFunctions::InverseBlurNoise_Local(const struct local_params & lp, const float hueref, const float chromaref, const float lumaref, LabImage * original, LabImage * transformed, const LabImage * const tmp1, int cx, int cy, int sk)
{
// BENCHFUN
//inverse local blur and noise
float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
float refa = chromaref * cos(hueref);
float refb = chromaref * sin(hueref);
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
LabImage *origblur = new LabImage(GW, GH);
float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.sensbn * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.sensbn * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
float rL = origblur->L[y][x] / 327.68f;
float dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.sensbn, reducdE);
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
float difL = tmp1->L[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (!lp.actsp) {
transformed->a[y][x] = CLIPC(tmp1->a[y][x]);
transformed->b[y][x] = CLIPC(tmp1->b[y][x]);
}
break;
}
case 1: { // inside transition zone
float difL = tmp1->L[y][x] - original->L[y][x];
float difa = tmp1->a[y][x] - original->a[y][x];
float difb = tmp1->b[y][x] - original->b[y][x];
float factorx = 1.f - localFactor;
difL *= factorx;
difa *= factorx;
difb *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
if (!lp.actsp) {
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
break;
}
case 2: { // inside selection => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
if (!lp.actsp) {
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
}
}
}
}
}
}
delete origblur;
}
static void calclight(float lum, float koef, float &lumnew, const LUTf &lightCurveloc)
{
lumnew = koef != -100.f ? CLIPLOC(lightCurveloc[lum]) : 0.f;
}
static void mean_fab(int xstart, int ystart, int bfw, int bfh, LabImage* bufexporig, const LabImage* original, float &fab, float &meanfab, float chrom)
{
const int nbfab = bfw * bfh;
meanfab = 0.f;
fab = 50.f;
if (nbfab > 0) {
double sumab = 0.0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:sumab)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->a[y][x] = original->a[y + ystart][x + xstart];
bufexporig->b[y][x] = original->b[y + ystart][x + xstart];
sumab += fabs(bufexporig->a[y][x]);
sumab += fabs(bufexporig->b[y][x]);
}
}
meanfab = sumab / (2.f * nbfab);
double som = 0.0;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:som)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
som += SQR(fabs(bufexporig->a[y][x]) - meanfab) + SQR(fabs(bufexporig->b[y][x]) - meanfab);
}
}
const float multsigma = (chrom >= 0.f ? 0.035f : 0.018f) * chrom + 1.f;
const float stddv = sqrt(som / nbfab);
fab = meanfab + multsigma * stddv;
if (fab <= 0.f) {
fab = 50.f;
}
}
}
void ImProcFunctions::blendstruc(int bfw, int bfh, LabImage* bufcolorig, float radius, float stru, array2D<float> & blend2, int sk, bool multiThread)
{
SobelCannyLuma(blend2, bufcolorig->L, bfw, bfh, radius, multiThread);
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
blend2[ir][jr] /= 32768.f;
guid[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
}
const float blur = 25 / sk * (10.f + 1.2f * stru);
rtengine::guidedFilter(guid, blend2, ble, blur, 0.001, multiThread);
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
ble[ir][jr] *= 32768.f;
}
}
Median_Denoise(ble, blend2, bfw, bfh, Median::TYPE_3X3_STRONG, 1, multiThread);
}
static void blendmask(const local_params& lp, int xstart, int ystart, int cx, int cy, int bfw, int bfh, LabImage* bufexporig, LabImage* original, LabImage* bufmaskor, LabImage* originalmas, float bl)
{
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
bufexporig->L[y][x] += (bl * bufmaskor->L[y][x]);
bufexporig->a[y][x] *= (1.f + bl * bufmaskor->a[y][x]);
bufexporig->b[y][x] *= (1.f + bl * bufmaskor->b[y][x]);
bufexporig->L[y][x] = CLIP(bufexporig->L[y][x]);
bufexporig->a[y][x] = CLIPC(bufexporig->a[y][x]);
bufexporig->b[y][x] = CLIPC(bufexporig->b[y][x]);
originalmas->L[y][x] = CLIP(bufexporig->L[y][x] - bufmaskor->L[y][x]);
originalmas->a[y][x] = CLIPC(bufexporig->a[y][x] * (1.f - bufmaskor->a[y][x]));
originalmas->b[y][x] = CLIPC(bufexporig->b[y][x] * (1.f - bufmaskor->b[y][x]));
switch (zone) {
case 1: {
original->L[y + ystart][x + xstart] += (bl * localFactor * bufmaskor->L[y][x]);
original->a[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->a[y][x]);
original->b[y + ystart][x + xstart] *= (1.f + bl * localFactor * bufmaskor->b[y][x]);
original->L[y + ystart][x + xstart] = CLIP(original->L[y + ystart][x + xstart]);
original->a[y + ystart][x + xstart] = CLIPC(original->a[y + ystart][x + xstart]);
original->b[y + ystart][x + xstart] = CLIPC(original->b[y + ystart][x + xstart]);
break;
}
case 2: {
original->L[y + ystart][x + xstart] = bufexporig->L[y][x];
original->a[y + ystart][x + xstart] = bufexporig->a[y][x];
original->b[y + ystart][x + xstart] = bufexporig->b[y][x];
}
}
}
}
}
}
static void deltaEforLaplace(float *dE, const local_params& lp, int bfw, int bfh, LabImage* bufexporig, const float hueref, const float chromaref, const float lumaref)
{
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
const float refL = lumaref;
float maxdE = 5.f + MAXSCOPE * lp.lap;
float *dEforLaplace = new float [bfw * bfh];
float maxC = sqrt((SQR(refa - bufexporig->a[0][0] / 327.68f) + SQR(refb - bufexporig->b[0][0] / 327.68f)) + SQR(refL - bufexporig->L[0][0] / 327.68f));
// float sumde = 0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) // reduction(+:sumde)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
dEforLaplace[y * bfw + x] = sqrt((SQR(refa - bufexporig->a[y][x] / 327.68f) + SQR(refb - bufexporig->b[y][x] / 327.68f)) + SQR(refL - bufexporig->L[y][x] / 327.68f));
maxC = rtengine::max(maxC, dEforLaplace[y * bfw + x]);
// sumde += dEforLaplace[y * bfw + x];
}
}
// float mxde = sumde /(bfh * bfw);
// maxC = 0.5f * (mxde + maxC);
if (maxdE > maxC) {
maxdE = maxC - 1.f;
}
float ade = 1.f / (maxdE - maxC);
float bde = -ade * maxC;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
float reducdEforLap = 1.f;
if (dEforLaplace[y * bfw + x] < maxdE) {
reducdEforLap = 1.f;
} else {
reducdEforLap = ade * dEforLaplace[y * bfw + x] + bde;
}
dE[y * bfw + x] = reducdEforLap;
}
}
delete [] dEforLaplace;
}
static void showmask(const local_params& lp, int xstart, int ystart, int cx, int cy, int bfw, int bfh, LabImage* bufexporig, LabImage* transformed, LabImage* bufmaskorigSH)
{
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
const int loy = y + ystart + cy;
for (int x = 0; x < bfw; x++) {
const int lox = x + xstart + cx;
int zone = 0;
float localFactor = 1.f;
const float achm = (float)lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y + ystart][x + xstart] = 6000.f + CLIPLOC(bufmaskorigSH->L[y][x]);
transformed->a[y + ystart][x + xstart] = bufexporig->a[y][x] * bufmaskorigSH->a[y][x];
transformed->b[y + ystart][x + xstart] = bufexporig->b[y][x] * bufmaskorigSH->b[y][x];
}
}
}
}
void ImProcFunctions::InverseSharp_Local(float **loctemp, const float hueref, const float lumaref, const float chromaref, const local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
//local sharp
// BENCHFUN
const float ach = (float)lp.trans / 100.f;
int GW = transformed->W;
int GH = transformed->H;
float refa = chromaref * cos(hueref);
float refb = chromaref * sin(hueref);
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
LabImage *origblur = new LabImage(GW, GH);
float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * lp.senssha * lp.thr;
const float maxdE = 5.f + MAXSCOPE * lp.senssha * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
float rL = origblur->L[y][x] / 327.68f;
float reducdE = 0.f;
float dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, lp.senssha, reducdE);
switch (zone) {
case 0: { // outside selection and outside transition zone => full effect, no transition
float difL = loctemp[y][x] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
break;
}
case 1: { // inside transition zone
float difL = loctemp[y][x] - original->L[y][x];
float factorx = 1.f - localFactor;
difL *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
break;
}
case 2: { // inside selection => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
}
}
}
}
}
delete origblur;
}
void ImProcFunctions::Sharp_Local(int call, float **loctemp, int senstype, const float hueref, const float chromaref, const float lumaref, const local_params &lp, LabImage *original, LabImage *transformed, int cx, int cy, int sk)
{
BENCHFUN
const float ach = lp.trans / 100.f;
const float varsens = senstype == 1 ? lp.senslc : lp.senssha;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
const int GW = transformed->W;
const int GH = transformed->H;
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int begy = int (lp.yc - lp.lyT);
const int begx = int (lp.xc - lp.lxL);
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
const float dE = sqrt(kab * (SQR(refa - origblur->a[y][x]) + SQR(refb - origblur->b[y][x])) + kL * SQR(refL - origblur->L[y][x]));
float reducdE = 0.f;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
reducdE *= localFactor;
float difL;
if (call == 2) {
difL = loctemp[loy - begy][lox - begx] - original->L[y][x];
} else {
difL = loctemp[y][x] - original->L[y][x];
}
transformed->L[y][x] = CLIP(original->L[y][x] + difL * reducdE);
}
}
}
}
void ImProcFunctions::Exclude_Local(float **deltaso, float hueref, float chromaref, float lumaref, float sobelref, float meansobel, const struct local_params & lp, const LabImage * original, LabImage * transformed, const LabImage * rsv, const LabImage * reserv, int cx, int cy, int sk)
{
BENCHFUN {
const float ach = (float)lp.trans / 100.f;
const float varsens = lp.sensexclu;
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
const int GW = transformed->W;
const int GH = transformed->H;
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
lumaref *= 327.68f;
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kL /= SQR(327.68f);
kab /= SQR(327.68f);
//sobel
sobelref = rtengine::min(sobelref / 100.f, 60.f);
const bool recip = sobelref < meansobel && sobelref < lp.stru;
sobelref = log1p(sobelref);
LabImage *origblur = new LabImage(GW, GH);
const float radius = 3.f / sk;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(reserv->L, origblur->L, GW, GH, radius);
gaussianBlur(reserv->a, origblur->a, GW, GH, radius);
gaussianBlur(reserv->b, origblur->b, GW, GH, radius);
#ifdef _OPENMP
#pragma omp barrier
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++)
{
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
for (int x = 0; x < transformed->W; x++) {
transformed->L[y][x] = original->L[y][x];
}
continue;
}
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
const int begx = int (lp.xc - lp.lxL);
const int begy = int (lp.yc - lp.lyT);
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
continue;
}
float rs = 0.f;
const float csob = xlogf(1.f + rtengine::min(deltaso[loy - begy][lox - begx] / 100.f, 60.f) + 0.001f);
if (!recip) {
rs = sobelref / csob;
} else {
rs = csob / sobelref;
}
float affsob = 1.f;
if (lp.struexc > 0.f && rs > 0.f) {
const float rsob = 0.002f * lp.struexc * rs;
const float minrs = 1.3f + 0.05f * lp.stru;
if (rs < minrs) {
affsob = 1.f;
} else {
affsob = 1.f / pow_F((1.f + rsob), SQR(SQR(rs - minrs)));
}
}
const float rL = origblur->L[y][x];
const float dE = sqrt(kab * SQR(refa - origblur->a[y][x]) + kab * SQR(refb - origblur->b[y][x]) + kL * SQR(lumaref - rL));
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
const float affde = reducdE;
if (rL > 32.768f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
switch (zone) {
case 1: { // inside transition zone
const float difL = (rsv->L[loy - begy][lox - begx] - original->L[y][x]) * localFactor;
transformed->L[y][x] = CLIP(original->L[y][x] + difL * affsob * affde);
const float difa = (rsv->a[loy - begy][lox - begx] - original->a[y][x]) * localFactor;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * affsob * affde);
const float difb = (rsv->b[loy - begy][lox - begx] - original->b[y][x]) * localFactor;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * affsob * affde);
break;
}
case 2: { // inside selection => full effect, no transition
const float difL = rsv->L[loy - begy][lox - begx] - original->L[y][x];
transformed->L[y][x] = CLIP(original->L[y][x] + difL * affsob * affde);
const float difa = rsv->a[loy - begy][lox - begx] - original->a[y][x];;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa * affsob * affde);
const float difb = rsv->b[loy - begy][lox - begx] - original->b[y][x];
transformed->b[y][x] = CLIPC(original->b[y][x] + difb * affsob * affde);
}
}
}
}
}
}
delete origblur;
}
}
void ImProcFunctions::transit_shapedetect_retinex(int senstype, LabImage * bufexporig, LabImage * bufmask, LabImage * buforigmas, float **buflight, float **bufchro, const float hueref, const float chromaref, const float lumaref, const struct local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
BENCHFUN {
const float ach = (float)lp.trans / 100.f;
const float varsens = lp.sensh;
int GW = transformed->W;
int GH = transformed->H;
const float refa = chromaref * cos(hueref);
const float refb = chromaref * sin(hueref);
const bool retishow = ((lp.showmaskretimet == 1 || lp.showmaskretimet == 2));
const bool previewreti = ((lp.showmaskretimet == 4));
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
bool showmas = false ;
if (lp.showmaskretimet == 3)
{
showmas = true;
}
std::unique_ptr<LabImage> origblur(new LabImage(GW, GH));
const float radius = 3.f / sk;
const bool usemaskreti = lp.enaretiMask && senstype == 4 && !lp.enaretiMasktmap;
float strcli = 0.03f * lp.str;
if (lp.scalereti == 1)
{
strcli = 0.015 * lp.str;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++)
{
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
const int begx = int (lp.xc - lp.lxL);
const int begy = int (lp.yc - lp.lyT);
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float rL = origblur->L[y][x] / 327.68f;
float dE;
if (!usemaskreti) {
dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
} else {
dE = sqrt(kab * SQR(refa - buforigmas->a[loy - begy][lox - begx] / 327.68f) + kab * SQR(refb - buforigmas->b[loy - begy][lox - begx] / 327.68f) + kL * SQR(lumaref - buforigmas->L[loy - begy][lox - begx] / 327.68f));
}
float cli = buflight[loy - begy][lox - begx];
//float clc = bufchro[loy - begy][lox - begx];
float clc = previewreti ? settings->previewselection * 100.f : bufchro[loy - begy][lox - begx];
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
// const float realstrdE = reducdE * cli;
reducdE /= 100.f;
cli *= reducdE;
clc *= reducdE;
cli *= (1.f + strcli);
// clc *= (1.f + strcli);
if (rL > 0.1f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
if (senstype == 4) {//all except color and light (TODO) and exposure
float lightc = bufexporig->L[loy - begy][lox - begx];
float fli = 1.f + cli;
float diflc = lightc * fli - original->L[y][x];
// float diflc2 = 328.f * realstrdE;
diflc *= localFactor;
// diflc2 *= localFactor;
if (!showmas) {
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
} else {
transformed->L[y][x] = bufmask->L[loy - begy][lox - begx];
} ; //bufexporig->L[loy - begy][lox - begx];
if (retishow) {
transformed->L[y][x] = CLIP(12000.f + diflc);
}
}
float fliab = 1.f;
const float chra = bufexporig->a[loy - begy][lox - begx];
const float chrb = bufexporig->b[loy - begy][lox - begx];
if (senstype == 5) {
fliab = 1.f + clc;
}
const float difa = (chra * fliab - original->a[y][x]) * localFactor;
const float difb = (chrb * fliab - original->b[y][x]) * localFactor;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
if (showmas) {
transformed->a[y][x] = bufmask->a[loy - begy][lox - begx];
transformed->b[y][x] = bufmask->b[loy - begy][lox - begx];
}
if (retishow) {
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
}
if (previewreti) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = CLIPC(difb);
}
}
}
}
}
if (showmas || retishow || previewreti)
{
return;
}
}
}
void ImProcFunctions::transit_shapedetect(int senstype, const LabImage *bufexporig, LabImage * originalmask, float **buflight, float **bufchro, float **buf_a_cat, float ** buf_b_cat, float ** bufhh, bool HHutili, const float hueref, const float chromaref, const float lumaref, float sobelref, float meansobel, float ** blend2, const struct local_params & lp, LabImage * original, LabImage * transformed, int cx, int cy, int sk)
{
BENCHFUN {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfw = xend - xstart;
const int bfh = yend - ystart;
// printf("h=%f l=%f c=%f s=%f\n", hueref, lumaref, chromaref, sobelref);
const float ach = lp.trans / 100.f;
float varsens = lp.sensex;
if (senstype == 0) //Color and Light
{
varsens = lp.sens;
} else if (senstype == 1) //exposure
{
varsens = lp.sensex;
} else if (senstype == 2) //vibrance
{
varsens = lp.sensv;
} else if (senstype == 3) //soft light
{
varsens = lp.senssf;
} else if (senstype == 6 || senstype == 7) //cbdl
{
varsens = lp.senscb;
} else if (senstype == 8) //TM
{
varsens = lp.senstm;
} else if (senstype == 9) //Shadow highlight
{
varsens = lp.senshs;
} else if (senstype == 10) //local contrast
{
varsens = lp.senslc;
}
//sobel
sobelref /= 100.f;
meansobel /= 100.f;
sobelref = rtengine::min(sobelref, 60.f);
const bool k = !(sobelref < meansobel && sobelref < lp.stru); //does not always work with noisy images
sobelref = log1p(sobelref);
const float refa = chromaref * cos(hueref) * 327.68f;
const float refb = chromaref * sin(hueref) * 327.68f;
const float refL = lumaref * 327.68f;
const bool expshow = ((lp.showmaskexpmet == 1 || lp.showmaskexpmet == 2) && senstype == 1);
const bool colshow = ((lp.showmaskcolmet == 1 || lp.showmaskcolmet == 2) && senstype == 0);
const bool SHshow = ((lp.showmaskSHmet == 1 || lp.showmaskSHmet == 2) && senstype == 9);
const bool cbshow = ((lp.showmaskcbmet == 1 || lp.showmaskcbmet == 2) && senstype == 6);
const bool previewcol = ((lp.showmaskcolmet == 5) && senstype == 0);
const bool previewexp = ((lp.showmaskexpmet == 5) && senstype == 1);
const bool previewSH = ((lp.showmaskSHmet == 4) && senstype == 9);
const bool previewcb = ((lp.showmaskcbmet == 4) && senstype == 6);
std::unique_ptr<LabImage> origblur(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> origblurmask;
float radius = 3.f / sk;
if (senstype == 1)
{
radius = (2.f + 0.2f * lp.blurexp) / sk;
} else if (senstype == 0)
{
radius = (2.f + 0.2f * lp.blurcol) / sk;
} else if (senstype == 9)
{
radius = (2.f + 0.2f * lp.blurSH) / sk;
}
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
kab /= SQR(327.68f);
kL /= SQR(327.68f);
const bool usemaskexp = (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 5) && senstype == 1;
const bool usemaskcol = (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 5) && senstype == 0;
const bool usemaskSH = (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 4) && senstype == 9;
const bool usemaskcb = (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 4) && senstype == 6;
const bool usemaskall = (usemaskSH || usemaskcol || usemaskexp || usemaskcb);
if (usemaskall)
{
origblurmask.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
gaussianBlur(originalmask->L, origblurmask->L, bfw, bfh, radius);
gaussianBlur(originalmask->a, origblurmask->a, bfw, bfh, radius);
gaussianBlur(originalmask->b, origblurmask->b, bfw, bfh, radius);
}
}
if (lp.equtm && senstype == 8) //normalize luminance for Tone mapping , at this place we can use for others senstype!
{
float *datain = new float[bfh * bfw];
float *data = new float[bfh * bfw];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
datain[(y - ystart) * bfw + (x - xstart)] = original->L[y][x];
data[(y - ystart)* bfw + (x - xstart)] = bufexporig->L[y - ystart][x - xstart];
}
normalize_mean_dt(data, datain, bfh * bfw, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = ystart; y < yend; y++)
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = data[(y - ystart) * bfw + x - xstart];
}
delete [] datain;
delete [] data;
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++)
{
for (int x = 0; x < bfw; x++) {
origblur->L[y][x] = original->L[y + ystart][x + xstart];
origblur->a[y][x] = original->a[y + ystart][x + xstart];
origblur->b[y][x] = original->b[y + ystart][x + xstart];
}
}
gaussianBlur(origblur->L, origblur->L, bfw, bfh, radius);
gaussianBlur(origblur->a, origblur->a, bfw, bfh, radius);
gaussianBlur(origblur->b, origblur->b, bfw, bfh, radius);
}
const LabImage *maskptr = usemaskall ? origblurmask.get() : origblur.get();
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float atan2Buffer[transformed->W] ALIGNED16;
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++)
{
const int loy = cy + y;
#ifdef __SSE2__
if (HHutili || senstype == 7) {
int i = xstart;
for (; i < xend - 3; i += 4) {
vfloat av = LVFU(origblur->a[y - ystart][i - xstart]);
vfloat bv = LVFU(origblur->b[y - ystart][i - xstart]);
STVFU(atan2Buffer[i], xatan2f(bv, av));
}
for (; i < xend; i++) {
atan2Buffer[i] = xatan2f(origblur->b[y - ystart][i - xstart], origblur->a[y - ystart][i - xstart]);
}
}
#endif
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float rhue = 0;
if (HHutili || senstype == 7) {
#ifdef __SSE2__
rhue = atan2Buffer[x];
#else
rhue = xatan2f(origblur->b[y - ystart][x - xstart], origblur->a[y - ystart][x - xstart]);
#endif
}
const float rL = origblur->L[y - ystart][x - xstart] / 327.68f;
float rsob = 0.f;
if (blend2 && ((senstype == 1 && lp.struexp > 0.f) || (senstype == 0 && lp.struco > 0.f))) {
const float csob = xlogf(1.f + std::min(blend2[y - ystart][x - xstart] / 100.f, 60.f) + 0.001f);
float rs;
if (k) {
rs = sobelref / csob;
} else {
rs = csob / sobelref;
}
if (rs > 0.f && senstype == 1) {
rsob = 1.1f * lp.struexp * rs;
} else if (rs > 0.f && senstype == 0) {
rsob = 1.1f * lp.struco * rs;
}
}
const float dE = rsob + sqrt(kab * (SQR(refa - maskptr->a[y - ystart][x - xstart]) + SQR(refb - maskptr->b[y - ystart][x - xstart])) + kL * SQR(refL - maskptr->L[y - ystart][x - xstart]));
float cla = 0.f;
float clb = 0.f;
const float cli = buflight[y - ystart][x - xstart];
const float clc = (previewcol || previewexp || previewSH || previewcb) ? settings->previewselection * 100.f : bufchro[y - ystart][x - xstart];
if (senstype <= 1) {
cla = buf_a_cat[y - ystart][x - xstart];
clb = buf_b_cat[y - ystart][x - xstart];
}
float reducdE;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
const float realstrdE = reducdE * cli;
const float realstradE = reducdE * cla;
const float realstrbdE = reducdE * clb;
const float realstrchdE = reducdE * clc;
/* comment on processus deltaE
* the algo uses 3 different ways to manage deltaE according to the type of intervention
* if we call "applyproc" : the datas produced upstream in bfw, bfh coordinate by the function producing something curves, retinex, exposure, etc.
* direct : in this case we use directly the datas produced upstream by "applyproc", with only a regulation produce for deltaE by reducdE
* direct : we found in this case "applyproc" modify data with low amplitude : BlurNoise, CBDL, Denoise, Sharp, TM
* with first use of "buflight" on which is apply "applyproc", in this case we apply realstrdE = reducdE * buflight with a function of type 328.f * realstrdE
* in this case we found "applyproc" which result in direct use on Luminance : Exposure, Color and Light, Shadows highlight, SoftLight, Localcontrast
* with second use of "buflight" on which is apply "applyproc", in this case we apply realstrdE = reducdE * buflight with a function of type fli = (100.f + realstrdE) / 100.f;
* in this case we found "applyproc" which result in large variations of L : Retinex
* if you change you must test before
*/
if (rL > 0.1f) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
switch (zone) {
case 1: { // inside transition zone
float factorx = localFactor;
float diflc = 0.f;
float newhr = 0.f;
float difL = 0.f;
if (senstype == 2) {
const float lightc = bufexporig->L[y - ystart][x - xstart];
const float fli = (100.f + realstrdE) / 100.f;
transformed->L[y][x] = CLIP(original->L[y][x] + (lightc * fli - original->L[y][x]) * factorx);
} else if (senstype == 6 || senstype == 8 || senstype == 10) {
difL = (bufexporig->L[y - ystart][x - xstart] - original->L[y][x]) * localFactor * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
} else if (senstype == 1 || senstype == 0 || senstype == 9 || senstype == 3) {
if (HHutili) {
const float hhro = bufhh[y - ystart][x - xstart];
if (hhro != 0) {
const float realhhdE = reducdE * hhro;
const float addh = 0.01f * realhhdE * factorx;
newhr = rhue + addh;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
}
}
transformed->L[y][x] = CLIP(original->L[y][x] + 328.f * factorx * realstrdE);
diflc = 328.f * factorx * realstrdE;
}
if (senstype == 7) {
float difab = bufexporig->L[y - ystart][x - xstart] - sqrt(SQR(original->a[y][x]) + SQR(original->b[y][x]));
float2 sincosval = xsincosf(rhue);
float difa = difab * sincosval.y;
float difb = difab * sincosval.x;
difa *= factorx * (100.f + realstrchdE) / 100.f;
difb *= factorx * (100.f + realstrchdE) / 100.f;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
} else {
float flia = 1.f;
float flib = 1.f;
const float chra = bufexporig->a[y - ystart][x - xstart];
const float chrb = bufexporig->b[y - ystart][x - xstart];
if (senstype == 2 || senstype == 3 || senstype == 8 || senstype == 9 || senstype == 6 || senstype == 10) {
flia = flib = ((100.f + realstrchdE) / 100.f);
} else if (senstype == 1) {
flia = (100.f + realstradE + 100.f * realstrchdE) / 100.f;
flib = (100.f + realstrbdE + 100.f * realstrchdE) / 100.f;
if (previewcol || previewexp || previewSH) {
flia = (100.f + realstradE + realstrchdE) / 100.f;
flib = (100.f + realstrbdE + realstrchdE) / 100.f;
}
} else if (senstype == 0) {
flia = (100.f + 0.3f * lp.strengrid * realstradE + realstrchdE) / 100.f;
flib = (100.f + 0.3f * lp.strengrid * realstrbdE + realstrchdE) / 100.f;
if (previewcol || previewexp || previewSH || previewcb) {
flia = (100.f + realstradE + realstrchdE) / 100.f;
flib = (100.f + realstrbdE + realstrchdE) / 100.f;
}
}
float difa = chra * flia - original->a[y][x];
float difb = chrb * flib - original->b[y][x];
difa *= factorx;
difb *= factorx;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
if (senstype == 0 && HHutili) {
const float tempa = transformed->a[y][x];
const float tempb = transformed->b[y][x];
const float hhro = bufhh[y - ystart][x - xstart];
if (hhro != 0.f) {
const float chromhr = sqrt(SQR(original->a[y][x] + difa) + SQR(original->b[y][x] + difb));
float epsia = 0.f;
float epsib = 0.f;
if (original->a[y][x] == 0.f) {
epsia = 0.001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.001f;
}
const float faca = (original->a[y][x] + difa) / (original->a[y][x] + epsia);
const float facb = (original->b[y][x] + difb) / (original->b[y][x] + epsib);
const float2 sincosval = xsincosf(newhr);
transformed->a[y][x] = CLIPC(chromhr * sincosval.y * faca) ;
transformed->b[y][x] = CLIPC(chromhr * sincosval.x * facb);
difa = transformed->a[y][x] - tempa;
difb = transformed->b[y][x] - tempb;
}
}
if (expshow || colshow || SHshow) {
transformed->L[y][x] = CLIP(12000.f + diflc);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (cbshow) {
transformed->L[y][x] = CLIP(12000.f + difL);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (previewcol || previewexp || previewSH || previewcb) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = (difb);
}
}
break;
}
case 2: { // inside selection => full effect, no transition
float diflc = 0.f;
float newhr = 0.f;
float difL = 0.f;
if (senstype == 2) {
const float lightc = bufexporig->L[y - ystart][x - xstart];
const float fli = (100.f + realstrdE) / 100.f;
transformed->L[y][x] = CLIP(original->L[y][x] + lightc * fli - original->L[y][x]);
} else if (senstype == 6 || senstype == 8 || senstype == 10) {
difL = (bufexporig->L[y - ystart][x - xstart] - original->L[y][x]) * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + difL);
} else if (senstype == 1 || senstype == 0 || senstype == 9 || senstype == 3) {
if (HHutili) {
const float hhro = bufhh[y - ystart][x - xstart];
if (hhro != 0) {
const float realhhdE = reducdE * hhro;
const float addh = 0.01f * realhhdE;
newhr = rhue + addh;
if (newhr > rtengine::RT_PI_F) {
newhr -= 2 * rtengine::RT_PI_F;
} else if (newhr < -rtengine::RT_PI_F) {
newhr += 2 * rtengine::RT_PI_F;
}
}
}
transformed->L[y][x] = CLIP(original->L[y][x] + 328.f * realstrdE);//kch fach
diflc = 328.f * realstrdE;
}
if (senstype == 7) {//cbdl chroma
float difab = bufexporig->L[y - ystart][x - xstart] - sqrt(SQR(original->a[y][x]) + SQR(original->b[y][x]));
float2 sincosval = xsincosf(rhue);
float difa = difab * sincosval.y;
float difb = difab * sincosval.x;
difa *= (100.f + realstrchdE) / 100.f;
difb *= (100.f + realstrchdE) / 100.f;
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
} else {
float flia = 1.f;
float flib = 1.f;
const float chra = bufexporig->a[y - ystart][x - xstart];
const float chrb = bufexporig->b[y - ystart][x - xstart];
if (senstype == 2 || senstype == 3 || senstype == 8 || senstype == 9 || senstype == 6 || senstype == 10) {
flia = flib = (100.f + realstrchdE) / 100.f;
} else if (senstype == 1) {
flia = (100.f + realstradE + 100.f * realstrchdE) / 100.f;
flib = (100.f + realstrbdE + 100.f * realstrchdE) / 100.f;
if (previewcol || previewexp || previewSH) {
flia = (100.f + realstradE + realstrchdE) / 100.f;
flib = (100.f + realstrbdE + realstrchdE) / 100.f;
}
} else if (senstype == 0) {
flia = (100.f + 0.3f * lp.strengrid * realstradE + realstrchdE) / 100.f;
flib = (100.f + 0.3f * lp.strengrid * realstrbdE + realstrchdE) / 100.f;
if (previewcol || previewexp || previewSH) {
flia = (100.f + realstradE + realstrchdE) / 100.f;
flib = (100.f + realstrbdE + realstrchdE) / 100.f;
}
}
float difa = chra * flia - original->a[y][x];
float difb = chrb * flib - original->b[y][x];
transformed->a[y][x] = CLIPC(original->a[y][x] + difa);
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
if (senstype == 0 && HHutili) {
const float tempa = transformed->a[y][x];
const float tempb = transformed->b[y][x];
const float hhro = bufhh[y - ystart][x - xstart];
if (hhro != 0.f) {
const float chromhr = sqrt(SQR(original->a[y][x] + difa) + SQR(original->b[y][x] + difb));
float epsia = 0.f;
float epsib = 0.f;
if (original->a[y][x] == 0.f) {
epsia = 0.001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.001f;
}
const float faca = (original->a[y][x] + difa) / (original->a[y][x] + epsia);
const float facb = (original->b[y][x] + difb) / (original->b[y][x] + epsib);
const float2 sincosval = xsincosf(newhr);
transformed->a[y][x] = CLIPC(chromhr * sincosval.y * faca) ;
transformed->b[y][x] = CLIPC(chromhr * sincosval.x * facb);
difa = transformed->a[y][x] - tempa;
difb = transformed->b[y][x] - tempb;
}
}
if (expshow || colshow || SHshow) {
transformed->L[y][x] = CLIP(12000.f + diflc);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (cbshow) {
transformed->L[y][x] = CLIP(12000.f + difL);
transformed->a[y][x] = CLIPC(difa);
transformed->b[y][x] = CLIPC(difb);
} else if (previewcol || previewexp || previewSH || previewcb) {
transformed->a[y][x] = 0.f;
transformed->b[y][x] = difb;
}
}
}
}
}
}
}
}
}
}
void ImProcFunctions::InverseColorLight_Local(int sp, int senstype, const struct local_params & lp, LUTf & lightCurveloc, LUTf & hltonecurveloc, LUTf & shtonecurveloc, LUTf & tonecurveloc, LUTf & exlocalcurve, LUTf & cclocalcurve, float adjustr, bool localcutili, LUTf & lllocalcurve, bool locallutili, LabImage * original, LabImage * transformed, int cx, int cy, const float hueref, const float chromaref, const float lumaref, int sk)
{
// BENCHFUN
float ach = (float)lp.trans / 100.f;
const float facc = (100.f + lp.chro) / 100.f; //chroma factor transition
float varsens = lp.sens;
if (senstype == 0) { //Color and Light
varsens = lp.sens;
}
if (senstype == 1) { //exposure
varsens = lp.sensex;
}
if (senstype == 2) { //shadows highlight
varsens = lp.senshs;
}
LabImage *temp = nullptr;
LabImage *tempCL = nullptr;
int GW = transformed->W;
int GH = transformed->H;
float refa = chromaref * cos(hueref);
float refb = chromaref * sin(hueref);
if (senstype == 2) { // Shadows highlight
temp = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
temp->L[y][x] = original->L[y][x];
temp->a[y][x] = original->a[y][x];
temp->b[y][x] = original->b[y][x];
}
}
ImProcFunctions::shadowsHighlights(temp, lp.hsena, 1, lp.highlihs, lp.shadowhs, lp.radiushs, sk, lp.hltonalhs, lp.shtonalhs);
}
if (senstype == 1) { //exposure
temp = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
temp->a[y][x] = original->a[y][x];
temp->b[y][x] = original->b[y][x];
temp->L[y][x] = original->L[y][x];
}
}
float meanorig = 0.f;
ImProcFunctions::exlabLocal(lp, GH, GW, original, temp, hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
if (exlocalcurve) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < temp->H; y++) {
for (int x = 0; x < temp->W; x++) {
float lighn = temp->L[y][x];
float lh = 0.5f * exlocalcurve[2.f * lighn]; // / ((lighn) / 1.9f) / 3.61f; //lh between 0 and 0 50 or more
temp->L[y][x] = lh;
}
}
}
if (lp.expchroma != 0.f) {
float ch;
ch = (1.f + 0.02f * lp.expchroma) ;
float chprosl;
if (ch <= 1.f) {//convert data curve near values of slider -100 + 100, to be used after to detection shape
chprosl = 99.f * ch - 99.f;
} else {
float ampli = 70.f;
chprosl = CLIPCHRO(ampli * ch - ampli); //ampli = 25.f arbitrary empirical coefficient between 5 and 50
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
float epsi = 0.f;
if (original->L[y][x] == 0.f) {
epsi = 0.001f;
}
float rapexp = temp->L[y][x] / (original->L[y][x] + epsi);
temp->a[y][x] *= 0.01f * (100.f + 100.f * chprosl * rapexp);
temp->b[y][x] *= 0.01f * (100.f + 100.f * chprosl * rapexp);
}
}
}
if (lp.war != 0) {
ImProcFunctions::ciecamloc_02float(sp, temp);
}
}
if (senstype == 0) { //Color and Light curves L C
tempCL = new LabImage(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < tempCL->H; y++) {
for (int x = 0; x < tempCL->W; x++) {
tempCL->a[y][x] = original->a[y][x];
tempCL->b[y][x] = original->b[y][x];
tempCL->L[y][x] = original->L[y][x];
}
}
if (cclocalcurve && localcutili) { // C=f(C) curve
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
//same as in "normal"
float chromat = sqrt(SQR(original->a[y][x]) + SQR(original->b[y][x]));
float ch;
float ampli = 25.f;
ch = (cclocalcurve[chromat * adjustr ]) / ((chromat + 0.00001f) * adjustr); //ch between 0 and 0 50 or more
float chprocu = CLIPCHRO(ampli * ch - ampli); //ampli = 25.f arbitrary empirical coefficient between 5 and 50
tempCL->a[y][x] = original->a[y][x] * (1.f + 0.01f * (chprocu));
tempCL->b[y][x] = original->b[y][x] * (1.f + 0.01f * (chprocu));
}
}
}
if (lllocalcurve && locallutili) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
for (int x = 0; x < transformed->W; x++) {
float lighn = original->L[y][x];
float lh = 0.5f * lllocalcurve[2.f * lighn];
tempCL->L[y][x] = lh;
}
}
}
}
//balance deltaE
float kL = lp.balance;
float kab = 1.f;
balancedeltaE(kL, kab);
LabImage *origblur = new LabImage(GW, GH);
float radius = 3.f / sk;
if (senstype == 1) {
radius = (2.f + 0.2f * lp.blurexp) / sk;
}
if (senstype == 0) {
radius = (2.f + 0.2f * lp.blurcol) / sk;
}
if (senstype == 2) {
radius = (2.f + 0.2f * lp.blurSH) / sk;
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, origblur->L, GW, GH, radius);
gaussianBlur(original->a, origblur->a, GW, GH, radius);
gaussianBlur(original->b, origblur->b, GW, GH, radius);
}
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
const int limscope = 80;
const float mindE = 2.f + MINSCOPE * varsens * lp.thr;
const float maxdE = 5.f + MAXSCOPE * varsens * (1 + 0.1f * lp.thr);
const float mindElim = 2.f + MINSCOPE * limscope * lp.thr;
const float maxdElim = 5.f + MAXSCOPE * limscope * (1 + 0.1f * lp.thr);
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
for (int x = 0; x < transformed->W; x++) {
const int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);//rect not good
}
float rL = origblur->L[y][x] / 327.68f;
if (fabs(origblur->b[y][x]) < 0.01f) {
origblur->b[y][x] = 0.01f;
}
float dE = sqrt(kab * SQR(refa - origblur->a[y][x] / 327.68f) + kab * SQR(refb - origblur->b[y][x] / 327.68f) + kL * SQR(lumaref - rL));
float reducdE = 0.f;
calcreducdE(dE, maxdE, mindE, maxdElim, mindElim, lp.iterat, limscope, varsens, reducdE);
float th_r = 0.01f;
if (rL > th_r) { //to avoid crash with very low gamut in rare cases ex : L=0.01 a=0.5 b=-0.9
switch (zone) {
case 2: { // outside selection and outside transition zone => no effect, keep original values
transformed->L[y][x] = original->L[y][x];
transformed->a[y][x] = original->a[y][x];
transformed->b[y][x] = original->b[y][x];
break;
}
case 1: { // inside transition zone
float difa = 0.f;
float difb = 0.f;
float factorx = 1.f - localFactor;
if (senstype == 0) {
float epsia = 0.f;
float epsib = 0.f;
float lumnew = original->L[y][x];
float difL = (tempCL->L[y][x] - original->L[y][x]) * reducdE;
difa = (tempCL->a[y][x] - original->a[y][x]) * reducdE;
difb = (tempCL->b[y][x] - original->b[y][x]) * reducdE;
difL *= factorx;
difa *= factorx;
difb *= factorx;
if (original->a[y][x] == 0.f) {
epsia = 0.0001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.0001f;
}
float facCa = 1.f + (difa / (original->a[y][x] + epsia));
float facCb = 1.f + (difb / (original->b[y][x] + epsib));
if (lp.sens < 75.f) {
float lightcont;
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(lumnew, lp.ligh, lumnew, lightCurveloc); //replace L-curve
lightcont = lumnew;
} else {
lightcont = lumnew;
}
float fac = (100.f + factorx * lp.chro * reducdE) / 100.f; //chroma factor transition
float diflc = (lightcont - original->L[y][x]) * reducdE;
diflc *= factorx; //transition lightness
transformed->L[y][x] = CLIP(1.f * (original->L[y][x] + diflc + difL));
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
} else {
float fac = (100.f + factorx * lp.chro) / 100.f; //chroma factor transition
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(original->L[y][x], lp.ligh, lumnew, lightCurveloc);
}
float lightcont = lumnew ; //apply lightness
float diflc = lightcont - original->L[y][x];
diflc *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc + difL);
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa);
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
}
} else if (senstype == 1 || senstype == 2) {
float diflc = (temp->L[y][x] - original->L[y][x]) * reducdE;
diflc *= factorx;
difa = (temp->a[y][x] - original->a[y][x]) * reducdE;
difb = (temp->b[y][x] - original->b[y][x]) * reducdE;
difa *= factorx;
difb *= factorx;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
transformed->a[y][x] = CLIPC(original->a[y][x] + difa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
break;
}
case 0: { // inside selection => full effect, no transition
float diflc = 0.f;
float difa = 0.f;
float difb = 0.f;
if (senstype == 0) {
float epsia = 0.f;
float epsib = 0.f;
float lumnew = original->L[y][x];
float difL = (tempCL->L[y][x] - original->L[y][x]) * reducdE;
difa = (tempCL->a[y][x] - original->a[y][x]) * reducdE;
difb = (tempCL->b[y][x] - original->b[y][x]) * reducdE;
if (original->a[y][x] == 0.f) {
epsia = 0.0001f;
}
if (original->b[y][x] == 0.f) {
epsib = 0.0001f;
}
float facCa = 1.f + (difa / (original->a[y][x] + epsia));
float facCb = 1.f + (difb / (original->b[y][x] + epsib));
if (lp.sens < 75.f) {
float lightcont;
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(lumnew, lp.ligh, lumnew, lightCurveloc); //replace L-curve
lightcont = lumnew;
} else {
lightcont = lumnew;
}
float fac = (100.f + lp.chro * reducdE) / 100.f; //chroma factor transition
diflc = (lightcont - original->L[y][x]) * reducdE;
transformed->L[y][x] = CLIP(1.f * (original->L[y][x] + diflc + difL));
transformed->a[y][x] = CLIPC(original->a[y][x] * fac * facCa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] * fac * facCb);
} else {
if ((lp.ligh != 0.f || lp.cont != 0)) {
calclight(original->L[y][x], lp.ligh, lumnew, lightCurveloc);
}
float lightcont = lumnew ;
transformed->L[y][x] = CLIP(lightcont + difL) ;
transformed->a[y][x] = CLIPC(original->a[y][x] * facc * facCa);
transformed->b[y][x] = CLIPC(original->b[y][x] * facc * facCb);
}
} else if (senstype == 1 || senstype == 2) {
diflc = (temp->L[y][x] - original->L[y][x]) * reducdE;
difa = (temp->a[y][x] - original->a[y][x]) * reducdE;
difb = (temp->b[y][x] - original->b[y][x]) * reducdE;
transformed->L[y][x] = CLIP(original->L[y][x] + diflc);
transformed->a[y][x] = CLIPC(original->a[y][x] + difa) ;
transformed->b[y][x] = CLIPC(original->b[y][x] + difb);
}
}
}
}
}
}
}
delete origblur;
if (senstype == 1 || senstype == 2) {
delete temp;
}
if (senstype == 0) {
delete tempCL;
}
}
void ImProcFunctions::calc_ref(int sp, LabImage * original, LabImage * transformed, int cx, int cy, int oW, int oH, int sk, double & huerefblur, double & chromarefblur, double & lumarefblur, double & hueref, double & chromaref, double & lumaref, double & sobelref, float &avg)
{
if (params->locallab.enabled) {
//always calculate hueref, chromaref, lumaref before others operations use in normal mode for all modules exceprt denoise
struct local_params lp;
calcLocalParams(sp, oW, oH, params->locallab, lp, 0, 0, 0, 0, 0, 0);
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
float avg2 = 0.f;
int nc2 = 0;
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
avg2 += original->L[y][x];
nc2++;
}
}
avg2 /= 32768.f;
avg = avg2 / nc2;
// double precision for large summations
double aveA = 0.;
double aveB = 0.;
double aveL = 0.;
double aveChro = 0.;
double aveAblur = 0.;
double aveBblur = 0.;
double aveLblur = 0.;
double aveChroblur = 0.;
double avesobel = 0.;
// int precision for the counters
int nab = 0;
int nso = 0;
int nsb = 0;
// single precision for the result
float avA, avB, avL;
int spotSize = 0.88623f * max(1, lp.cir / sk); //18
//O.88623 = sqrt(PI / 4) ==> sqare equal to circle
int spotSise2; // = 0.88623f * max (1, lp.cir / sk); //18
// very small region, don't use omp here
LabImage *sobelL;
LabImage *deltasobelL;
LabImage *origsob;
LabImage *origblur = nullptr;
LabImage *blurorig = nullptr;
int spotSi = 1 + 2 * max(1, lp.cir / sk);
if (spotSi < 5) {
spotSi = 5;
}
spotSise2 = (spotSi - 1) / 2;
JaggedArray<float> blend3(spotSi, spotSi);
origsob = new LabImage(spotSi, spotSi);
sobelL = new LabImage(spotSi, spotSi);
deltasobelL = new LabImage(spotSi, spotSi);
bool isdenoise = false;
if ((lp.noiself > 0.f || lp.noiself0 > 0.f || lp.noiself2 > 0.f || lp.noiselc > 0.f || lp.noisecf > 0.f || lp.noisecc > 0.f) && lp.denoiena) {
isdenoise = true;
}
if (isdenoise) {
origblur = new LabImage(spotSi, spotSi);
blurorig = new LabImage(spotSi, spotSi);
for (int y = max(cy, (int)(lp.yc - spotSise2)); y < min(transformed->H + cy, (int)(lp.yc + spotSise2 + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSise2)); x < min(transformed->W + cx, (int)(lp.xc + spotSise2 + 1)); x++) {
int yb = max(cy, (int)(lp.yc - spotSise2));
int xb = max(cx, (int)(lp.xc - spotSise2));
int z = y - yb;
int u = x - xb;
origblur->L[z][u] = original->L[y - cy][x - cx];
origblur->a[z][u] = original->a[y - cy][x - cx];
origblur->b[z][u] = original->b[y - cy][x - cx];
}
}
float radius = 3.f / sk;
{
//No omp
gaussianBlur(origblur->L, blurorig->L, spotSi, spotSi, radius);
gaussianBlur(origblur->a, blurorig->a, spotSi, spotSi, radius);
gaussianBlur(origblur->b, blurorig->b, spotSi, spotSi, radius);
}
for (int y = 0; y < spotSi; y++) {
for (int x = 0; x < spotSi; x++) {
aveLblur += blurorig->L[y][x];
aveAblur += blurorig->a[y][x];
aveBblur += blurorig->b[y][x];
aveChroblur += sqrtf(SQR(blurorig->b[y - cy][x - cx]) + SQR(blurorig->a[y - cy][x - cx]));
nsb++;
}
}
}
//ref for luma, chroma, hue
for (int y = max(cy, (int)(lp.yc - spotSize)); y < min(transformed->H + cy, (int)(lp.yc + spotSize + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSize)); x < min(transformed->W + cx, (int)(lp.xc + spotSize + 1)); x++) {
aveL += original->L[y - cy][x - cx];
aveA += original->a[y - cy][x - cx];
aveB += original->b[y - cy][x - cx];
aveChro += sqrtf(SQR(original->b[y - cy][x - cx]) + SQR(original->a[y - cy][x - cx]));
nab++;
}
}
//ref for sobel
for (int y = max(cy, (int)(lp.yc - spotSise2)); y < min(transformed->H + cy, (int)(lp.yc + spotSise2 + 1)); y++) {
for (int x = max(cx, (int)(lp.xc - spotSise2)); x < min(transformed->W + cx, (int)(lp.xc + spotSise2 + 1)); x++) {
int yb = max(cy, (int)(lp.yc - spotSise2));
int xb = max(cx, (int)(lp.xc - spotSise2));
int z = y - yb;
int u = x - xb;
origsob->L[z][u] = original->L[y - cy][x - cx];
nso++;
}
}
const float radius = 3.f / (sk * 1.4f); //0 to 70 ==> see skip
SobelCannyLuma(sobelL->L, origsob->L, spotSi, spotSi, radius);
int nbs = 0;
for (int y = 0; y < spotSi ; y ++)
for (int x = 0; x < spotSi ; x ++) {
avesobel += sobelL->L[y][x];
nbs++;
}
sobelref = avesobel / nbs;
delete sobelL;
delete deltasobelL;
delete origsob;
aveL = aveL / nab;
aveA = aveA / nab;
aveB = aveB / nab;
aveChro = aveChro / nab;
aveChro /= 327.68f;
avA = aveA / 327.68f;
avB = aveB / 327.68f;
avL = aveL / 327.68f;
hueref = xatan2f(avB, avA); //mean hue
if (isdenoise) {
aveLblur = aveLblur / nsb;
aveChroblur = aveChroblur / nsb;
aveChroblur /= 327.68f;
aveAblur = aveAblur / nsb;
aveBblur = aveBblur / nsb;
float avAblur = aveAblur / 327.68f;
float avBblur = aveBblur / 327.68f;
float avLblur = aveLblur / 327.68f;
huerefblur = xatan2f(avBblur, avAblur);
chromarefblur = aveChroblur;
lumarefblur = avLblur;
} else {
huerefblur = 0.f;
chromarefblur = 0.f;
lumarefblur = 0.f;
}
chromaref = aveChro;
lumaref = avL;
// printf("Calcref => sp=%i befend=%i huere=%2.1f chromare=%2.1f lumare=%2.1f sobelref=%2.1f\n", sp, befend, hueref, chromaref, lumaref, sobelref / 100.f);
if (isdenoise) {
delete origblur;
delete blurorig;
}
if (lumaref > 95.f) {//to avoid crash
lumaref = 95.f;
}
}
}
//doc fftw3 says optimum is with size 2^a * 3^b * 5^c * 7^d * 11^e * 13^f with e+f = 0 or 1
//number for size between 18144 and 1 ==> 18000 pixels cover 99% all sensor
const int fftw_size[] = {18144, 18000, 17920, 17836, 17820, 17640, 17600, 17550, 17500, 17496, 17472, 17325, 17280, 17248, 17199, 17150, 17010, 16896, 16875, 16848, 16807,
16800, 16640, 16632, 16500, 16464, 16384, 16380, 16250, 16200, 16170, 16128, 16038, 16000, 15925, 15876, 15840, 15795, 15750, 15680, 15625, 15600, 15552, 15435, 15400,
15360, 15309, 15288, 15120, 15092, 15000, 14976, 14850, 14784, 14742, 14700, 14625, 14580, 14560, 14553, 14336, 14406, 14400, 14256, 14175, 14112, 14080, 14040, 14000, 13860,
13824, 13750, 13720, 13650, 13608, 13500, 13475, 13440, 13377, 13365, 13312, 13230, 13200, 13125, 13122, 13104, 13000, 12960, 12936, 12800, 12740, 12672, 12636, 12600,
12544, 12500, 12480, 12474, 12375, 12348, 12320, 12288, 12285, 12250, 12150, 12096, 12005, 12000, 11907, 11880, 11760, 11700, 11664, 11648, 11550, 11520, 11466, 11375,
11340, 11319, 11264, 11250, 11232, 11200, 11088, 11025, 11000, 10976, 10935, 10920, 10800, 10780, 10752, 10692, 10584, 10560, 10530, 10400, 10395, 10368, 10290, 10240,
10206, 10192, 10125, 10080, 10000, 9984, 9900, 9604, 9856, 9828, 9800, 9750, 9720, 9702, 9625, 9600, 9555, 9504, 9477, 9450, 9408, 9375, 9360, 9261, 9240,
9216, 9100, 9072, 9000, 8960, 8918, 8910, 8820, 8800, 8775, 8750, 8748, 8736, 8640, 8624, 8575, 8505, 8448, 8424, 8400, 8320, 8316, 8250, 8232, 8192, 8190, 8125,
8100, 8085, 8064, 8019, 8000, 7938, 7920, 7875, 7840, 7800, 7776, 7700, 7680, 7644, 7560, 7546, 7500, 7488, 7425, 7392, 7371, 7350, 7290, 7280, 7203, 7200, 7168,
7128, 7056, 7040, 7020, 7000, 6930, 6912, 6875, 6860, 6825, 6804, 6750, 6720, 6656, 6615, 6600, 6561, 6552, 6500, 6480, 6468, 6400, 6370, 6336, 6318, 6300,
6272, 6250, 6240, 6237, 6174, 6160, 6144, 6125, 6075, 6048, 6000, 5940, 5880, 5850, 5832, 5824, 5775, 5760, 5670, 5632, 5625, 5616, 5600, 5544, 5500, 5488,
5460, 5400, 5390, 5376, 5346, 5292, 5280, 5265, 5250, 5200, 5184, 5145, 5120, 5103, 5096, 5040, 5000, 4992, 4950, 4928, 4914, 4900, 4875, 4860, 4851, 4802,
4800, 4752, 4725, 4704, 4680, 4620, 4608, 4550, 4536, 4500, 4480, 4459, 4455, 4410, 4400, 4375, 4374, 4368, 4320, 4312, 4224, 4212, 4200, 4160, 4158, 4125,
4116, 4096, 4095, 4050, 4032, 4000, 3969, 3960, 3920, 3900, 3888, 3850, 3840, 3822, 3780, 3773, 3750, 3744, 3696, 3675, 3645, 3640, 3600, 3584, 3564, 3528,
3520, 3510, 3500, 3465, 3456, 3430, 3402, 3375, 3360, 3328, 3300, 3276, 3250, 3240, 3234, 3200, 3185, 3168, 3159, 3150, 3136, 3125, 3120, 3087, 3080, 3072,
3024, 3000, 2970, 2940, 2925, 2916, 2912, 2880, 2835, 2816, 2808, 2800, 2772, 2750, 2744, 2730, 2700, 2695, 2688, 2673, 2646, 2640, 2625, 2600, 2592, 2560,
2548, 2520, 2500, 2496, 2475, 2464, 2457, 2450, 2430, 2401, 2400, 2376, 2352, 2340, 2310, 2304, 2275, 2268, 2250, 2240, 2205, 2200, 2187, 2184, 2160, 2156,
2112, 2106, 2100, 2080, 2079, 2058, 2048, 2025, 2016, 2000, 1980, 1960, 1950, 1944, 1936, 1925, 1920, 1911, 1890, 1875, 1872, 1848, 1820, 1800, 1792, 1782,
1764, 1760, 1755, 1750, 1728, 1715, 1701, 1680, 1664, 1650, 1638, 1625, 1620, 1617, 1600, 1584, 1575, 1568, 1560, 1540, 1536, 1512, 1500, 1485, 1470, 1458,
1456, 1440, 1408, 1404, 1400, 1386, 1375, 1372, 1365, 1350, 1344, 1323, 1320, 1300, 1296, 1280, 1274, 1260, 1250, 1248, 1232, 1225, 1215, 1200, 1188, 1176,
1170, 1155, 1152, 1134, 1125, 1120, 1100, 1092, 1080, 1078, 1056, 1053, 1050, 1040, 1029, 1024, 1008, 1000, 990, 980, 975, 972, 960, 945, 936, 924, 910, 900,
896, 891, 882, 880, 875, 864, 840, 832, 825, 819, 810, 800, 792, 784, 780, 770, 768, 756, 750, 735, 729, 728, 720, 704, 702, 700, 693, 686, 675, 672, 660,
650, 648, 640, 637, 630, 625, 624, 616, 600, 594, 588, 585, 576, 567, 560, 550, 546, 540, 539, 528, 525, 520, 512, 504, 500, 495, 490, 486, 480, 468, 462, 455,
450, 448, 441, 440, 432, 420, 416, 405, 400, 396, 392, 390, 385, 384, 378, 375, 364, 360, 352, 351, 350, 343, 336, 330, 325, 324, 320, 315, 312, 308, 300, 297,
294, 288, 280, 275, 273, 270, 264, 260, 256, 252, 250, 245, 243, 240, 234, 231, 225, 224, 220, 216, 210, 208, 200, 198, 196, 195, 192, 189, 182, 180, 176, 175,
168, 165, 162, 160, 156, 154, 150, 147, 144, 143, 140, 135, 132, 130, 128, 126, 125, 120, 117, 112, 110, 108, 105, 104, 100, 99, 98, 96, 91, 90, 88, 84, 81,
80, 78, 77, 75, 72, 70, 66, 65, 64, 63, 60, 56, 55, 54, 52, 50, 49, 48, 45, 44, 42, 40, 39, 36, 35, 33, 32, 30, 28, 27, 26, 25, 24, 22, 21, 20, 18, 16, 15,
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
};
int N_fftwsize = sizeof(fftw_size) / sizeof(fftw_size[0]);
static double *cos_table(size_t size)
{
double *table = NULL;
double pi_size;
size_t i;
/* allocate the cosinus table */
if (NULL == (table = (double *) malloc(sizeof(double) * size))) {
fprintf(stderr, "allocation error\n");
abort();
}
/*
* fill the cosinus table,
* table[i] = cos(i Pi / n) for i in [0..n[
*/
pi_size = rtengine::RT_PI / size;
for (i = 0; i < size; i++) {
table[i] = cos(pi_size * i);
}
return table;
}
static void mean_dt(const float *data, size_t size, double *mean_p, double *dt_p)
{
double mean, dt;
const float *ptr_data;
size_t i;
mean = 0.;
dt = 0.;
ptr_data = data;
for (i = 0; i < size; i++) {
mean += *ptr_data;
dt += (*ptr_data) * (*ptr_data);
ptr_data++;
}
mean /= (double) size;
dt /= (double) size;
dt -= (mean * mean);
dt = sqrt(dt);
*mean_p = mean;
*dt_p = dt;
return;
}
void ImProcFunctions::normalize_mean_dt(float *data, const float *ref, size_t size, float mod)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
*/
double mean_ref, mean_data, dt_ref, dt_data;
double a, b;
size_t i;
float *ptr_data;
float *ptr_dataold;
if (NULL == data || NULL == ref) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
/* compute mean and variance of the two arrays */
mean_dt(ref, size, &mean_ref, &dt_ref);
mean_dt(data, size, &mean_data, &dt_data);
/* compute the normalization coefficients */
a = dt_ref / dt_data;
b = mean_ref - a * mean_data;
/* normalize the array */
ptr_data = data;
ptr_dataold = data;
for (i = 0; i < size; i++) {
*ptr_data = mod * (a * *ptr_data + b) + (1.f - mod) * *ptr_dataold;
// *ptr_data = mod * *ptr_data + (1.f - mod) * *ptr_dataold;
ptr_data++;
}
return;
}
static float *retinex_poisson_dct(float *data, size_t nx, size_t ny, double m)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
*/
BENCHFUN
double *cosx = NULL, *cosy = NULL;
size_t i;
double m2;
/*
* get the cosinus tables
* cosx[i] = cos(i Pi / nx) for i in [0..nx[
* cosy[i] = cos(i Pi / ny) for i in [0..ny[
*/
cosx = cos_table(nx);
cosy = cos_table(ny);
/*
* we will now multiply data[i, j] by
* m / (4 - 2 * cosx[i] - 2 * cosy[j]))
* and set data[0, 0] to 0
*/
m2 = m / 2.;
/*
* handle the first value, data[0, 0] = 0
* after that, by construction, we always have
* cosx[] + cosy[] != 2.
*/
data[0] = 0.;
/*
* continue with all the array:
* i % nx is the position on the x axis (column number)
* i / nx is the position on the y axis (row number)
*/
for (i = 1; i < nx * ny; i++) {
data[i] *= m2 / (2. - cosx[i % nx] - cosy[i / nx]);
}
free(cosx);
free(cosy);
return data;
}
static float *discrete_laplacian_threshold(float *data_out, const float *data_in, size_t nx, size_t ny, float t)
{
BENCHFUN
size_t i, j;
float *ptr_out;
float diff = 0.f;
/* pointers to the current and neighbour values */
const float *ptr_in, *ptr_in_xm1, *ptr_in_xp1, *ptr_in_ym1, *ptr_in_yp1;
if (NULL == data_in || NULL == data_out) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
/* pointers to the data and neighbour values */
/*
* y-1
* x-1 ptr x+1
* y+1
* <---------------------nx------->
*/
ptr_in = data_in;
ptr_in_xm1 = data_in - 1;
ptr_in_xp1 = data_in + 1;
ptr_in_ym1 = data_in - nx;
ptr_in_yp1 = data_in + nx;
ptr_out = data_out;
for (j = 0; j < ny; j++) {
for (i = 0; i < nx; i++) {
*ptr_out = 0.f;
/* row differences */
if (0 < i) {
diff = *ptr_in - *ptr_in_xm1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
if (nx - 1 > i) {
diff = *ptr_in - *ptr_in_xp1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
/* column differences */
if (0 < j) {
diff = *ptr_in - *ptr_in_ym1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
if (ny - 1 > j) {
diff = *ptr_in - *ptr_in_yp1;
if (fabs(diff) > t) {
*ptr_out += diff;
}
}
ptr_in++;
ptr_in_xm1++;
ptr_in_xp1++;
ptr_in_ym1++;
ptr_in_yp1++;
ptr_out++;
}
}
return data_out;
}
void ImProcFunctions::retinex_pde(float *datain, float * dataout, int bfw, int bfh, float thresh, float multy, float *dE, int show)
{
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* @file retinex_pde_lib.c discrete Poisson equation
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <nicolas.limare@cmla.ens-cachan.fr>
* adapted for Rawtherapee by Jacques Desmis 6-2019 <jdesmis@gmail.com>
*/
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
fftwf_plan dct_fw, dct_fw04, dct_bw;
float *data_fft, *data_fft04, *data_tmp, *data, *data_tmp04;
float *datashow = nullptr;
if (show != 0) {
if (NULL == (datashow = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
}
if (NULL == (data_tmp = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data_tmp04 = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//first call to laplacian with plein strength
(void) discrete_laplacian_threshold(data_tmp, datain, bfw, bfh, thresh);
if (NULL == (data_fft = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (show == 1) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_tmp[y * bfw + x];
}
}
}
//second call to laplacian with 40% strength ==> reduce effect if we are far from ref (deltaE)
(void) discrete_laplacian_threshold(data_tmp04, datain, bfw, bfh, 0.4f * thresh);
if (NULL == (data_fft04 = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//execute first
dct_fw = fftwf_plan_r2r_2d(bfh, bfw, data_tmp, data_fft, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw);
//execute second
dct_fw04 = fftwf_plan_r2r_2d(bfh, bfw, data_tmp04, data_fft04, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw04);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {//mix two fftw Laplacian : plein if dE near ref
for (int x = 0; x < bfw; x++) {
float prov = pow(dE[y * bfw + x], 4.5f);
data_fft[y * bfw + x] = prov * data_fft[y * bfw + x] + (1.f - prov) * data_fft04[y * bfw + x];
}
}
if (show == 2) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_fft[y * bfw + x];
}
}
}
fftwf_free(data_fft04);
fftwf_free(data_tmp);
fftwf_free(data_tmp04);
fftwf_destroy_plan(dct_fw04);
/* solve the Poisson PDE in Fourier space */
/* 1. / (float) (bfw * bfh)) is the DCT normalisation term, see libfftw */
(void) retinex_poisson_dct(data_fft, bfw, bfh, 1. / (double)(bfw * bfh));
if (show == 3) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
datashow[y * bfw + x] = data_fft[y * bfw + x];
}
}
}
dct_bw = fftwf_plan_r2r_2d(bfh, bfw, data_fft, data, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_bw);
fftwf_destroy_plan(dct_fw);
fftwf_destroy_plan(dct_bw);
fftwf_free(data_fft);
fftwf_cleanup();
if (multiThread) {
fftwf_cleanup_threads();
}
if (show != 4) {
normalize_mean_dt(data, datain, bfw * bfh, 1.f);
}
if (show == 0 || show == 4) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(multy * data[y * bfw + x]);
}
}
} else if (show == 1 || show == 2 || show == 3) {
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(multy * datashow[y * bfw + x]);
}
}
fftwf_free(datashow);
}
}
void ImProcFunctions::exposure_pde(float *dataor, float *datain, float * dataout, int bfw, int bfh, float thresh, float mod)
{
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
fftwf_plan dct_fw, dct_bw;
float *data_fft, *data_tmp, *data;
if (NULL == (data_tmp = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//first call to laplacian with plein strength
(void) discrete_laplacian_threshold(data_tmp, datain, bfw, bfh, thresh);
if (NULL == (data_fft = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
if (NULL == (data = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
//execute first
dct_fw = fftwf_plan_r2r_2d(bfh, bfw, data_tmp, data_fft, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw);
fftwf_free(data_tmp);
/* solve the Poisson PDE in Fourier space */
/* 1. / (float) (bfw * bfh)) is the DCT normalisation term, see libfftw */
(void) retinex_poisson_dct(data_fft, bfw, bfh, 1. / (double)(bfw * bfh));
dct_bw = fftwf_plan_r2r_2d(bfh, bfw, data_fft, data, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_bw);
fftwf_destroy_plan(dct_fw);
fftwf_destroy_plan(dct_bw);
fftwf_free(data_fft);
fftwf_cleanup();
if (multiThread) {
fftwf_cleanup_threads();
}
normalize_mean_dt(data, dataor, bfw * bfh, mod);
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
dataout[y * bfw + x] = CLIPLOC(data[y * bfw + x]);
}
}
}
}
void ImProcFunctions::fftw_convol_blur(float *input, float *output, int bfw, int bfh, float radius, int fftkern, int algo)
{
/*
** Jacques Desmis june 2019 - inspired by Copyright 2013 IPOL Image Processing On Line http://www.ipol.im/
** when I read documentation on various FFT blur we found 2 possibilities
** 0) kernel gauss is used with "normal" datas
** 1) kernel gauss is used with FFT
** fftkern allows to change 0) or 1) and test It seems the good solution is with 0, but I keep the code in case of ??
** input real datas to blur
** output real datas blurred with radius
** bfw bfh width and high area
** radius = sigma for kernel
** n_x n_y relative width and high for kernel
** Gaussian blur is given by G(x,y) = (1/2*PI*sigma) * exp(-(x2 + y2) / 2* sigma2)
** its traduction in Fourier transform is G(x,y) = exp((-sigma)*(PI * x2 + PI * y2)), for some authors it is not sigma but sigma^2..I have tried...huge diffrences with Gaussianblur
** after several test the only result that works very well is with fftkern = 0 and algo = 0, and as there is differences with Gaussianblur, I put an empirical correction in Ipretinex and Iplocalcontrast
** you can enabled or disabled this function with rtsettings.fftwsigma in options. By defaut empirical formula is disabled
** in fact no importance....if it is this function (for sigma) or another... we are not in research :)
*/
BENCHFUN
#ifdef _OPENMP
if (multiThread) {
fftwf_init_threads();
fftwf_plan_with_nthreads(omp_get_max_threads());
}
#endif
float *out; //for FFT datas
float *kern = nullptr;//for kernel gauss
float *outkern = nullptr;//for FFT kernel
fftwf_plan p;
fftwf_plan pkern;//plan for FFT
int image_size, image_sizechange;
float n_x = 1.f;
float n_y = 1.f;//relative coordonates for kernel Gauss
float radsig = 1.f;
out = (float*) fftwf_malloc(sizeof(float) * (bfw * bfh));//allocate real datas for FFT
if (fftkern == 1) { //allocate memory FFT if kernel fft = 1
kern = new float[bfw * bfh];
outkern = (float*) fftwf_malloc(sizeof(float) * (bfw * bfh));//allocate real datas for FFT
}
/*compute the Fourier transform of the input data*/
p = fftwf_plan_r2r_2d(bfh, bfw, input, out, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE);//FFT 2 dimensions forward FFTW_MEASURE FFTW_ESTIMATE
// p = fftwf_plan_r2r_2d(bfh, bfw, input, out, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(p);
fftwf_destroy_plan(p);
/*define the gaussian constants for the convolution kernel*/
if (algo == 0) {
n_x = rtengine::RT_PI / (double) bfw; //ipol
n_y = rtengine::RT_PI / (double) bfh;
} else if (algo == 1) {
n_x = 1.f / (float) bfw; //gauss
n_y = 1.f / (float) bfh;
radsig = 1.f / (2.f * rtengine::RT_PI * radius * radius);//gauss
}
n_x = n_x * n_x;
n_y = n_y * n_y;
image_size = bfw * bfh;
image_sizechange = 4 * image_size;
if (fftkern == 1) { //convolution with FFT kernel
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++)
if (algo == 0) {
kern[ i + index] = exp((float)(-radius) * (n_x * i * i + n_y * j * j)); //calculate Gauss kernel Ipol formula
} else if (algo == 1) {
kern[ i + index] = radsig * exp((float)(-(n_x * i * i + n_y * j * j) / (2.f * radius * radius))); //calculate Gauss kernel with Gauss formula
}
}
/*compute the Fourier transform of the kernel data*/
pkern = fftwf_plan_r2r_2d(bfh, bfw, kern, outkern, FFTW_REDFT10, FFTW_REDFT10, FFTW_ESTIMATE); //FFT 2 dimensions forward
fftwf_execute(pkern);
fftwf_destroy_plan(pkern);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= outkern[i + index]; //apply Gauss kernel whith FFT
}
}
fftwf_free(outkern);
delete [] kern;
} else if (fftkern == 0) {//whithout FFT kernel
if (algo == 0) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= exp((float)(-radius) * (n_x * i * i + n_y * j * j)); //apply Gauss kernel whithout FFT - some authors says radius*radius but differences with Gaussianblur
}
}
} else if (algo == 1) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int j = 0; j < bfh; j++) {
int index = j * bfw;
for (int i = 0; i < bfw; i++) {
out[i + index] *= radsig * exp((float)(-(n_x * i * i + n_y * j * j) / (2.f * radius * radius))); //calculate Gauss kernel with Gauss formula
}
}
}
}
p = fftwf_plan_r2r_2d(bfh, bfw, out, output, FFTW_REDFT01, FFTW_REDFT01, FFTW_ESTIMATE);//FFT 2 dimensions backward
fftwf_execute(p);
for (int index = 0; index < image_size; index++) { //restore datas
output[index] /= image_sizechange;
// output[index] = CLIPMAX(output[index]);
}
fftwf_destroy_plan(p);
fftwf_free(out);
if (multiThread) {
fftwf_cleanup_threads();
}
}
void ImProcFunctions::fftw_convol_blur2(float **input2, float **output2, int bfw, int bfh, float radius, int fftkern, int algo)
{
MyMutex::MyLock lock(*fftwMutex);
float *input = nullptr;
if (NULL == (input = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
float *output = nullptr;
if (NULL == (output = (float *) fftwf_malloc(sizeof(float) * bfw * bfh))) {
fprintf(stderr, "allocation error\n");
abort();
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
input[y * bfw + x] = input2[y][x];
}
}
ImProcFunctions::fftw_convol_blur(input, output, bfw, bfh, radius, fftkern, algo);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
output2[y][x] = output[y * bfw + x];
}
}
fftwf_free(input);
fftwf_free(output);
}
void ImProcFunctions::fftw_tile_blur(int GW, int GH, int tilssize, int max_numblox_W, int min_numblox_W, float **tmp1, int numThreads, double radius)
{
BENCHFUN
float epsil = 0.001f / (tilssize * tilssize);
fftwf_plan plan_forward_blox[2];
fftwf_plan plan_backward_blox[2];
array2D<float> tilemask_in(tilssize, tilssize);
array2D<float> tilemask_out(tilssize, tilssize);
float *Lbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
float *fLbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
int nfwd[2] = {tilssize, tilssize};
//for DCT:
fftw_r2r_kind fwdkind[2] = {FFTW_REDFT10, FFTW_REDFT10};
fftw_r2r_kind bwdkind[2] = {FFTW_REDFT01, FFTW_REDFT01};
// Creating the plans with FFTW_MEASURE instead of FFTW_ESTIMATE speeds up the execute a bit
plan_forward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, Lbloxtmp, nullptr, 1, tilssize * tilssize, fLbloxtmp, nullptr, 1, tilssize * tilssize, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, fLbloxtmp, nullptr, 1, tilssize * tilssize, Lbloxtmp, nullptr, 1, tilssize * tilssize, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_forward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, Lbloxtmp, nullptr, 1, tilssize * tilssize, fLbloxtmp, nullptr, 1, tilssize * tilssize, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, fLbloxtmp, nullptr, 1, tilssize * tilssize, Lbloxtmp, nullptr, 1, tilssize * tilssize, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
fftwf_free(Lbloxtmp);
fftwf_free(fLbloxtmp);
const int border = MAX(2, tilssize / 16);
for (int i = 0; i < tilssize; ++i) {
float i1 = abs((i > tilssize / 2 ? i - tilssize + 1 : i));
float vmask = (i1 < border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
float vmask2 = (i1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
for (int j = 0; j < tilssize; ++j) {
float j1 = abs((j > tilssize / 2 ? j - tilssize + 1 : j));
tilemask_in[i][j] = (vmask * (j1 < border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsil;
tilemask_out[i][j] = (vmask2 * (j1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsil;
}
}
float *LbloxArray[numThreads];
float *fLbloxArray[numThreads];
const int numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
const int numblox_H = ceil((static_cast<float>(GH)) / (offset2)) + 2 * blkrad;
array2D<float> Lresult(GW, GH, ARRAY2D_CLEAR_DATA);
array2D<float> totwt(GW, GH, ARRAY2D_CLEAR_DATA); //weight for combining DCT blocks
for (int i = 0; i < numThreads; ++i) {
LbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
fLbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * tilssize * tilssize * sizeof(float)));
}
#ifdef _OPENMP
int masterThread = omp_get_thread_num();
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
int subThread = masterThread * 1 + omp_get_thread_num();
#else
int subThread = 0;
#endif
float *Lblox = LbloxArray[subThread];
float *fLblox = fLbloxArray[subThread];
float pBuf[GW + tilssize + 2 * blkrad * offset2] ALIGNED16;
#ifdef _OPENMP
#pragma omp for
#endif
for (int vblk = 0; vblk < numblox_H; ++vblk) {
int top = (vblk - blkrad) * offset2;
float * datarow = pBuf + blkrad * offset2;
for (int i = 0; i < tilssize; ++i) {
int row = top + i;
int rr = row;
if (row < 0) {
rr = MIN(-row, GH - 1);
} else if (row >= GH) {
rr = MAX(0, 2 * GH - 2 - row);
}
for (int j = 0; j < GW; ++j) {
datarow[j] = (tmp1[rr][j]);
}
for (int j = -blkrad * offset2; j < 0; ++j) {
datarow[j] = datarow[MIN(-j, GW - 1)];
}
for (int j = GW; j < GW + tilssize + blkrad * offset2; ++j) {
datarow[j] = datarow[MAX(0, 2 * GW - 2 - j)];
}//now we have a padded data row
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset2;
int indx = (hblk) * tilssize; //index of block in malloc
if (top + i >= 0 && top + i < GH) {
int j;
for (j = 0; j < min((-left), tilssize); ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
for (; j < min(tilssize, GW - left); ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
totwt[top + i][left + j] += tilemask_in[i][j] * tilemask_out[i][j];
}
for (; j < tilssize; ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
} else {
for (int j = 0; j < tilssize; ++j) {
Lblox[(indx + i)*tilssize + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
}
}
}//end of filling block row
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fftwf_print_plan (plan_forward_blox);
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_forward_blox[0], Lblox, fLblox); // DCT an entire row of tiles
} else {
fftwf_execute_r2r(plan_forward_blox[1], Lblox, fLblox); // DCT an entire row of tiles
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double n_x = rtengine::RT_PI / (double) tilssize;
double n_y = rtengine::RT_PI / (double) tilssize;
n_x = n_x * n_x;
n_y = n_y * n_y;
//radius = 30.f;
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int blkstart = hblk * tilssize * tilssize;
for (int j = 0; j < tilssize; j++) {
int index = j * tilssize;
for (int i = 0; i < tilssize; i++) {
fLblox[blkstart + index + i] *= exp((float)(-radius) * (n_x * i * i + n_y * j * j));
}
}
}//end of horizontal block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now perform inverse FT of an entire row of blocks
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_backward_blox[0], fLblox, Lblox); //for DCT
} else {
fftwf_execute_r2r(plan_backward_blox[1], fLblox, Lblox); //for DCT
}
int topproc = (vblk - blkrad) * offset2;
const int numblox_W = ceil((static_cast<float>(GW)) / (offset2));
const float DCTnorm = 1.0f / (4 * tilssize * tilssize); //for DCT
int imin = MAX(0, - topproc);
int bottom = MIN(topproc + tilssize, GH);
int imax = bottom - topproc;
for (int i = imin; i < imax; ++i) {
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset2;
int right = MIN(left + tilssize, GW);
int jmin = MAX(0, -left);
int jmax = right - left;
int indx = hblk * tilssize;
for (int j = jmin; j < jmax; ++j) {
Lresult[topproc + i][left + j] += tilemask_out[i][j] * Lblox[(indx + i) * tilssize + j] * DCTnorm; //for DCT
}
}
}
}//end of vertical block loop
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
tmp1[i][j] = Lresult[i][j] / totwt[i][j];
tmp1[i][j] = CLIPLOC(tmp1[i][j]);
}
}
for (int i = 0; i < numThreads; ++i) {
fftwf_free(LbloxArray[i]);
fftwf_free(fLbloxArray[i]);
}
fftwf_destroy_plan(plan_forward_blox[0]);
fftwf_destroy_plan(plan_backward_blox[0]);
fftwf_destroy_plan(plan_forward_blox[1]);
fftwf_destroy_plan(plan_backward_blox[1]);
fftwf_cleanup();
}
void ImProcFunctions::fftw_denoise(int GW, int GH, int max_numblox_W, int min_numblox_W, float **tmp1, array2D<float> *Lin, int numThreads, const struct local_params & lp, int chrom)
{
BENCHFUN
fftwf_plan plan_forward_blox[2];
fftwf_plan plan_backward_blox[2];
array2D<float> tilemask_in(TS, TS);
array2D<float> tilemask_out(TS, TS);
float *Lbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
float *fLbloxtmp = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
int nfwd[2] = {TS, TS};
//for DCT:
fftw_r2r_kind fwdkind[2] = {FFTW_REDFT10, FFTW_REDFT10};
fftw_r2r_kind bwdkind[2] = {FFTW_REDFT01, FFTW_REDFT01};
// Creating the plans with FFTW_MEASURE instead of FFTW_ESTIMATE speeds up the execute a bit
plan_forward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, Lbloxtmp, nullptr, 1, TS * TS, fLbloxtmp, nullptr, 1, TS * TS, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[0] = fftwf_plan_many_r2r(2, nfwd, max_numblox_W, fLbloxtmp, nullptr, 1, TS * TS, Lbloxtmp, nullptr, 1, TS * TS, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_forward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, Lbloxtmp, nullptr, 1, TS * TS, fLbloxtmp, nullptr, 1, TS * TS, fwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
plan_backward_blox[1] = fftwf_plan_many_r2r(2, nfwd, min_numblox_W, fLbloxtmp, nullptr, 1, TS * TS, Lbloxtmp, nullptr, 1, TS * TS, bwdkind, FFTW_MEASURE | FFTW_DESTROY_INPUT);
fftwf_free(Lbloxtmp);
fftwf_free(fLbloxtmp);
const int border = MAX(2, TS / 16);
for (int i = 0; i < TS; ++i) {
float i1 = abs((i > TS / 2 ? i - TS + 1 : i));
float vmask = (i1 < border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
float vmask2 = (i1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * i1) / (2 * border))) : 1.0f);
for (int j = 0; j < TS; ++j) {
float j1 = abs((j > TS / 2 ? j - TS + 1 : j));
tilemask_in[i][j] = (vmask * (j1 < border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsilon;
tilemask_out[i][j] = (vmask2 * (j1 < 2 * border ? SQR(sin((rtengine::RT_PI_F * j1) / (2 * border))) : 1.0f)) + epsilon;
}
}
float *LbloxArray[numThreads];
float *fLbloxArray[numThreads];
const int numblox_W = ceil((static_cast<float>(GW)) / (offset)) + 2 * blkrad;
const int numblox_H = ceil((static_cast<float>(GH)) / (offset)) + 2 * blkrad;
//residual between input and denoised L channel
array2D<float> Ldetail(GW, GH, ARRAY2D_CLEAR_DATA);
array2D<float> totwt(GW, GH, ARRAY2D_CLEAR_DATA); //weight for combining DCT blocks
for (int i = 0; i < numThreads; ++i) {
LbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
fLbloxArray[i] = reinterpret_cast<float*>(fftwf_malloc(max_numblox_W * TS * TS * sizeof(float)));
}
#ifdef _OPENMP
int masterThread = omp_get_thread_num();
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
int subThread = masterThread * 1 + omp_get_thread_num();
#else
int subThread = 0;
#endif
float blurbuffer[TS * TS] ALIGNED64;
float *Lblox = LbloxArray[subThread];
float *fLblox = fLbloxArray[subThread];
float pBuf[GW + TS + 2 * blkrad * offset] ALIGNED16;
float nbrwt[TS * TS] ALIGNED64;
#ifdef _OPENMP
#pragma omp for
#endif
for (int vblk = 0; vblk < numblox_H; ++vblk) {
int top = (vblk - blkrad) * offset;
float * datarow = pBuf + blkrad * offset;
for (int i = 0; i < TS; ++i) {
int row = top + i;
int rr = row;
if (row < 0) {
rr = MIN(-row, GH - 1);
} else if (row >= GH) {
rr = MAX(0, 2 * GH - 2 - row);
}
for (int j = 0; j < GW; ++j) {
datarow[j] = ((*Lin)[rr][j] - tmp1[rr][j]);
}
for (int j = -blkrad * offset; j < 0; ++j) {
datarow[j] = datarow[MIN(-j, GW - 1)];
}
for (int j = GW; j < GW + TS + blkrad * offset; ++j) {
datarow[j] = datarow[MAX(0, 2 * GW - 2 - j)];
}//now we have a padded data row
//now fill this row of the blocks with Lab high pass data
for (int hblk = 0; hblk < numblox_W; ++hblk) {
int left = (hblk - blkrad) * offset;
int indx = (hblk) * TS; //index of block in malloc
if (top + i >= 0 && top + i < GH) {
int j;
for (j = 0; j < min((-left), TS); ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
for (; j < min(TS, GW - left); ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
totwt[top + i][left + j] += tilemask_in[i][j] * tilemask_out[i][j];
}
for (; j < TS; ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
} else {
for (int j = 0; j < TS; ++j) {
Lblox[(indx + i)*TS + j] = tilemask_in[i][j] * datarow[left + j]; // luma data
}
}
}
}//end of filling block row
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//fftwf_print_plan (plan_forward_blox);
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_forward_blox[0], Lblox, fLblox); // DCT an entire row of tiles
} else {
fftwf_execute_r2r(plan_forward_blox[1], Lblox, fLblox); // DCT an entire row of tiles
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// now process the vblk row of blocks for noise reduction
float params_Ldetail = 0.f;
float noisevar_Ldetail = 1.f;
if (chrom == 0) {
params_Ldetail = min(float(lp.noiseldetail), 99.9f); // max out to avoid div by zero when using noisevar_Ldetail as divisor
noisevar_Ldetail = SQR(static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f);
} else if (chrom == 1) {
params_Ldetail = min(float(lp.noisechrodetail), 99.9f);
noisevar_Ldetail = 100.f * pow((static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f), 2);//to test ???
}
// float noisevar_Ldetail = SQR(static_cast<float>(SQR(100. - params_Ldetail) + 50.*(100. - params_Ldetail)) * TS * 0.5f);
for (int hblk = 0; hblk < numblox_W; ++hblk) {
ImProcFunctions::RGBtile_denoise(fLblox, hblk, noisevar_Ldetail, nbrwt, blurbuffer);
}//end of horizontal block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//now perform inverse FT of an entire row of blocks
if (numblox_W == max_numblox_W) {
fftwf_execute_r2r(plan_backward_blox[0], fLblox, Lblox); //for DCT
} else {
fftwf_execute_r2r(plan_backward_blox[1], fLblox, Lblox); //for DCT
}
int topproc = (vblk - blkrad) * offset;
//add row of blocks to output image tile
ImProcFunctions::RGBoutput_tile_row(Lblox, Ldetail, tilemask_out, GH, GW, topproc);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}//end of vertical block loop
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
//may want to include masking threshold for large hipass data to preserve edges/detail
tmp1[i][j] += Ldetail[i][j] / totwt[i][j]; //note that labdn initially stores the denoised hipass data
}
}
delete Lin;
for (int i = 0; i < numThreads; ++i) {
fftwf_free(LbloxArray[i]);
fftwf_free(fLbloxArray[i]);
}
fftwf_destroy_plan(plan_forward_blox[0]);
fftwf_destroy_plan(plan_backward_blox[0]);
fftwf_destroy_plan(plan_forward_blox[1]);
fftwf_destroy_plan(plan_backward_blox[1]);
fftwf_cleanup();
}
void ImProcFunctions::Lab_Local(int call, int sp, float** shbuffer, LabImage * original, LabImage * transformed, LabImage * reserved, int cx, int cy, int oW, int oH, int sk,
const LocretigainCurve & locRETgainCcurve, LUTf & lllocalcurve, bool & locallutili, const LocLHCurve & loclhCurve, const LocHHCurve & lochhCurve, const LocCCmaskCurve & locccmasCurve, bool & lcmasutili, const LocLLmaskCurve & locllmasCurve, bool & llmasutili, const LocHHmaskCurve & lochhmasCurve, bool &lhmasutili, const LocCCmaskexpCurve & locccmasexpCurve, bool &lcmasexputili, const LocLLmaskexpCurve & locllmasexpCurve, bool &llmasexputili, const LocHHmaskexpCurve & lochhmasexpCurve, bool & lhmasexputili,
const LocCCmaskSHCurve & locccmasSHCurve, bool &lcmasSHutili, const LocLLmaskSHCurve & locllmasSHCurve, bool &llmasSHutili, const LocHHmaskSHCurve & lochhmasSHCurve, bool & lhmasSHutili,
const LocCCmaskcbCurve & locccmascbCurve, bool &lcmascbutili, const LocLLmaskcbCurve & locllmascbCurve, bool &llmascbutili, const LocHHmaskcbCurve & lochhmascbCurve, bool & lhmascbutili,
const LocCCmaskretiCurve & locccmasretiCurve, bool &lcmasretiutili, const LocLLmaskretiCurve & locllmasretiCurve, bool &llmasretiutili, const LocHHmaskretiCurve & lochhmasretiCurve, bool & lhmasretiutili,
bool & LHutili, bool & HHutili, LUTf & cclocalcurve, bool & localcutili, bool & localexutili, LUTf & exlocalcurve, LUTf & hltonecurveloc, LUTf & shtonecurveloc, LUTf & tonecurveloc, LUTf & lightCurveloc, double & huerefblur, double &chromarefblur, double & lumarefblur, double & hueref, double & chromaref, double & lumaref, double & sobelref, int llColorMask, int llExpMask, int llSHMask, int llcbMask, int llretiMask, int llsoftMask)
{
/* comment on processus deltaE
* the algo uses 3 different ways to manage deltaE according to the type of intervention
* if we call "applyproc" : the datas produced upstream in bfw, bfh coordinate by the function producing something curves, retinex, exposure, etc.
* direct : in this case we use directly the datas produced upstream by "applyproc", with only a regulation produce for deltaE by reducdE
* direct : we found in this case "applyproc" modify data with low amplitude : BlurNoise, CBDL, Denoise, Sharp, TM
* with first use of "buflight" on which is apply "applyproc", in this case we apply realstrdE = reducdE * buflight with a function of type 328.f * realstrdE
* in this case we found "applyproc" which result in direct use on Luminance : Exposure, Color and Light, Shadows highlight, SoftLight, Local contrast
* with second use of "buflight" on which is apply "applyproc", in this case we apply realstrdE = reducdE * buflight with a function of type fli = (100.f + realstrdE) / 100.f;
* in this case we found "applyproc" which result in large variations of L : Retinex
* if you change you must test before
*/
//general call of others functions : important return hueref, chromaref, lumaref
if (params->locallab.enabled) {
BENCHFUN
#ifdef _DEBUG
// init variables to display Munsell corrections
MunsellDebugInfo* MunsDebugInfo = new MunsellDebugInfo();
#endif
int del = 3; // to avoid crash with [loy - begy] and [lox - begx] and bfh bfw // with gtk2 [loy - begy-1] [lox - begx -1 ] and del = 1
struct local_params lp;
calcLocalParams(sp, oW, oH, params->locallab, lp, llColorMask, llExpMask, llSHMask, llcbMask, llretiMask, llsoftMask);
const float radius = lp.rad / (sk * 1.4f); //0 to 70 ==> see skip
int strred = 1;//(lp.strucc - 1);
float radiussob = strred / (sk * 1.4f);
int levred;
bool noiscfactiv = false;
if (lp.qualmet == 2) { //suppress artifacts with quality enhanced
levred = 4;
noiscfactiv = true;
} else {
levred = 7;
noiscfactiv = false;
}
if (lp.excmet == 1 && call <= 3) {//exclude
const int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
const int bfw = int (lp.lx + lp.lxL) + del;
const int begy = lp.yc - lp.lyT;
const int begx = lp.xc - lp.lxL;
const int yEn = lp.yc + lp.ly;
const int xEn = lp.xc + lp.lx;
LabImage bufreserv(bfw, bfh);
array2D<float> bufsob(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = std::max(begy - cy, 0); y < std::min(yEn - cy, original->H); y++) {
const int loy = cy + y;
for (int x = std::max(begx - cx, 0); x < std::min(xEn - cx, original->W); x++) {
const int lox = cx + x;
bufsob[loy - begy][lox - begx] = bufreserv.L[loy - begy][lox - begx] = reserved->L[y][x];
bufreserv.a[loy - begy][lox - begx] = reserved->a[y][x];
bufreserv.b[loy - begy][lox - begx] = reserved->b[y][x];
}
}
array2D<float> ble(bfw, bfh);
SobelCannyLuma(ble, bufsob, bfw, bfh, radiussob, true);
array2D<float> &guid = bufsob;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
ble[ir][jr] /= 32768.f;
guid[ir][jr] /= 32768.f;
}
const float blur = 25 / sk * (10.f + 1.2f * lp.struexp);
rtengine::guidedFilter(guid, ble, ble, blur, 0.001, multiThread);
double sombel = 0.f;
const int ncsobel = bfh * bfw;
float maxsob = -1.f;
float minsob = 100000.f;
array2D<float> &deltasobelL = guid;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:sombel) reduction(min:minsob) reduction(max:maxsob)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
const float val = ble[ir][jr] * 32768.f;
sombel += val;
minsob = rtengine::min(maxsob, val);
maxsob = rtengine::max(minsob, val);
deltasobelL[ir][jr] = val;
}
}
const float meansob = sombel / ncsobel;
Exclude_Local(deltasobelL, hueref, chromaref, lumaref, sobelref, meansob, lp, original, transformed, &bufreserv, reserved, cx, cy, sk);
}
//local impulse
if ((lp.bilat > 0.f) && lp.denoiena) {
const int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
const int bfw = int (lp.lx + lp.lxL) + del;
std::unique_ptr<LabImage> bufwv;
if (call == 2) {//simpleprocess
bufwv.reset(new LabImage(bfw, bfh)); //buffer for data in zone limit
const int begy = lp.yc - lp.lyT;
const int begx = lp.xc - lp.lxL;
const int yEn = lp.yc + lp.ly;
const int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = rtengine::max(0, begy - cy); y < rtengine::min(transformed->H, yEn - cy); y++) {
const int loy = cy + y;
for (int x = rtengine::max(0, begx - cx); x < rtengine::min(transformed->W, xEn - cx); x++) {
const int lox = cx + x;
bufwv->L[loy - begy][lox - begx] = original->L[y][x];
bufwv->a[loy - begy][lox - begx] = original->a[y][x];
bufwv->b[loy - begy][lox - begx] = original->b[y][x];
}
}
} else {//dcrop.cc
bufwv.reset(new LabImage(transformed->W, transformed->H));
bufwv->CopyFrom(original);
} //end dcrop
const double threshold = lp.bilat / 20.0;
if (bfh > 8 && bfw > 8) {
ImProcFunctions::impulse_nr(bufwv.get(), threshold);
}
DeNoise_Local(call, lp, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, *(bufwv.get()), cx, cy, sk);
}
//local denoise
//all these variables are to prevent use of denoise when non necessary
// but with qualmet = 2 (default for best quality) we must denoise chroma with little values to prevent artifacts due to variations of Hue
// but if user select volontary denoise, it is that choice the good (prioritary)
bool execcolor = (lp.chro != 0.f || lp.ligh != 0.f || lp.cont != 0); // only if one slider ore more is engaged
bool execbdl = (lp.mulloc[0] != 1.f || lp.mulloc[1] != 1.f || lp.mulloc[2] != 1.f || lp.mulloc[3] != 1.f || lp.mulloc[4] != 1.f || lp.mulloc[5] != 1.f) ;//only if user want cbdl
bool execdenoi = noiscfactiv && ((lp.colorena && execcolor) || (lp.tonemapena && lp.strengt != 0.f) || (lp.cbdlena && execbdl) || (lp.sfena && lp.strng > 0.f) || (lp.lcena && lp.lcamount > 0.f) || (lp.sharpena && lp.shrad > 0.42) || (lp.retiena && lp.str > 0.f) || (lp.exposena && lp.expcomp != 0.f) || (lp.expvib && lp.past != 0.f));
if (((lp.noiself > 0.f || lp.noiself0 > 0.f || lp.noiself2 > 0.f || lp.noiselc > 0.f || lp.noisecf > 0.f || lp.noisecc > 0.f) && lp.denoiena) || execdenoi) { // sk == 1 ??
StopWatch Stop1("locallab Denoise called");
MyMutex::MyLock lock(*fftwMutex);
if (lp.noisecf >= 0.1f || lp.noisecc >= 0.1f) {
noiscfactiv = false;
levred = 7;
}
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
if (call == 1) {
LabImage tmp1(transformed->W, transformed->H);
LabImage tmp2(transformed->W, transformed->H);
tmp2.clear();
array2D<float> *Lin = nullptr;
array2D<float> *Ain = nullptr;
array2D<float> *Bin = nullptr;
int GW = transformed->W;
int GH = transformed->H;
int max_numblox_W = ceil((static_cast<float>(GW)) / (offset)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(GW)) / (offset)) + 2 * blkrad;
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
tmp1.L[ir][jr] = original->L[ir][jr];
tmp1.a[ir][jr] = original->a[ir][jr];
tmp1.b[ir][jr] = original->b[ir][jr];
}
int DaubLen = 6;
int levwavL = levred;
int skip = 1;
wavelet_decomposition Ldecomp(tmp1.L[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, DaubLen);
wavelet_decomposition adecomp(tmp1.a[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, DaubLen);
wavelet_decomposition bdecomp(tmp1.b[0], tmp1.W, tmp1.H, levwavL, 1, skip, numThreads, DaubLen);
float madL[8][3];
int edge = 2;
if (!Ldecomp.memoryAllocationFailed) {
#pragma omp parallel for collapse(2) schedule(dynamic,1)
for (int lvl = 0; lvl < levred; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int Wlvl_L = Ldecomp.level_W(lvl);
int Hlvl_L = Ldecomp.level_H(lvl);
float ** WavCoeffs_L = Ldecomp.level_coeffs(lvl);
madL[lvl][dir - 1] = SQR(Mad(WavCoeffs_L[dir], Wlvl_L * Hlvl_L));
}
}
float vari[levred];
if (levred == 7) {
edge = 2;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiself2 / 125.0) * (1.0 + lp.noiself2 / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[4] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[5] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[6] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
} else if (levred == 4) {
edge = 3;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
}
if ((lp.noiself >= 0.1f || lp.noiself0 >= 0.1f || lp.noiself2 >= 0.1f || lp.noiselc >= 0.1f)) {
float kr3 = 0.f;
float kr4 = 0.f;
float kr5 = 0.f;
if (lp.noiselc < 30.f) {
kr3 = 0.f;
kr4 = 0.f;
kr5 = 0.f;
} else if (lp.noiselc < 50.f) {
kr3 = 0.5f;
kr4 = 0.3f;
kr5 = 0.2f;
} else if (lp.noiselc < 70.f) {
kr3 = 0.7f;
kr4 = 0.5f;
kr5 = 0.3f;
} else {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
vari[0] = max(0.0001f, vari[0]);
vari[1] = max(0.0001f, vari[1]);
vari[2] = max(0.0001f, vari[2]);
vari[3] = max(0.0001f, kr3 * vari[3]);
if (levred == 7) {
vari[4] = max(0.0001f, kr4 * vari[4]);
vari[5] = max(0.0001f, kr5 * vari[5]);
vari[6] = max(0.0001f, kr5 * vari[6]);
}
float* noisevarlum = new float[GH * GW];
int GW2 = (GW + 1) / 2;
float nvlh[13] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 0.7f, 0.5f}; //high value
float nvll[13] = {0.1f, 0.15f, 0.2f, 0.25f, 0.3f, 0.35f, 0.4f, 0.45f, 0.7f, 0.8f, 1.f, 1.f, 1.f}; //low value
float seuillow = 3000.f;//low
float seuilhigh = 18000.f;//high
int i = 10 - lp.noiselequal;
float ac = (nvlh[i] - nvll[i]) / (seuillow - seuilhigh);
float bc = nvlh[i] - seuillow * ac;
//ac and bc for transition
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
float lN = tmp1.L[ir][jr];
if (lN < seuillow) {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = nvlh[i];
} else if (lN < seuilhigh) {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = ac * lN + bc;
} else {
noisevarlum[(ir >> 1)*GW2 + (jr >> 1)] = nvll[i];
}
}
if (lp.noiselc < 1.f) {
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
} else {
WaveletDenoiseAll_BiShrinkL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
}
delete[] noisevarlum;
}
}
float variC[levred];
float variCb[levred];
float noisecfr = lp.noisecf;
float noiseccr = lp.noisecc;
if (lp.adjch > 0.f) {
noisecfr = lp.noisecf * ((100.f + lp.adjch) / 10.f);
noiseccr = lp.noisecc + ((100.f + lp.adjch) / 10.f);
}
float noisecfb = lp.noisecf;
float noiseccb = lp.noisecc;
if (lp.adjch < 0.f) {
noisecfb = lp.noisecf * ((100.f - lp.adjch) / 10.f);
noiseccb = lp.noisecc * ((100.f - lp.adjch) / 10.f);
}
if (noisecfr < 0.f) {
noisecfr = 0.0001f;
}
if (noiseccr < 0.f) {
noiseccr = 0.0001f;
}
if (noisecfb < 0.f) {
noisecfb = 0.0001f;
}
if (noiseccb < 0.f) {
noiseccb = 0.0001f;
}
if (!adecomp.memoryAllocationFailed && !bdecomp.memoryAllocationFailed) {
if (levred == 7) {
edge = 2;
variC[0] = SQR(noisecfr);
variC[1] = SQR(noisecfr);
variC[2] = SQR(noisecfr);
variC[3] = SQR(noisecfr);
variC[4] = SQR(noisecfr);
variC[5] = SQR(noiseccr);
variC[6] = SQR(noiseccr);
variCb[0] = SQR(noisecfb);
variCb[1] = SQR(noisecfb);
variCb[2] = SQR(noisecfb);
variCb[3] = SQR(noisecfb);
variCb[4] = SQR(noisecfb);
variCb[5] = SQR(noiseccb);
variCb[6] = SQR(noiseccb);
} else if (levred == 4) {
edge = 3;
variC[0] = SQR(lp.noisecf / 10.0);
variC[1] = SQR(lp.noisecf / 10.0);
variC[2] = SQR(lp.noisecf / 10.0);
variC[3] = SQR(lp.noisecf / 10.0);
variCb[0] = SQR(lp.noisecf / 10.0);
variCb[1] = SQR(lp.noisecf / 10.0);
variCb[2] = SQR(lp.noisecf / 10.0);
variCb[3] = SQR(lp.noisecf / 10.0);
}
if ((lp.noisecf >= 0.1f || lp.noisecc >= 0.1f || noiscfactiv)) {
float minic = 0.0001f;
if (noiscfactiv) {
minic = 0.1f;//only for artifact shape detection
}
float k1 = 0.f;
float k2 = 0.f;
float k3 = 0.f;
if (lp.noisecf < 0.2f) {
k1 = 0.f;
k2 = 0.f;
k3 = 0.f;
} else if (lp.noisecf < 0.3f) {
k1 = 0.1f;
k2 = 0.0f;
k3 = 0.f;
} else if (lp.noisecf < 0.5f) {
k1 = 0.2f;
k2 = 0.1f;
k3 = 0.f;
} else if (lp.noisecf < 0.8f) {
k1 = 0.3f;
k2 = 0.25f;
k3 = 0.f;
} else if (lp.noisecf < 1.f) {
k1 = 0.4f;
k2 = 0.25f;
k3 = 0.1f;
} else if (lp.noisecf < 2.f) {
k1 = 0.5f;
k2 = 0.3f;
k3 = 0.15f;
} else if (lp.noisecf < 3.f) {
k1 = 0.6f;
k2 = 0.45f;
k3 = 0.3f;
} else if (lp.noisecf < 4.f) {
k1 = 0.7f;
k2 = 0.5f;
k3 = 0.4f;
} else if (lp.noisecf < 5.f) {
k1 = 0.8f;
k2 = 0.6f;
k3 = 0.5f;
} else if (lp.noisecf < 10.f) {
k1 = 0.85f;
k2 = 0.7f;
k3 = 0.6f;
} else if (lp.noisecf < 20.f) {
k1 = 0.9f;
k2 = 0.8f;
k3 = 0.7f;
} else if (lp.noisecf < 50.f) {
k1 = 1.f;
k2 = 1.f;
k3 = 0.9f;
} else {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
variC[0] = max(minic, variC[0]);
variC[1] = max(minic, k1 * variC[1]);
variC[2] = max(minic, k2 * variC[2]);
variC[3] = max(minic, k3 * variC[3]);
variCb[0] = max(minic, variCb[0]);
variCb[1] = max(minic, k1 * variCb[1]);
variCb[2] = max(minic, k2 * variCb[2]);
variCb[3] = max(minic, k3 * variCb[3]);
if (levred == 7) {
float k4 = 0.f;
float k5 = 0.f;
float k6 = 0.f;
if (lp.noisecc == 0.1f) {
k4 = 0.f;
k5 = 0.0f;
} else if (lp.noisecc < 0.2f) {
k4 = 0.1f;
k5 = 0.0f;
} else if (lp.noisecc < 0.5f) {
k4 = 0.15f;
k5 = 0.0f;
} else if (lp.noisecc < 1.f) {
k4 = 0.15f;
k5 = 0.1f;
} else if (lp.noisecc < 3.f) {
k4 = 0.3f;
k5 = 0.15f;
} else if (lp.noisecc < 4.f) {
k4 = 0.6f;
k5 = 0.4f;
} else if (lp.noisecc < 6.f) {
k4 = 0.8f;
k5 = 0.6f;
} else {
k4 = 1.f;
k5 = 1.f;
}
variC[4] = max(0.0001f, k4 * variC[4]);
variC[5] = max(0.0001f, k5 * variC[5]);
variCb[4] = max(0.0001f, k4 * variCb[4]);
variCb[5] = max(0.0001f, k5 * variCb[5]);
if (lp.noisecc < 4.f) {
k6 = 0.f;
} else if (lp.noisecc < 5.f) {
k6 = 0.4f;
} else if (lp.noisecc < 6.f) {
k6 = 0.7f;
} else {
k6 = 1.f;
}
variC[6] = max(0.0001f, k6 * variC[6]);
variCb[6] = max(0.0001f, k6 * variCb[6]);
}
float* noisevarchrom = new float[GH * GW];
//noisevarchrom in function chroma
int GW2 = (GW + 1) / 2;
float nvch = 0.6f;//high value
float nvcl = 0.1f;//low value
if (lp.noisecf > 100.f) {
nvch = 0.8f;
nvcl = 0.4f;
}
float seuil = 4000.f;//low
float seuil2 = 15000.f;//high
//ac and bc for transition
float ac = (nvch - nvcl) / (seuil - seuil2);
float bc = nvch - seuil * ac;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < GH; ir++)
for (int jr = 0; jr < GW; jr++) {
float cN = sqrt(SQR(tmp1.a[ir][jr]) + SQR(tmp1.b[ir][jr]));
if (cN < seuil) {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = nvch;
} else if (cN < seuil2) {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = ac * cN + bc;
} else {
noisevarchrom[(ir >> 1)*GW2 + (jr >> 1)] = nvcl;
}
}
float noisevarab_r = 100.f; //SQR(lp.noisecc / 10.0);
if (lp.noisecc < 0.1f) {
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
} else {
WaveletDenoiseAll_BiShrinkAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAll_BiShrinkAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
}
delete[] noisevarchrom;
}
}
if (!Ldecomp.memoryAllocationFailed) {
Lin = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Lin)[i][j] = tmp1.L[i][j];
}
}
Ldecomp.reconstruct(tmp1.L[0]);
}
if (!Ldecomp.memoryAllocationFailed) {
if ((lp.noiself >= 0.1f || lp.noiself0 >= 0.1f || lp.noiself2 >= 0.1f || lp.noiselc >= 0.1f) && levred == 7) {
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.L, Lin, numThreads, lp, 0);
}
}
if (!adecomp.memoryAllocationFailed) {
Ain = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Ain)[i][j] = tmp1.a[i][j];
}
}
adecomp.reconstruct(tmp1.a[0]);
}
if (!adecomp.memoryAllocationFailed) {
if ((lp.noisecf >= 0.1f || lp.noisecc >= 0.1f)) {
if (lp.noisechrodetail > 1000) { //to avoid all utilisation
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.a, Ain, numThreads, lp, 1);
}
}
}
if (!bdecomp.memoryAllocationFailed) {
Bin = new array2D<float>(GW, GH);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < GH; ++i) {
for (int j = 0; j < GW; ++j) {
(*Bin)[i][j] = tmp1.b[i][j];
}
}
bdecomp.reconstruct(tmp1.b[0]);
}
if (!bdecomp.memoryAllocationFailed) {
if ((lp.noisecf >= 0.1f || lp.noisecc >= 0.1f)) {
if (lp.noisechrodetail > 1000) {//to avoid all utilisation
fftw_denoise(GW, GH, max_numblox_W, min_numblox_W, tmp1.b, Bin, numThreads, lp, 1);
}
}
}
DeNoise_Local(call, lp, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, tmp1, cx, cy, sk);
} else if (call == 2 /* || call == 1 || call == 3 */) { //simpleprocess
int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
int bfw = int (lp.lx + lp.lxL) + del;
LabImage bufwv(bfw, bfh);
bufwv.clear(true);
array2D<float> *Lin = nullptr;
// array2D<float> *Ain = nullptr;
// array2D<float> *Bin = nullptr;
int max_numblox_W = ceil((static_cast<float>(bfw)) / (offset)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(bfw)) / (offset)) + 2 * blkrad;
// these are needed only for creation of the plans and will be freed before entering the parallel loop
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
bufwv.L[loy - begy][lox - begx] = original->L[y][x];
bufwv.a[loy - begy][lox - begx] = original->a[y][x];
bufwv.b[loy - begy][lox - begx] = original->b[y][x];
}
}
int DaubLen = 6;
int levwavL = levred;
int skip = 1;
wavelet_decomposition Ldecomp(bufwv.L[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, DaubLen);
wavelet_decomposition adecomp(bufwv.a[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, DaubLen);
wavelet_decomposition bdecomp(bufwv.b[0], bufwv.W, bufwv.H, levwavL, 1, skip, numThreads, DaubLen);
float madL[8][3];
int edge = 2;
if (!Ldecomp.memoryAllocationFailed) {
#pragma omp parallel for collapse(2) schedule(dynamic,1)
for (int lvl = 0; lvl < levred; lvl++) {
for (int dir = 1; dir < 4; dir++) {
int Wlvl_L = Ldecomp.level_W(lvl);
int Hlvl_L = Ldecomp.level_H(lvl);
float ** WavCoeffs_L = Ldecomp.level_coeffs(lvl);
madL[lvl][dir - 1] = SQR(Mad(WavCoeffs_L[dir], Wlvl_L * Hlvl_L));
}
}
float vari[levred];
if (levred == 7) {
edge = 2;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiself2 / 125.0) * (1.0 + lp.noiself2 / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[4] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[5] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[6] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
} else if (levred == 4) {
edge = 3;
vari[0] = 8.f * SQR((lp.noiself0 / 125.0) * (1.0 + lp.noiself0 / 25.0));
vari[1] = 8.f * SQR((lp.noiself / 125.0) * (1.0 + lp.noiself / 25.0));
vari[2] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
vari[3] = 8.f * SQR((lp.noiselc / 125.0) * (1.0 + lp.noiselc / 25.0));
}
if ((lp.noiself >= 0.1f || lp.noiself0 >= 0.1f || lp.noiself2 >= 0.1f || lp.noiselc >= 0.1f)) {
float kr3 = 0.f;
float kr4 = 0.f;
float kr5 = 0.f;
if (lp.noiselc < 30.f) {
kr3 = 0.f;
kr4 = 0.f;
kr5 = 0.f;
} else if (lp.noiselc < 50.f) {
kr3 = 0.5f;
kr4 = 0.3f;
kr5 = 0.2f;
} else if (lp.noiselc < 70.f) {
kr3 = 0.7f;
kr4 = 0.5f;
kr5 = 0.3f;
} else {
kr3 = 1.f;
kr4 = 1.f;
kr5 = 1.f;
}
vari[0] = max(0.0001f, vari[0]);
vari[1] = max(0.0001f, vari[1]);
vari[2] = max(0.0001f, vari[2]);
vari[3] = max(0.0001f, kr3 * vari[3]);
if (levred == 7) {
vari[4] = max(0.0001f, kr4 * vari[4]);
vari[5] = max(0.0001f, kr5 * vari[5]);
vari[6] = max(0.0001f, kr5 * vari[6]);
}
// float* noisevarlum = nullptr; // we need a dummy to pass it to WaveletDenoiseAllL
float* noisevarlum = new float[bfh * bfw];
int bfw2 = (bfw + 1) / 2;
float nvlh[13] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 0.7f, 0.5f}; //high value
float nvll[13] = {0.1f, 0.15f, 0.2f, 0.25f, 0.3f, 0.35f, 0.4f, 0.45f, 0.7f, 0.8f, 1.f, 1.f, 1.f}; //low value
float seuillow = 3000.f;//low
float seuilhigh = 18000.f;//high
int i = 10 - lp.noiselequal;
float ac = (nvlh[i] - nvll[i]) / (seuillow - seuilhigh);
float bc = nvlh[i] - seuillow * ac;
//ac and bc for transition
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float lN = bufwv.L[ir][jr];
if (lN < seuillow) {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = nvlh[i];
} else if (lN < seuilhigh) {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = ac * lN + bc;
} else {
noisevarlum[(ir >> 1)*bfw2 + (jr >> 1)] = nvll[i];
}
}
if (lp.noiselc < 1.f) {
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
} else {
WaveletDenoiseAll_BiShrinkL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
WaveletDenoiseAllL(Ldecomp, noisevarlum, madL, vari, edge, numThreads);
}
delete [] noisevarlum;
}
}
float variC[levred];
float variCb[levred];
float noisecfr = lp.noisecf;
float noiseccr = lp.noisecc;
if (lp.adjch > 0.f) {
noisecfr = lp.noisecf * ((100.f + lp.adjch) / 10.f);
noiseccr = lp.noisecc + ((100.f + lp.adjch) / 10.f);
}
float noisecfb = lp.noisecf;
float noiseccb = lp.noisecc;
if (lp.adjch < 0.f) {
noisecfb = lp.noisecf * ((100.f - lp.adjch) / 10.f);
noiseccb = lp.noisecc * ((100.f - lp.adjch) / 10.f);
}
if (noisecfr < 0.f) {
noisecfr = 0.0001f;
}
if (noiseccr < 0.f) {
noiseccr = 0.0001f;
}
if (noisecfb < 0.f) {
noisecfb = 0.0001f;
}
if (noiseccb < 0.f) {
noiseccb = 0.0001f;
}
if (!adecomp.memoryAllocationFailed && !bdecomp.memoryAllocationFailed) {
if (levred == 7) {
edge = 2;
variC[0] = SQR(noisecfr);
variC[1] = SQR(noisecfr);
variC[2] = SQR(noisecfr);
variC[3] = SQR(noisecfr);
variC[4] = SQR(noisecfr);
variC[5] = SQR(noiseccr);
variC[6] = SQR(noiseccr);
variCb[0] = SQR(noisecfb);
variCb[1] = SQR(noisecfb);
variCb[2] = SQR(noisecfb);
variCb[3] = SQR(noisecfb);
variCb[4] = SQR(noisecfb);
variCb[5] = SQR(noiseccb);
variCb[6] = SQR(noiseccb);
} else if (levred == 4) {
edge = 3;
variC[0] = SQR(lp.noisecf / 10.0);
variC[1] = SQR(lp.noisecf / 10.0);
variC[2] = SQR(lp.noisecf / 10.0);
variC[3] = SQR(lp.noisecf / 10.0);
variCb[0] = SQR(lp.noisecf / 10.0);
variCb[1] = SQR(lp.noisecf / 10.0);
variCb[2] = SQR(lp.noisecf / 10.0);
variCb[3] = SQR(lp.noisecf / 10.0);
}
if ((lp.noisecf >= 0.1f || lp.noisecc >= 0.1f || noiscfactiv)) {
float minic = 0.0001f;
if (noiscfactiv) {
minic = 0.1f;//only for artifact shape detection
}
float k1 = 0.f;
float k2 = 0.f;
float k3 = 0.f;
if (lp.noisecf < 0.2f) {
k1 = 0.f;
k2 = 0.f;
k3 = 0.f;
} else if (lp.noisecf < 0.3f) {
k1 = 0.1f;
k2 = 0.0f;
k3 = 0.f;
} else if (lp.noisecf < 0.5f) {
k1 = 0.2f;
k2 = 0.1f;
k3 = 0.f;
} else if (lp.noisecf < 0.8f) {
k1 = 0.3f;
k2 = 0.25f;
k3 = 0.f;
} else if (lp.noisecf < 1.f) {
k1 = 0.4f;
k2 = 0.25f;
k3 = 0.1f;
} else if (lp.noisecf < 2.f) {
k1 = 0.5f;
k2 = 0.3f;
k3 = 0.15f;
} else if (lp.noisecf < 3.f) {
k1 = 0.6f;
k2 = 0.45f;
k3 = 0.3f;
} else if (lp.noisecf < 4.f) {
k1 = 0.7f;
k2 = 0.5f;
k3 = 0.4f;
} else if (lp.noisecf < 5.f) {
k1 = 0.8f;
k2 = 0.6f;
k3 = 0.5f;
} else if (lp.noisecf < 10.f) {
k1 = 0.85f;
k2 = 0.7f;
k3 = 0.6f;
} else if (lp.noisecf < 20.f) {
k1 = 0.9f;
k2 = 0.8f;
k3 = 0.7f;
} else if (lp.noisecf < 50.f) {
k1 = 1.f;
k2 = 1.f;
k3 = 0.9f;
} else {
k1 = 1.f;
k2 = 1.f;
k3 = 1.f;
}
variC[0] = max(minic, variC[0]);
variC[1] = max(minic, k1 * variC[1]);
variC[2] = max(minic, k2 * variC[2]);
variC[3] = max(minic, k3 * variC[3]);
variCb[0] = max(minic, variCb[0]);
variCb[1] = max(minic, k1 * variCb[1]);
variCb[2] = max(minic, k2 * variCb[2]);
variCb[3] = max(minic, k3 * variCb[3]);
if (levred == 7) {
float k4 = 0.f;
float k5 = 0.f;
float k6 = 0.f;
if (lp.noisecc == 0.1f) {
k4 = 0.f;
k5 = 0.0f;
} else if (lp.noisecc < 0.2f) {
k4 = 0.1f;
k5 = 0.0f;
} else if (lp.noisecc < 0.5f) {
k4 = 0.15f;
k5 = 0.0f;
} else if (lp.noisecc < 1.f) {
k4 = 0.15f;
k5 = 0.1f;
} else if (lp.noisecc < 3.f) {
k4 = 0.3f;
k5 = 0.15f;
} else if (lp.noisecc < 4.f) {
k4 = 0.6f;
k5 = 0.4f;
} else if (lp.noisecc < 6.f) {
k4 = 0.8f;
k5 = 0.6f;
} else {
k4 = 1.f;
k5 = 1.f;
}
variC[4] = max(0.0001f, k4 * variC[4]);
variC[5] = max(0.0001f, k5 * variC[5]);
variCb[4] = max(0.0001f, k4 * variCb[4]);
variCb[5] = max(0.0001f, k5 * variCb[5]);
if (lp.noisecc < 4.f) {
k6 = 0.f;
} else if (lp.noisecc < 5.f) {
k6 = 0.4f;
} else if (lp.noisecc < 6.f) {
k6 = 0.7f;
} else {
k6 = 1.f;
}
variC[6] = max(0.0001f, k6 * variC[6]);
variCb[6] = max(0.0001f, k6 * variCb[6]);
}
float* noisevarchrom = new float[bfh * bfw];
int bfw2 = (bfw + 1) / 2;
float nvch = 0.6f;//high value
float nvcl = 0.1f;//low value
if (lp.noisecf > 100.f) {
nvch = 0.8f;
nvcl = 0.4f;
}
float seuil = 4000.f;//low
float seuil2 = 15000.f;//high
//ac and bc for transition
float ac = (nvch - nvcl) / (seuil - seuil2);
float bc = nvch - seuil * ac;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float cN = sqrt(SQR(bufwv.a[ir][jr]) + SQR(bufwv.b[ir][jr]));
if (cN < seuil) {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = nvch;
} else if (cN < seuil2) {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = ac * cN + bc;
} else {
noisevarchrom[(ir >> 1)*bfw2 + (jr >> 1)] = nvcl;
}
}
float noisevarab_r = 100.f; //SQR(lp.noisecc / 10.0);
if (lp.noisecc < 0.1f) {
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
} else {
WaveletDenoiseAll_BiShrinkAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, adecomp, noisevarchrom, madL, variC, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAll_BiShrinkAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
WaveletDenoiseAllAB(Ldecomp, bdecomp, noisevarchrom, madL, variCb, edge, noisevarab_r, true, false, false, numThreads);
}
delete[] noisevarchrom;
}
}
if (!Ldecomp.memoryAllocationFailed) {
Lin = new array2D<float>(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < bfh; ++i) {
for (int j = 0; j < bfw; ++j) {
(*Lin)[i][j] = bufwv.L[i][j];
}
}
Ldecomp.reconstruct(bufwv.L[0]);
}
if (!Ldecomp.memoryAllocationFailed) {
if ((lp.noiself >= 0.1f || lp.noiself0 >= 0.1f || lp.noiself2 >= 0.1f || lp.noiselc >= 0.1f) && levred == 7) {
fftw_denoise(bfw, bfh, max_numblox_W, min_numblox_W, bufwv.L, Lin, numThreads, lp, 0);
}
}
if (!adecomp.memoryAllocationFailed) {
adecomp.reconstruct(bufwv.a[0]);
}
if (!bdecomp.memoryAllocationFailed) {
bdecomp.reconstruct(bufwv.b[0]);
}
DeNoise_Local(call, lp, levred, huerefblur, lumarefblur, chromarefblur, original, transformed, bufwv, cx, cy, sk);
}
}
//begin cbdl
if ((lp.mulloc[0] != 1.f || lp.mulloc[1] != 1.f || lp.mulloc[2] != 1.f || lp.mulloc[3] != 1.f || lp.mulloc[4] != 1.f || lp.mulloc[5] != 1.f || lp.clarityml != 0.f || lp.contresid != 0.f || lp.enacbMask || lp.showmaskcbmet == 2 || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) && lp.cbdlena) {
if (call <= 3) { //call from simpleprocess dcrop improcc
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
if (bfw > 65 && bfh > 65) {
array2D<float> bufsh(bfw, bfh);
array2D<float> &buflight = bufsh;
JaggedArray<float> bufchrom(bfw, bfh, true);
std::unique_ptr<LabImage> loctemp(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> origcbdl(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigcb;
std::unique_ptr<LabImage> bufmaskblurcb;
std::unique_ptr<LabImage> originalmaskcb;
if (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) {
bufmaskorigcb.reset(new LabImage(bfw, bfh));
bufmaskblurcb.reset(new LabImage(bfw, bfh));
originalmaskcb.reset(new LabImage(bfw, bfh));
}
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
float meanfab, fab;
mean_fab(xstart, ystart, bfw, bfh, loctemp.get(), original, fab, meanfab, lp.chromacbm);
// printf("fab=%f lpchro=%f \n", fab, lp.chromacbm);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
loctemp->L[y][x] = original->L[y + ystart][x + xstart];
}
}
if (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float kmaskLexp = 0;
float kmaskCH = 0;
if (locllmascbCurve && llmascbutili) {
float ligh = loctemp->L[ir][jr] / 32768.f;
kmaskLexp = 32768.f * LIM01(1.f - locllmascbCurve[500.f * ligh]);
}
if (lp.showmaskcbmet != 4) {
if (locccmascbCurve && lcmascbutili) {
float chromask = 0.0001f + sqrt(SQR((loctemp->a[ir][jr]) / fab) + SQR((loctemp->b[ir][jr]) / fab));
kmaskCH = LIM01(1.f - locccmascbCurve[500.f * chromask]);
}
}
if (lochhmascbCurve && lhmascbutili) {
float huema = xatan2f(loctemp->b[ir][jr], loctemp->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
float valHH = LIM01(1.f - lochhmascbCurve[500.f * h]);
if (lp.showmaskcbmet != 4) {
kmaskCH += valHH;
}
kmaskLexp += 32768.f * valHH;
}
bufmaskblurcb->L[ir][jr] = CLIPLOC(kmaskLexp);
bufmaskblurcb->a[ir][jr] = kmaskCH;
bufmaskblurcb->b[ir][jr] = kmaskCH;
ble[ir][jr] = bufmaskblurcb->L[ir][jr] / 32768.f;
guid[ir][jr] = loctemp->L[ir][jr] / 32768.f;
}
}
if (lp.radmacb > 0.f) {
guidedFilter(guid, ble, ble, lp.radmacb * 10.f / sk, 0.001, multiThread, 4);
}
LUTf lutTonemaskcb(65536);
calcGammaLut(lp.gammacb, lp.slomacb, lutTonemaskcb);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float L_;
bufmaskblurcb->L[ir][jr] = LIM01(ble[ir][jr]) * 32768.f;
L_ = 2.f * bufmaskblurcb->L[ir][jr];
bufmaskblurcb->L[ir][jr] = lutTonemaskcb[L_];
}
}
float radiusb = 1.f / sk;
if (lp.showmaskcbmet == 2 || lp.enacbMask || lp.showmaskcbmet == 3 || lp.showmaskcbmet == 4) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurcb->L, bufmaskorigcb->L, bfw, bfh, radiusb);
gaussianBlur(bufmaskblurcb->a, bufmaskorigcb->a, bfw, bfh, 1.f + (0.5f * lp.radmacb) / sk);
gaussianBlur(bufmaskblurcb->b, bufmaskorigcb->b, bfw, bfh, 1.f + (0.5f * lp.radmacb) / sk);
}
if (lp.showmaskcbmet == 0 || lp.showmaskcbmet == 1 || lp.showmaskcbmet == 2 || lp.showmaskcbmet == 4 || lp.enacbMask) {
blendmask(lp, xstart, ystart, cx, cy, bfw, bfh, loctemp.get(), original, bufmaskorigcb.get(), originalmaskcb.get(), lp.blendmacb);
} else if (lp.showmaskcbmet == 3) {
showmask(lp, xstart, ystart, cx, cy, bfw, bfh, loctemp.get(), transformed, bufmaskorigcb.get());
return;
}
}
constexpr float b_l = -5.f;
constexpr float t_l = 25.f;
constexpr float t_r = 120.f;
constexpr float b_r = 170.f;
constexpr double skinprot = 0.;
int choice = 0;
if (lp.showmaskcbmet == 0 || lp.showmaskcbmet == 1 || lp.showmaskcbmet == 2 || lp.showmaskcbmet == 4 || lp.enacbMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufsh[y - ystart][x - xstart] = origcbdl->L[y - ystart][x - xstart] = original->L[y][x];
loctemp->a[y - ystart][x - xstart] = origcbdl->a[y - ystart][x - xstart] = original->a[y][x];
loctemp->b[y - ystart][x - xstart] = origcbdl->b[y - ystart][x - xstart] = original->b[y][x];
}
}
if (lp.clarityml != 0.f && lp.mulloc[5] == 1.0) { //enabled last level to retrieve level 5 and residual image in case user not select level 5
lp.mulloc[5] = 1.001f;
}
if (lp.contresid != 0.f && lp.mulloc[5] == 1.0) { //enabled last level to retrieve level 5 and residual image in case user not select level 5
lp.mulloc[5] = 1.001f;
}
/*
for (int lv = 0; lv < 6; lv++) {
printf("mulloc=%f lv=%i\n", lp.mulloc[lv], lv);
}
*/
ImProcFunctions::cbdl_local_temp(bufsh, loctemp->L, bfw, bfh, lp.mulloc, 1.f, lp.threshol, lp.clarityml, lp.contresid, lp.blurcbdl, skinprot, false, b_l, t_l, t_r, b_r, choice, sk, multiThread);
if (lp.softradiuscb > 0.f) {
softproc(origcbdl.get(), loctemp.get(), lp.softradiuscb, bfh, bfw, 0.0001, 0.00001, 0.0001f, sk, multiThread);
}
}
transit_shapedetect(6, loctemp.get(), originalmaskcb.get(), buflight, bufchrom, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
bool nochroma = (lp.showmaskcbmet == 2 || lp.showmaskcbmet == 1);
//chroma CBDL begin here
if (lp.chromacb > 0.f && !nochroma) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufsh[ir][jr] = sqrt(SQR(loctemp->a[ir][jr]) + SQR(loctemp->b[ir][jr]));
}
}
float multc[6];
float clarich = 0.5f * lp.clarityml;
if (clarich > 0.f && lp.mulloc[0] == 1.f) { //to enabled in case of user select only clarity
lp.mulloc[0] = 1.01f;
}
if (lp.contresid != 0.f && lp.mulloc[0] == 1.f) { //to enabled in case of user select only clarity
lp.mulloc[0] = 1.01f;
}
for (int lv = 0; lv < 6; lv++) {
multc[lv] = rtengine::max((lp.chromacb * ((float) lp.mulloc[lv] - 1.f)) + 1.f, 0.01f);
// printf("multc=%f lev=%i\n", multc[lv], lv);
}
choice = 1;
ImProcFunctions::cbdl_local_temp(bufsh, loctemp->L, bfw, bfh, multc, rtengine::max(lp.chromacb, 1.f), lp.threshol, clarich, 0.f, lp.blurcbdl, skinprot, false, b_l, t_l, t_r, b_r, choice, sk, multiThread);
float minC = loctemp->L[0][0] - sqrt(SQR(loctemp->a[0][0]) + SQR(loctemp->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxC) reduction(min:minC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufchrom[ir][jr] = (loctemp->L[ir][jr] - sqrt(SQR(loctemp->a[ir][jr]) + SQR(loctemp->b[ir][jr])));
minC = rtengine::min(minC, bufchrom[ir][jr]);
maxC = rtengine::max(maxC, bufchrom[ir][jr]);
}
}
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufchrom[ir][jr] /= coefC;
}
}
transit_shapedetect(7, loctemp.get(), nullptr, buflight, bufchrom, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
}
}
}
//end cbdl_Local
//Blur and noise
if (((radius >= 1.5 * GAUSS_SKIP && lp.rad > 1.) || lp.stren > 0.1) && lp.blurena) { // radius < GAUSS_SKIP means no gauss, just copy of original image
std::unique_ptr<LabImage> tmp1;
if (call <= 3 && lp.blurmet == 0) {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw > 0 && bfh > 0) {
tmp1.reset(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
tmp1->L[y - ystart][x - xstart] = original->L[y][x];
tmp1->a[y - ystart][x - xstart] = original->a[y][x];
tmp1->b[y - ystart][x - xstart] = original->b[y][x];
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(tmp1->L, tmp1->L, bfw, bfh, radius);
gaussianBlur(tmp1->a, tmp1->a, bfw, bfh, radius);
gaussianBlur(tmp1->b, tmp1->b, bfw, bfh, radius);
}
}
} else {
const int GW = transformed->W;
const int GH = transformed->H;
tmp1.reset(new LabImage(transformed->W, transformed->H));
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(original->L, tmp1->L, GW, GH, radius);
gaussianBlur(original->a, tmp1->a, GW, GH, radius);
gaussianBlur(original->b, tmp1->b, GW, GH, radius);
}
}
if (tmp1.get() && lp.stren > 0.1f) {
float mean = 0.f;//0 best result
float variance = lp.stren ;
addGaNoise(tmp1.get(), tmp1.get(), mean, variance, sk) ;
}
if (lp.blurmet == 0) { //blur and noise (center)
if (tmp1.get()) {
BlurNoise_Local(tmp1.get(), hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
}
} else {
InverseBlurNoise_Local(lp, hueref, chromaref, lumaref, original, transformed, tmp1.get(), cx, cy, sk);
}
}
//vibrance
if (lp.expvib && (lp.past != 0.f || lp.satur != 0.f)) { //interior ellipse renforced lightness and chroma //locallutili
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw > 0 && bfh > 0) {
JaggedArray<float> buflight(bfw, bfh);
JaggedArray<float> bufl_ab(bfw, bfh);
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
VibranceParams vibranceParams;
vibranceParams.enabled = params->locallab.spots.at(sp).expvibrance;
vibranceParams.pastels = params->locallab.spots.at(sp).pastels;
vibranceParams.saturated = params->locallab.spots.at(sp).saturated;
vibranceParams.psthreshold = params->locallab.spots.at(sp).psthreshold;
vibranceParams.protectskins = params->locallab.spots.at(sp).protectskins;
vibranceParams.avoidcolorshift = params->locallab.spots.at(sp).avoidcolorshift;
vibranceParams.pastsattog = params->locallab.spots.at(sp).pastsattog;
vibranceParams.skintonescurve = params->locallab.spots.at(sp).skintonescurve;
bufexpfin->CopyFrom(bufexporig.get());
ImProcFunctions::vibrance(bufexpfin.get(), vibranceParams, params->toneCurve.hrenabled, params->icm.workingProfile);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
buflight[y][x] = CLIPRET((bufexpfin->L[y][x] - bufexporig->L[y][x]) / 328.f);
bufl_ab[y][x] = CLIPRET((sqrt(SQR(bufexpfin->a[y][x]) + SQR(bufexpfin->b[y][x])) - sqrt(SQR(bufexporig->a[y][x]) + SQR(bufexporig->b[y][x]))) / 250.f);
}
}
bufexpfin.reset();
transit_shapedetect(2, bufexporig.get(), nullptr, buflight, bufl_ab, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
}
}
//Tone mapping
if (lp.strengt != 0.f && lp.tonemapena && !params->epd.enabled) {
if (call <= 3) { //simpleprocess dcrop improcc
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw > 0 && bfh > 0) {
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
std::unique_ptr<LabImage> bufgb(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmp1(new LabImage(bfw, bfh));
// array2D<float> ble(bfw, bfh);
// array2D<float> guid(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufgb->L[y - ystart][x - xstart] = original->L[y][x];
bufgb->a[y - ystart][x - xstart] = original->a[y][x];
bufgb->b[y - ystart][x - xstart] = original->b[y][x];
}
}
int itera = 0;
if (call == 1) {
// itera = 5;
}
ImProcFunctions::EPDToneMaplocal(sp, bufgb.get(), tmp1.get(), itera, sk);//iterate to 0 calculate with edgstopping, improve result, call=1 dcrop we can put iterate to 5
float minL = tmp1->L[0][0] - bufgb->L[0][0];
float maxL = minL;
float minC = sqrt(SQR(tmp1->a[0][0]) + SQR(tmp1->b[0][0])) - sqrt(SQR(bufgb->a[0][0]) + SQR(bufgb->b[0][0]));
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxL) reduction(min:minL) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = tmp1->L[ir][jr] - bufgb->L[ir][jr];
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
bufchro[ir][jr] = sqrt(SQR(tmp1->a[ir][jr]) + SQR(tmp1->b[ir][jr])) - sqrt(SQR(bufgb->a[ir][jr]) + SQR(bufgb->b[ir][jr]));
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
buflight[y][x] /= coef;
bufchro[y][x] /= coefC;
// guid[y][x] = (bufgb->L[y][x]) / 32768.f;
// ble[y][x] = (tmp1->L[y][x] - bufgb->L[y][x]) / 32768.f;
}
}
/*
if (lp.softradiustm > 0.f) {
guidedFilter(guid, ble, ble, 0.1f * lp.softradiustm / sk, 0.0001, multiThread);
// softprocess(bufgb.get(), buflight, lp.softradiustm, bfh, bfw, sk, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
tmp1->L[y][x] = 32768.f * LIM01(ble[y][x]) + bufgb->L[y][x];
}
}
*/
bufgb.reset();
transit_shapedetect(8, tmp1.get(), nullptr, buflight, bufchro, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
}
}
//end TM
//shadow highlight
if (! lp.invsh && (lp.highlihs > 0.f || lp.shadowhs > 0.f || lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) && call < 3 && lp.hsena) {
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw > 0 && bfh > 0) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskorigSH;
std::unique_ptr<LabImage> bufmaskblurSH;
std::unique_ptr<LabImage> originalmaskSH;
JaggedArray<float> buflight(bfw, bfh);
JaggedArray<float> bufl_ab(bfw, bfh);
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
if (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) {
bufmaskorigSH.reset(new LabImage(bfw, bfh));
bufmaskblurSH.reset(new LabImage(bfw, bfh));
originalmaskSH.reset(new LabImage(bfw, bfh));
}
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
float meanfab, fab;
mean_fab(xstart, ystart, bfw, bfh, bufexporig.get(), original, fab, meanfab, lp.chromaSH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->L[y][x] = original->L[y + ystart][x + xstart];
}
}
if (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
float kmaskLexp = 0;
float kmaskCH = 0;
if (locllmasSHCurve && llmasSHutili) {
float ligh = bufexporig->L[ir][jr] / 32768.f;
kmaskLexp = 32768.f * LIM01(1.f - locllmasSHCurve[500.f * ligh]);
}
if (lp.showmaskSHmet != 4) {
if (locccmasSHCurve && lcmasSHutili) {
float chromask = 0.0001f + sqrt(SQR((bufexporig->a[ir][jr]) / fab) + SQR((bufexporig->b[ir][jr]) / fab));
kmaskCH = LIM01(1.f - locccmasSHCurve[500.f * chromask]);
}
}
if (lochhmasSHCurve && lhmasSHutili) {
float huema = xatan2f(bufexporig->b[ir][jr], bufexporig->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
float valHH = LIM01(1.f - lochhmasSHCurve[500.f * h]);
if (lp.showmaskSHmet != 4) {
kmaskCH += valHH;
}
kmaskLexp += 32768.f * valHH;
}
bufmaskblurSH->L[ir][jr] = CLIPLOC(kmaskLexp);
bufmaskblurSH->a[ir][jr] = kmaskCH;
bufmaskblurSH->b[ir][jr] = kmaskCH;
ble[ir][jr] = bufmaskblurSH->L[ir][jr] / 32768.f;
guid[ir][jr] = bufexporig->L[ir][jr] / 32768.f;
}
}
if (lp.radmaSH > 0.f) {
guidedFilter(guid, ble, ble, lp.radmaSH * 10.f / sk, 0.001, multiThread, 4);
}
LUTf lutTonemaskSH(65536);
calcGammaLut(lp.gammaSH, lp.slomaSH, lutTonemaskSH);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float L_;
bufmaskblurSH->L[ir][jr] = LIM01(ble[ir][jr]) * 32768.f;
L_ = 2.f * bufmaskblurSH->L[ir][jr];
bufmaskblurSH->L[ir][jr] = lutTonemaskSH[L_];
}
}
float radiusb = 1.f / sk;
if (lp.showmaskSHmet == 2 || lp.enaSHMask || lp.showmaskSHmet == 3 || lp.showmaskSHmet == 4) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurSH->L, bufmaskorigSH->L, bfw, bfh, radiusb);
gaussianBlur(bufmaskblurSH->a, bufmaskorigSH->a, bfw, bfh, 1.f + (0.5f * lp.radmaSH) / sk);
gaussianBlur(bufmaskblurSH->b, bufmaskorigSH->b, bfw, bfh, 1.f + (0.5f * lp.radmaSH) / sk);
}
if (lp.showmaskSHmet == 0 || lp.showmaskSHmet == 1 || lp.showmaskSHmet == 2 || lp.showmaskSHmet == 4 || lp.enaSHMask) {
blendmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), original, bufmaskorigSH.get(), originalmaskSH.get(), lp.blendmaSH);
} else if (lp.showmaskSHmet == 3) {
showmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), transformed, bufmaskorigSH.get());
return;
}
}
if (lp.showmaskSHmet == 0 || lp.showmaskSHmet == 1 || lp.showmaskSHmet == 2 || lp.showmaskSHmet == 4 || lp.enaSHMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufexporig->L[y][x] = original->L[y + ystart][x + xstart];
bufexporig->a[y][x] = original->a[y + ystart][x + xstart];
bufexporig->b[y][x] = original->b[y + ystart][x + xstart];
bufexpfin->L[y][x] = original->L[y + ystart][x + xstart];
bufexpfin->a[y][x] = original->a[y + ystart][x + xstart];
bufexpfin->b[y][x] = original->b[y + ystart][x + xstart];
}
}
ImProcFunctions::shadowsHighlights(bufexpfin.get(), lp.hsena, 1, lp.highlihs, lp.shadowhs, lp.radiushs, sk, lp.hltonalhs, lp.shtonalhs);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = CLIPRET((bufexpfin->L[ir][jr] - bufexporig->L[ir][jr]) / 328.f);
bufl_ab[ir][jr] = CLIPRET((sqrt(SQR(bufexpfin->a[ir][jr]) + SQR(bufexpfin->b[ir][jr])) - sqrt(SQR(bufexporig->a[ir][jr]) + SQR(bufexporig->b[ir][jr]))) / 250.f);
}
}
}
transit_shapedetect(9, bufexpfin.get(), originalmaskSH.get(), buflight, bufl_ab, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
}
} else if (lp.invsh && (lp.highlihs > 0.f || lp.shadowhs > 0.f) && call < 3 && lp.hsena) {
float adjustr = 2.f;
InverseColorLight_Local(sp, 2, lp, lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
}
// soft light and retinex_pde
if (lp.strng > 0.f && call <= 3 && lp.sfena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
//vriable for fast FFTW
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
// printf("n_fftw=%i yst=%i yen=%i lp.yc=%f lp.lyT=%f lp.ly=%f bfh=%i origH=%i \n", N_fftwsize, ystart, yend, lp.yc, lp.lyT, lp.ly, bfh, original->H);
// printf("xst= %i xen=%i lp.xc=%f lp.lxL=%f lp.lx=%f bfw=%i origW=%i", xstart, xend, lp.xc, lp.lxL, lp.lx, bfwr, original->W);
if (lp.softmet == 1) {
/*
for (int n=0; n< 17; n++){
for(int m=0; m < 11; m++) {
for(int l=0; l < 8; l++) {
for(int p=0; p < 6; p++) {
for (int r=0; r < 2; r++){
int bon = pow(2, n) * pow(3, m) * pow(5, l) * pow(7, p) * pow(13, r);
if(bon >= 18000 && bon < 18200) printf("b=%i", bon);
}
}
}
}
}
*/
int ftsizeH = 1;
int ftsizeW = 1;
for (int ft = 0; ft < N_fftwsize; ft++) { //find best values
if (fftw_size[ft] <= bfh) {
ftsizeH = fftw_size[ft];
break;
}
}
for (int ft = 0; ft < N_fftwsize; ft++) {
if (fftw_size[ft] <= bfw) {
ftsizeW = fftw_size[ft];
break;
}
}
// printf("FTsizeH =%i FTsizeW=%i \n", ftsizeH, ftsizeW);
//optimize with size fftw
if (ystart == 0 && yend < original->H) {
lp.ly -= (bfh - ftsizeH);
} else if (ystart != 0 && yend == original->H) {
lp.lyT -= (bfh - ftsizeH);
} else if (ystart != 0 && yend != original->H) {
if (lp.ly <= lp.lyT) {
lp.lyT -= (bfh - ftsizeH);
} else {
lp.ly -= (bfh - ftsizeH);
}
} else if (ystart == 0 && yend == original->H) {
bfhr = ftsizeH;
reduH = true;
}
if (xstart == 0 && xend < original->W) {
lp.lx -= (bfw - ftsizeW);
} else if (xstart != 0 && xend == original->W) {
lp.lxL -= (bfw - ftsizeW);
} else if (xstart != 0 && xend != original->W) {
if (lp.lx <= lp.lxL) {
lp.lxL -= (bfw - ftsizeW);
} else {
lp.lx -= (bfw - ftsizeW);
}
} else if (xstart == 0 && xend == original->W) {
bfwr = ftsizeW;
reduW = true;
}
//new values optimized
ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
bfh = bfhr = yend - ystart;
bfw = bfwr = xend - xstart;
if (reduH) {
bfhr = ftsizeH;
}
if (reduW) {
bfwr = ftsizeW;
}
}
// printf("Nyst=%i Nyen=%i lp.yc=%f lp.lyT=%f lp.ly=%f bfh=%i origH=%i maxH=%i\n", ystart, yend, lp.yc, lp.lyT, lp.ly, bfhr, original->H, maxH);
// printf("Nxst=%i Nxen=%i lp.xc=%f lp.lxL=%f lp.lx=%f bfw=%i origW=%i", xstart, xend, lp.xc, lp.lxL, lp.lx, bfwr, original->W);
if (bfw > 0 && bfh > 0) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh)); //buffer for data in zone limit
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh)); //buffer for data in zone limit
// std::unique_ptr<LabImage> temp(new LabImage(bfw, bfh)); //buffer for data in zone limit
JaggedArray<float> buflight(bfw, bfh);
JaggedArray<float> bufl_ab(bfw, bfh);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
bufexporig->a[y - ystart][x - xstart] = original->a[y][x];
bufexporig->b[y - ystart][x - xstart] = original->b[y][x];
}
}
bufexpfin->CopyFrom(bufexporig.get());
SoftLightParams softLightParams;
softLightParams.enabled = true;
softLightParams.strength = lp.strng;
if (lp.softmet == 0) {
ImProcFunctions::softLight(bufexpfin.get(), softLightParams);
} else if (lp.softmet == 1) {
MyMutex::MyLock lock(*fftwMutex);
float *datain = new float[bfwr * bfhr];
float *dataout = new float[bfwr * bfhr];
float *dE = new float[bfwr * bfhr];
deltaEforLaplace(dE, lp, bfwr, bfhr, bufexpfin.get(), hueref, chromaref, lumaref);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
// datain[y * bfwr + x] = temp->L[y][x] - bufexpfin->L[y][x];
datain[y * bfwr + x] = bufexpfin->L[y][x];
}
}
ImProcFunctions::retinex_pde(datain, dataout, bfwr, bfhr, 8.f * lp.strng, 1.f, dE, lp.showmasksoftmet);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
// bufexpfin->L[y][x] = dataout[y * bfwr + x] + bufexpfin->L[y][x];
bufexpfin->L[y][x] = dataout[y * bfwr + x];
}
}
delete [] datain;
delete [] dataout;
delete [] dE;
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
buflight[y][x] = CLIPRET((bufexpfin->L[y][x] - bufexporig->L[y][x]) / 328.f);
bufl_ab[y][x] = CLIPRET((sqrt(SQR(bufexpfin->a[y][x]) + SQR(bufexpfin->b[y][x])) - sqrt(SQR(bufexporig->a[y][x]) + SQR(bufexporig->b[y][x]))) / 250.f);
}
}
bufexpfin.reset();
transit_shapedetect(3, bufexporig.get(), nullptr, buflight, bufl_ab, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
}
}
//local contrast
if (lp.lcamount > 0.f && call < 3 && lp.lcena) {
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (lp.ftwlc) {
int ftsizeH = 1;
int ftsizeW = 1;
for (int ft = 0; ft < N_fftwsize; ft++) { //find best values
if (fftw_size[ft] <= bfh) {
ftsizeH = fftw_size[ft];
break;
}
}
for (int ft = 0; ft < N_fftwsize; ft++) {
if (fftw_size[ft] <= bfw) {
ftsizeW = fftw_size[ft];
break;
}
}
//printf("FTsizeH =%i FTsizeW=%i \n", ftsizeH, ftsizeW);
//optimize with size fftw
if (ystart == 0 && yend < original->H) {
lp.ly -= (bfh - ftsizeH);
} else if (ystart != 0 && yend == original->H) {
lp.lyT -= (bfh - ftsizeH);
} else if (ystart != 0 && yend != original->H) {
if (lp.ly <= lp.lyT) {
lp.lyT -= (bfh - ftsizeH);
} else {
lp.ly -= (bfh - ftsizeH);
}
} else if (ystart == 0 && yend == original->H) {
bfhr = ftsizeH;
reduH = true;
}
if (xstart == 0 && xend < original->W) {
lp.lx -= (bfw - ftsizeW);
} else if (xstart != 0 && xend == original->W) {
lp.lxL -= (bfw - ftsizeW);
} else if (xstart != 0 && xend != original->W) {
if (lp.lx <= lp.lxL) {
lp.lxL -= (bfw - ftsizeW);
} else {
lp.lx -= (bfw - ftsizeW);
}
} else if (xstart == 0 && xend == original->W) {
bfwr = ftsizeW;
reduW = true;
}
//new values optimized
ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
bfh = bfhr = yend - ystart;
bfw = bfwr = xend - xstart;
if (reduH) {
bfhr = ftsizeH;
}
if (reduW) {
bfwr = ftsizeW;
}
}
if (bfw > 0 && bfh > 0) {
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
std::unique_ptr<LabImage> bufgb(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> tmp1(new LabImage(bfw, bfh));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufgb->L[y - ystart][x - xstart] = original->L[y][x];
bufgb->a[y - ystart][x - xstart] = original->a[y][x];
bufgb->b[y - ystart][x - xstart] = original->b[y][x];
tmp1->L[y - ystart][x - xstart] = original->L[y][x];
tmp1->a[y - ystart][x - xstart] = original->a[y][x];
tmp1->b[y - ystart][x - xstart] = original->b[y][x];
}
}
LocalContrastParams localContrastParams;
LocallabParams locallabparams;
localContrastParams.enabled = true;
localContrastParams.radius = params->locallab.spots.at(sp).lcradius;
localContrastParams.amount = params->locallab.spots.at(sp).lcamount;
localContrastParams.darkness = params->locallab.spots.at(sp).lcdarkness;
localContrastParams.lightness = params->locallab.spots.at(sp).lightness;
bool fftwlc = false;
if (!lp.ftwlc) {
ImProcFunctions::localContrast(tmp1.get(), tmp1->L, localContrastParams, fftwlc, sk);
} else {
std::unique_ptr<LabImage> tmpfftw(new LabImage(bfwr, bfhr));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
tmpfftw->L[y][x] = tmp1->L[y][x];
tmpfftw->a[y][x] = tmp1->a[y][x];
tmpfftw->b[y][x] = tmp1->b[y][x];
}
}
fftwlc = true;
ImProcFunctions::localContrast(tmpfftw.get(), tmpfftw->L, localContrastParams, fftwlc, sk);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
tmp1->L[y][x] = tmpfftw->L[y][x];
tmp1->a[y][x] = tmpfftw->a[y][x];
tmp1->b[y][x] = tmpfftw->b[y][x];
}
}
}
float minL = tmp1->L[0][0] - bufgb->L[0][0];
float maxL = minL;
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxL) reduction(min:minL) schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfhr; ir++) {
for (int jr = 0; jr < bfwr; jr++) {
buflight[ir][jr] = tmp1->L[ir][jr] - bufgb->L[ir][jr];
bufchro[ir][jr] = sqrt(SQR(tmp1->a[ir][jr]) + SQR(tmp1->b[ir][jr])) - sqrt(SQR(bufgb->a[ir][jr]) + SQR(bufgb->b[ir][jr]));
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
buflight[y][x] /= coef;
}
}
bufgb.reset();
transit_shapedetect(10, tmp1.get(), nullptr, buflight, bufchro, nullptr, nullptr, nullptr, false, hueref, chromaref, lumaref, sobelref, 0.f, nullptr, lp, original, transformed, cx, cy, sk);
tmp1.reset();
}
}
if (!lp.invshar && lp.shrad > 0.42 && call < 3 && lp.sharpena && sk == 1) { //interior ellipse for sharpening, call = 1 and 2 only with Dcrop and simpleprocess
int bfh = call == 2 ? int (lp.ly + lp.lyT) + del : original->H; //bfw bfh real size of square zone
int bfw = call == 2 ? int (lp.lx + lp.lxL) + del : original->W;
JaggedArray<float> loctemp(bfw, bfh);
if (call == 2) { //call from simpleprocess
JaggedArray<float> bufsh(bfw, bfh, true);
JaggedArray<float> hbuffer(bfw, bfh);
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) {
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
bufsh[loy - begy][lox - begx] = original->L[y][x];
}
}
}
//sharpen only square area instaed of all image
ImProcFunctions::deconvsharpeningloc(bufsh, hbuffer, bfw, bfh, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
} else { //call from dcrop.cc
ImProcFunctions::deconvsharpeningloc(original->L, shbuffer, bfw, bfh, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
}
//sharpen ellipse and transition
Sharp_Local(call, loctemp, 0, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
} else if (lp.invshar && lp.shrad > 0.42 && call < 3 && lp.sharpena && sk == 1) {
int GW = original->W;
int GH = original->H;
JaggedArray<float> loctemp(GW, GH);
ImProcFunctions::deconvsharpeningloc(original->L, shbuffer, GW, GH, loctemp, params->locallab.spots.at(sp).shardamping, (double)params->locallab.spots.at(sp).sharradius, params->locallab.spots.at(sp).shariter, params->locallab.spots.at(sp).sharamount, params->locallab.spots.at(sp).sharcontrast, (double)params->locallab.spots.at(sp).sharblur);
InverseSharp_Local(loctemp, hueref, lumaref, chromaref, lp, original, transformed, cx, cy, sk);
}
// }
//&& lp.retiena
if (lp.str > 0.f && lp.retiena) {
int GW = transformed->W;
int GH = transformed->H;
LabImage *bufreti = nullptr;
LabImage *bufmask = nullptr;
LabImage *buforig = nullptr;
LabImage *buforigmas = nullptr;
int bfh = int (lp.ly + lp.lyT) + del; //bfw bfh real size of square zone
int bfw = int (lp.lx + lp.lxL) + del;
// printf("before bfh=%i bfw=%i\n", bfh, bfw);
if (lp.ftwreti) {
int ftsizeH = 1;
int ftsizeW = 1;
for (int ft = 0; ft < N_fftwsize; ft++) { //find best values for FFTW
if (fftw_size[ft] <= bfh) {
ftsizeH = fftw_size[ft];
break;
}
}
for (int ft = 0; ft < N_fftwsize; ft++) {
if (fftw_size[ft] <= bfw) {
ftsizeW = fftw_size[ft];
break;
}
}
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
if (ystart == 0 && yend < original->H) {
lp.ly -= (bfh - ftsizeH);
} else if (ystart != 0 && yend == original->H) {
lp.lyT -= (bfh - ftsizeH);
} else if (ystart != 0 && yend != original->H) {
if (lp.ly <= lp.lyT) {
lp.lyT -= (bfh - ftsizeH);
} else {
lp.ly -= (bfh - ftsizeH);
}
}
if (xstart == 0 && xend < original->W) {
lp.lx -= (bfw - ftsizeW);
} else if (xstart != 0 && xend == original->W) {
lp.lxL -= (bfw - ftsizeW);
} else if (xstart != 0 && xend != original->W) {
if (lp.lx <= lp.lxL) {
lp.lxL -= (bfw - ftsizeW);
} else {
lp.lx -= (bfw - ftsizeW);
}
}
//new size bfw, bfh not optimized if spot H > high or spot W > width ==> TODO
bfh = int (lp.ly + lp.lyT) + del;
bfw = int (lp.lx + lp.lxL) + del;
//printf("after bfh=%i bfw=%i fftwH=%i fftww=%i\n", bfh, bfw, ftsizeH, ftsizeW);
}
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufchro(bfw, bfh);
int Hd, Wd;
Hd = GH;
Wd = GW;
if (!lp.invret && call <= 3) {
Hd = bfh;
Wd = bfw;
bufreti = new LabImage(bfw, bfh);
bufmask = new LabImage(bfw, bfh);
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig = new LabImage(bfw, bfh);
buforigmas = new LabImage(bfw, bfh);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < bfh; ir++) //fill with 0
for (int jr = 0; jr < bfw; jr++) {
bufreti->L[ir][jr] = 0.f;
bufreti->a[ir][jr] = 0.f;
bufreti->b[ir][jr] = 0.f;
buflight[ir][jr] = 0.f;
bufchro[ir][jr] = 0.f;
}
int begy = lp.yc - lp.lyT;
int begx = lp.xc - lp.lxL;
int yEn = lp.yc + lp.ly;
int xEn = lp.xc + lp.lx;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < transformed->H ; y++) //{
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int loy = cy + y;
if (lox >= begx && lox < xEn && loy >= begy && loy < yEn) {
bufreti->L[loy - begy][lox - begx] = original->L[y][x];
bufreti->a[loy - begy][lox - begx] = original->a[y][x];
bufreti->b[loy - begy][lox - begx] = original->b[y][x];
bufmask->L[loy - begy][lox - begx] = original->L[y][x];
bufmask->a[loy - begy][lox - begx] = original->a[y][x];
bufmask->b[loy - begy][lox - begx] = original->b[y][x];
if (!lp.enaretiMasktmap && lp.enaretiMask) {
buforig->L[loy - begy][lox - begx] = original->L[y][x];
buforig->a[loy - begy][lox - begx] = original->a[y][x];
buforig->b[loy - begy][lox - begx] = original->b[y][x];
}
}
}
//calc dehaze
Imagefloat *tmpImage = nullptr;
if (lp.dehaze > 0) {
const float depthcombi = 0.3f * params->locallab.spots.at(sp).neigh + 0.15f * (500.f - params->locallab.spots.at(sp).vart);
DehazeParams dehazeParams;
dehazeParams.enabled = true;
dehazeParams.strength = 0.9f * lp.dehaze + 0.3f * lp.str;
dehazeParams.showDepthMap = false;
dehazeParams.depth = LIM(depthcombi, 0.f, 100.f);
tmpImage = new Imagefloat(bfw, bfh);
lab2rgb(*bufreti, *tmpImage, params->icm.workingProfile);
dehaze(tmpImage, dehazeParams);
rgb2lab(*tmpImage, *bufreti, params->icm.workingProfile);
delete tmpImage;
}
}
float *orig[Hd] ALIGNED16;
float *origBuffer = new float[Hd * Wd];
for (int i = 0; i < Hd; i++) {
orig[i] = &origBuffer[i * Wd];
}
float *orig1[Hd] ALIGNED16;
float *origBuffer1 = new float[Hd * Wd];
for (int i = 0; i < Hd; i++) {
orig1[i] = &origBuffer1[i * Wd];
}
LabImage *tmpl = nullptr;
if (!lp.invret && call <= 3) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = bufreti->L[ir][jr];
orig1[ir][jr] = bufreti->L[ir][jr];
}
tmpl = new LabImage(Wd, Hd);
} else {
Imagefloat *tmpImage = nullptr;
bufreti = new LabImage(Wd, Hd);
if (lp.dehaze > 0) {
const float depthcombi = 0.3f * params->locallab.spots.at(sp).neigh + 0.15f * (500.f - params->locallab.spots.at(sp).vart);
DehazeParams dehazeParams;
dehazeParams.enabled = true;
dehazeParams.strength = 0.9f * lp.dehaze + 0.3f * lp.str;
dehazeParams.showDepthMap = false;
dehazeParams.depth = LIM(depthcombi, 0.f, 100.f);
tmpImage = new Imagefloat(Wd, Hd);
lab2rgb(*original, *tmpImage, params->icm.workingProfile);
dehaze(tmpImage, dehazeParams);
rgb2lab(*tmpImage, *bufreti, params->icm.workingProfile);
delete tmpImage;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1) {
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = original->L[ir][jr];
orig1[ir][jr] = bufreti->L[ir][jr];
}
}
delete bufreti;
bufreti = nullptr;
} else {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1) {
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = original->L[ir][jr];
orig1[ir][jr] = transformed->L[ir][jr];
}
}
}
tmpl = new LabImage(transformed->W, transformed->H);
}
float minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax;
bool fftw = lp.ftwreti;
ImProcFunctions::MSRLocal(sp, fftw, 1, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, params->locallab, sk, locRETgainCcurve, 0, 4, 1.f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = orig[ir][jr];
}
if (lp.equret) { //equilibrate luminance before / after MSR
float *datain = new float[Hd * Wd];
float *data = new float[Hd * Wd];
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
datain[ir * Wd + jr] = orig1[ir][jr];
data[ir * Wd + jr] = orig[ir][jr];
}
normalize_mean_dt(data, datain, Hd * Wd, 1.f);
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
tmpl->L[ir][jr] = data[ir * Wd + jr];
}
delete [] datain;
delete [] data;
}
if (!lp.invret) {
float minL = tmpl->L[0][0] - bufreti->L[0][0];
float maxL = minL;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minL) reduction(max:maxL) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] = tmpl->L[ir][jr] - bufreti->L[ir][jr];
minL = rtengine::min(minL, buflight[ir][jr]);
maxL = rtengine::max(maxL, buflight[ir][jr]);
}
}
float coef = 0.01f * (max(fabs(minL), fabs(maxL)));
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
buflight[ir][jr] /= coef;
}
}
/*
if (lp.softradiusret > 0.f && lp.scalereti != 1) {
// softprocess(bufreti, buflight, lp.softradiusret, Hd, Wd, sk, 0.01, 0.001, 0.0001f, multiThread);
//softproc(bufreti, tmpl, lp.softradiusret, bfh, bfw, 0.0001, 0.00001, 0.0001f, sk, multiThread);
}
*/
transit_shapedetect_retinex(4, bufreti, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
} else {
InverseReti_Local(lp, hueref, chromaref, lumaref, original, transformed, tmpl, cx, cy, 0, sk);
}
if (params->locallab.spots.at(sp).chrrt > 0) {
if (!lp.invret && call <= 3) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
orig[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
orig1[ir][jr] = sqrt(SQR(bufreti->a[ir][jr]) + SQR(bufreti->b[ir][jr]));
}
} else {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < GH; ir += 1)
for (int jr = 0; jr < GW; jr += 1) {
orig[ir][jr] = sqrt(SQR(original->a[ir][jr]) + SQR(original->b[ir][jr]));
orig1[ir][jr] = sqrt(SQR(transformed->a[ir][jr]) + SQR(transformed->b[ir][jr]));
}
}
float maxChro = orig1[0][0];
#ifdef _OPENMP
#pragma omp parallel for reduction(max:maxChro) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
maxChro = rtengine::max(maxChro, orig1[ir][jr]);
}
}
float divchro = maxChro;
//first step change saturation whithout Retinex ==> gain of time and memory
float satreal = lp.str * params->locallab.spots.at(sp).chrrt / 100.f;
if (params->locallab.spots.at(sp).chrrt <= 0.2f) {
satreal /= 10.f;
}
DiagonalCurve reti_satur({
DCT_NURBS,
0, 0,
0.2, 0.2 + satreal / 250.0,
0.6, min(1.0, 0.6 + satreal / 250.0),
1, 1
});
bool fftw = false;
if (params->locallab.spots.at(sp).chrrt > 40.f) { //second step active Retinex Chroma
ImProcFunctions::MSRLocal(sp, fftw, 0, bufreti, bufmask, buforig, buforigmas, orig, tmpl->L, orig1, Wd, Hd, params->locallab, sk, locRETgainCcurve, 1, 4, 0.8f, minCD, maxCD, mini, maxi, Tmean, Tsigma, Tmin, Tmax,
locccmasretiCurve, lcmasretiutili, locllmasretiCurve, llmasretiutili, lochhmasretiCurve, lhmasretiutili, llretiMask, transformed, lp.enaretiMasktmap, lp.enaretiMask);
}
if (!lp.invret && call <= 3) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
const float Chprov = orig1[ir][jr];
float2 sincosval;
sincosval.y = Chprov == 0.0f ? 1.f : bufreti->a[ir][jr] / Chprov;
sincosval.x = Chprov == 0.0f ? 0.f : bufreti->b[ir][jr] / Chprov;
if (params->locallab.spots.at(sp).chrrt <= 40.f) { //first step
float buf = LIM01(orig[ir][jr] / divchro);
buf = reti_satur.getVal(buf);
buf *= divchro;
orig[ir][jr] = buf;
}
tmpl->a[ir][jr] = orig[ir][jr] * sincosval.y;
tmpl->b[ir][jr] = orig[ir][jr] * sincosval.x;
}
float minC = sqrt(SQR(tmpl->a[0][0]) + SQR(tmpl->b[0][0])) - orig1[0][0];
float maxC = minC;
#ifdef _OPENMP
#pragma omp parallel for reduction(min:minC) reduction(max:maxC) schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] = sqrt(SQR(tmpl->a[ir][jr]) + SQR(tmpl->b[ir][jr])) - orig1[ir][jr];
minC = rtengine::min(minC, bufchro[ir][jr]);
maxC = rtengine::max(maxC, bufchro[ir][jr]);
}
}
const float coefC = 0.01f * (max(fabs(minC), fabs(maxC)));
for (int ir = 0; ir < Hd; ir++) {
for (int jr = 0; jr < Wd; jr++) {
bufchro[ir][jr] /= coefC;
}
}
} else {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < Hd; ir += 1)
for (int jr = 0; jr < Wd; jr += 1) {
float Chprov = orig1[ir][jr];
float2 sincosval;
sincosval.y = Chprov == 0.0f ? 1.f : transformed->a[ir][jr] / Chprov;
sincosval.x = Chprov == 0.0f ? 0.f : transformed->b[ir][jr] / Chprov;
tmpl->a[ir][jr] = orig[ir][jr] * sincosval.y;
tmpl->b[ir][jr] = orig[ir][jr] * sincosval.x;
}
}
if (!lp.invret) {
transit_shapedetect_retinex(5, tmpl, bufmask, buforigmas, buflight, bufchro, hueref, chromaref, lumaref, lp, original, transformed, cx, cy, sk);
} else {
InverseReti_Local(lp, hueref, chromaref, lumaref, original, transformed, tmpl, cx, cy, 1, sk);
}
}
delete tmpl;
delete [] origBuffer;
delete [] origBuffer1;
if (bufmask) {
delete bufmask;
}
if (!lp.enaretiMasktmap && lp.enaretiMask) {
if (buforig) {
delete buforig;
}
if (buforigmas) {
delete buforigmas;
}
}
if (bufreti) {
delete bufreti;
}
}
if (!lp.invex && (lp.exposena && (lp.expcomp != 0.f || lp.war != 0 || lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 4 || lp.showmaskexpmet == 5 || (exlocalcurve && localexutili)))) { //interior ellipse renforced lightness and chroma //locallutili
int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
int bfh = yend - ystart;
int bfw = xend - xstart;
//variable for fast FFTW
int bfhr = bfh;
int bfwr = bfw;
bool reduH = false;
bool reduW = false;
if (lp.expmet == 1) {
int ftsizeH = 1;
int ftsizeW = 1;
for (int ft = 0; ft < N_fftwsize; ft++) { //find best values
if (fftw_size[ft] <= bfh) {
ftsizeH = fftw_size[ft];
break;
}
}
for (int ft = 0; ft < N_fftwsize; ft++) {
if (fftw_size[ft] <= bfw) {
ftsizeW = fftw_size[ft];
break;
}
}
// printf("FTsizeH =%i FTsizeW=%i \n", ftsizeH, ftsizeW);
//optimize with size fftw
if (ystart == 0 && yend < original->H) {
lp.ly -= (bfh - ftsizeH);
} else if (ystart != 0 && yend == original->H) {
lp.lyT -= (bfh - ftsizeH);
} else if (ystart != 0 && yend != original->H) {
if (lp.ly <= lp.lyT) {
lp.lyT -= (bfh - ftsizeH);
} else {
lp.ly -= (bfh - ftsizeH);
}
} else if (ystart == 0 && yend == original->H) {
bfhr = ftsizeH;
reduH = true;
}
if (xstart == 0 && xend < original->W) {
lp.lx -= (bfw - ftsizeW);
} else if (xstart != 0 && xend == original->W) {
lp.lxL -= (bfw - ftsizeW);
} else if (xstart != 0 && xend != original->W) {
if (lp.lx <= lp.lxL) {
lp.lxL -= (bfw - ftsizeW);
} else {
lp.lx -= (bfw - ftsizeW);
}
} else if (xstart == 0 && xend == original->W) {
bfwr = ftsizeW;
reduW = true;
}
//new values optimized
ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
bfh = bfhr = yend - ystart;
bfw = bfwr = xend - xstart;
if (reduH) {
bfhr = ftsizeH;
}
if (reduW) {
bfwr = ftsizeW;
}
}
if (bfw > 0 && bfh > 0) {
std::unique_ptr<LabImage> bufexporig(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufexpfin(new LabImage(bfw, bfh));
std::unique_ptr<LabImage> bufmaskblurexp;
std::unique_ptr<LabImage> originalmaskexp;
array2D<float> buflight(bfw, bfh);
JaggedArray<float> bufl_ab(bfw, bfh);
JaggedArray<float> buf_a_cat(bfw, bfh);
JaggedArray<float> buf_b_cat(bfw, bfh);
array2D<float> blend2;
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
float meansob = 0.f;
if (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 5) {
bufmaskblurexp.reset(new LabImage(bfw, bfh));
originalmaskexp.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend; y++) {
for (int x = xstart; x < xend; x++) {
bufexporig->L[y - ystart][x - xstart] = original->L[y][x];
}
}
const int spotSi = rtengine::max(1 + 2 * max(1, lp.cir / sk), 5);
if (bfw > 2 * spotSi && bfh > 2 * spotSi && lp.struexp > 0.f) {
blend2(bfw, bfh);
ImProcFunctions::blendstruc(bfw, bfh, bufexporig.get(), 3.f / (sk * 1.4f), lp.struexp, blend2, sk, multiThread);
if (lp.showmaskexpmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
const int lox = cx + x;
const int loy = cy + y;
int zone = 0;
float localFactor = 1.f;
const float achm = lp.trans / 100.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, achm, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, achm, lp, zone, localFactor);
}
if (zone > 0) {
transformed->L[y][x] = CLIP(blend2[y - ystart][x - xstart]);
transformed->a[y][x] = 0.f;
transformed->b[y][x] = 0.f;
}
}
}
return;
}
}
std::unique_ptr<array2D<float>> ble;
std::unique_ptr<array2D<float>> guid;
if (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 5) {
ble.reset(new array2D<float>(bfw, bfh));
guid.reset(new array2D<float>(bfw, bfh));
}
float meanfab, fab;
mean_fab(xstart, ystart, bfw, bfh, bufexporig.get(), original, fab, meanfab, lp.chromaexp);
float meanorig = 0.f;
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
meanorig += bufexporig->L[ir][jr];
}
meanorig /= (bfh * bfw);
// meanorig /= 32768.f;
// printf("meanor=%f \n", meanorig);
if (lp.showmaskexpmet == 2 || lp.enaExpMask || lp.showmaskexpmet == 3 || lp.showmaskexpmet == 5) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float kmaskLexp = 0.f;
float kmaskC = 0.f;
float kmaskHL = 0.f;
float kmaskH = 0.f;
if (locllmasexpCurve && llmasexputili) {
const float ligh = bufexporig->L[ir][jr] / 32768.f;
kmaskLexp = 32768.f * LIM01(1.f - locllmasexpCurve[500.f * ligh]);
}
if (lp.showmaskexpmet != 5) {
if (locccmasexpCurve && lcmasexputili) {
const float chromaskr = 0.0001f + sqrt(SQR((bufexporig->a[ir][jr])) + SQR((bufexporig->b[ir][jr]))) / fab;
kmaskC = LIM01(1.f - locccmasexpCurve[500.f * chromaskr]);
}
}
if (lochhmasexpCurve && lhmasexputili) {
const float huema = xatan2f(bufexporig->b[ir][jr], bufexporig->a[ir][jr]);
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
const float valHH = LIM01(1.f - lochhmasexpCurve[500.f * h]);
if (lp.showmaskexpmet != 5) {
kmaskH = valHH;
}
kmaskHL = 32768.f * valHH;
}
bufmaskblurexp->a[ir][jr] = kmaskC + kmaskH;
bufmaskblurexp->b[ir][jr] = kmaskC + kmaskH;
(*ble)[ir][jr] = LIM01(CLIPLOC(kmaskLexp + kmaskHL) / 32768.f);
(*guid)[ir][jr] = LIM01(bufexporig->L[ir][jr] / 32768.f);
}
if (lp.radmaexp > 0.f) {
guidedFilter(*guid, *ble, *ble, lp.radmaexp * 10.f / sk, 0.001, multiThread, 4);
}
LUTf lutTonemask(65536);
calcGammaLut(lp.gammaexp, lp.slomaexp, lutTonemask);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
const float L_ = 2.f * LIM01((*ble)[ir][jr]) * 32768.f;
bufmaskblurexp->L[ir][jr] = lutTonemask[L_];
}
}
const float radiusb = 1.f / sk;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurexp->L, bufmaskblurexp->L, bfw, bfh, radiusb);
gaussianBlur(bufmaskblurexp->a, bufmaskblurexp->a, bfw, bfh, 1.f + (0.5f * lp.radmaexp) / sk);
gaussianBlur(bufmaskblurexp->b, bufmaskblurexp->b, bfw, bfh, 1.f + (0.5f * lp.radmaexp) / sk);
}
if (lp.showmaskexpmet == 0 || lp.showmaskexpmet == 1 || lp.showmaskexpmet == 2 /* || lp.showmaskexpmet == 4 */ || lp.showmaskexpmet == 5 || lp.enaExpMask) {
blendmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), original, bufmaskblurexp.get(), originalmaskexp.get(), lp.blendmaexp);
} else if (lp.showmaskexpmet == 3) {
showmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufexporig.get(), transformed, bufmaskblurexp.get());
return;
}
}
if (lp.showmaskexpmet == 4) {
return;
}
if (lp.showmaskexpmet == 0 || lp.showmaskexpmet == 1 || lp.showmaskexpmet == 2 || lp.showmaskexpmet == 5 || lp.enaExpMask) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufexpfin->L[y][x] = original->L[y + ystart][x + xstart];
bufexpfin->a[y][x] = original->a[y + ystart][x + xstart];
bufexpfin->b[y][x] = original->b[y + ystart][x + xstart];
}
}
if (exlocalcurve && localexutili) {// L=f(L) curve enhanced
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
bufexpfin->L[ir][jr] = 0.5f * exlocalcurve[2.f * bufexporig->L[ir][jr]];
}
if (lp.expcomp == 0.f) {
lp.expcomp = 0.1f; // to enabled
}
ImProcFunctions::exlabLocal(lp, bfh, bfw, bufexpfin.get(), bufexpfin.get(), hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
} else {
ImProcFunctions::exlabLocal(lp, bfh, bfw, bufexporig.get(), bufexpfin.get(), hltonecurveloc, shtonecurveloc, tonecurveloc, meanorig);
}
//exposure_pde
if (lp.expmet == 1) {
MyMutex::MyLock lock(*fftwMutex);
float *datain = new float[bfwr * bfhr];
float *dataout = new float[bfwr * bfhr];
float *dataor = new float[bfwr * bfhr];
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
datain[y * bfwr + x] = bufexpfin->L[y][x];
dataor[y * bfwr + x] = bufexpfin->L[y][x];
}
}
ImProcFunctions::exposure_pde(dataor, datain, dataout, bfwr, bfhr, 12.f * lp.laplacexp, lp.balanexp);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfhr; y++) {
for (int x = 0; x < bfwr; x++) {
bufexpfin->L[y][x] = dataout[y * bfwr + x] ;
}
}
delete [] datain;
delete [] dataout;
delete [] dataor;
}
//shadows with ipshadowshighlight
if (lp.shadex > 0) {
ImProcFunctions::shadowsHighlights(bufexpfin.get(), true, 1, 0, lp.shadex, 40, sk, 0, lp.shcomp);
}
//cat02
if (params->locallab.spots.at(sp).warm != 0) {
ImProcFunctions::ciecamloc_02float(sp, bufexpfin.get());
}
constexpr float ampli = 70.f;
const float ch = (1.f + 0.02f * lp.expchroma);
const float chprosl = ch <= 1.f ? 99.f * ch - 99.f : CLIPCHRO(ampli * ch - ampli);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
const float epsi = bufexporig->L[ir][jr] == 0.f ? 0.001f : 0.f;
const float rapexp = bufexpfin->L[ir][jr] / (bufexporig->L[ir][jr] + epsi);
if (rapexp >= 1.f) {
bufl_ab[ir][jr] = chprosl * rapexp;
} else {
bufl_ab[ir][jr] = chprosl * rapexp;
}
}
}
if (lp.softradiusexp > 0.f) {
softproc(bufexporig.get(), bufexpfin.get(), lp.softradiusexp, bfh, bfw, 0.0001, 0.00001, 0.0001f, sk, multiThread);
// softprocess(bufexporig.get(), buflight, lp.softradiusexp, bfh, bfw, sk, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = CLIPRET((bufexpfin->L[ir][jr] - bufexporig->L[ir][jr]) / 328.f);
buf_a_cat[ir][jr] = CLIPRET((bufexpfin->a[ir][jr] - bufexporig->a[ir][jr]) / 328.f);
buf_b_cat[ir][jr] = CLIPRET((bufexpfin->b[ir][jr] - bufexporig->b[ir][jr]) / 328.f);
}
if (lp.softradiusexp > 0.f) {
// softprocess(bufexporig.get(), buflight, lp.softradiusexp, bfh, bfw, sk, multiThread);
}
}
bufexpfin.reset();
transit_shapedetect(1, bufexporig.get(), originalmaskexp.get(), buflight, bufl_ab, buf_a_cat, buf_b_cat, nullptr, false, hueref, chromaref, lumaref, sobelref, meansob, blend2, lp, original, transformed, cx, cy, sk);
bufexporig.reset();
}
}
}
//inverse
else if (lp.invex && (lp.expcomp != 0.0 || lp.war != 0 || (exlocalcurve && localexutili)) && lp.exposena) {
float adjustr = 2.f;
InverseColorLight_Local(sp, 1, lp, lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
}
//local color and light
const float factor = LocallabParams::LABGRIDL_CORR_MAX * 3.276f;
const float scaling = LocallabParams::LABGRIDL_CORR_SCALE;
const float scaledirect = LocallabParams::LABGRIDL_DIRECT_SCALE;
float a_scale = (lp.highA - lp.lowA) / factor / scaling;
float a_base = lp.lowA / scaling;
float b_scale = (lp.highB - lp.lowB) / factor / scaling;
float b_base = lp.lowB / scaling;
bool ctoning = (a_scale != 0.f || b_scale != 0.f || a_base != 0.f || b_base != 0.f);
if (!lp.inv && (lp.chro != 0 || lp.ligh != 0.f || lp.cont != 0 || ctoning || lp.qualcurvemet != 0 || lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 4 || lp.showmaskcolmet == 5) && lp.colorena) { // || lllocalcurve)) { //interior ellipse renforced lightness and chroma //locallutili
/*
//test for fftw blur with tiles fftw_tile_blur....not good we can see tiles - very long time
int GW = original->W;
int GH = original->H;
MyMutex::MyLock lock (*fftwMutex);
double radius = 100.f;
int tilssize = 64;
#ifdef _OPENMP
const int numThreads = omp_get_max_threads();
#else
const int numThreads = 1;
#endif
int max_numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
// calculate min size of numblox_W.
int min_numblox_W = ceil((static_cast<float>(GW)) / (offset2)) + 2 * blkrad;
fftw_tile_blur(GW, GH, tilssize , max_numblox_W, min_numblox_W, original->L, numThreads, radius);
*/
//test for fftw blur with fftw_convol_blur: good result speedup moderate , but less used of memory than gaussianblur
//with FFTW curious results ex with playraw23_hombre.pef - size 4942*3276
// with size 4942*3276 time for tIF 3200ms
// with size 4941*3275 time for TIF 950ms...no differences in TIF and with 4928*3250 (2^6 * 7 * 11) * (2 * 5^3 * 13) = 520ms
// "step" to reproduce about 6 pixels
//another strange with DSCF1337.RAF 4012*6018 time 1318ms
// with 4004*6016 time 1091ms
//with 4004*6013 time 4057ms...steps seem also about 6 or 8
//NEF D200 best with 3888 * 2607 instead of 3892 2608
//D700 4275*2835 instead 4276*2836
//PANA LX100 4120*3095 instead of 4120*3096
//I have compared many things with FFTF COS -0.5 2*n -0.5, prime factor decomposition....nothing found
//I have read doc...nothing about that
//doc says optimum is with size 2^a * 3^b * 5^c * 7^d * 11^e * 13^f with e+f = 0 or 1
//we must found a number below of size as this
//combinaison
//see above fftw_size
/*
int GW = 4928/SQR(sk); //original->W-lp.ligh;//for test change size W
int GH = 3250/SQR(sk);//original->H- lp.cont;//test for chnage size H
printf("Gw=%i Gh=%i\n", GW, GH);
MyMutex::MyLock lock (*fftwMutex);
float *datain = nullptr; //new float[GW*GH];
datain = (float*) fftwf_malloc(sizeof(float) * (GW * GH));//allocate real datas for FFT
float *dataout = new float[GW*GH];
float radius = 500.f;
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
datain[y * GW + x] =original->L[y][x];
}
}
fftw_convol_blur(datain, dataout, GW, GH, radius, 0);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < GH; y++) {
for (int x = 0; x < GW; x++) {
original->L[y][x] = dataout[y * GW + x];
}
}
delete [] dataout;
fftwf_free(datain);
*/
const int ystart = std::max(static_cast<int>(lp.yc - lp.lyT) - cy, 0);
const int yend = std::min(static_cast<int>(lp.yc + lp.ly) - cy, original->H);
const int xstart = std::max(static_cast<int>(lp.xc - lp.lxL) - cx, 0);
const int xend = std::min(static_cast<int>(lp.xc + lp.lx) - cx, original->W);
const int bfh = yend - ystart;
const int bfw = xend - xstart;
if (bfw > 0 && bfh > 0) {
std::unique_ptr<LabImage> bufcolorig;
std::unique_ptr<LabImage> bufcolfin;
std::unique_ptr<LabImage> bufmaskblurcol;
std::unique_ptr<LabImage> originalmaskcol;
array2D<float> buflight(bfw, bfh, true);
JaggedArray<float> bufchro(bfw, bfh, true);
JaggedArray<float> bufhh(bfw, bfh, true);
array2D<float> blend2;
JaggedArray<float> buf_a(bfw, bfh, true);
JaggedArray<float> buf_b(bfw, bfh, true);
float adjustr = 1.0f;
//adapt chroma to working profile
if (params->icm.workingProfile == "ProPhoto") {
adjustr = 1.2f; // 1.2 instead 1.0 because it's very rare to have C>170..
} else if (params->icm.workingProfile == "Adobe RGB") {
adjustr = 1.8f;
} else if (params->icm.workingProfile == "sRGB") {
adjustr = 2.0f;
} else if (params->icm.workingProfile == "WideGamut") {
adjustr = 1.2f;
} else if (params->icm.workingProfile == "Beta RGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BestRGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BruceRGB") {
adjustr = 1.8f;
}
if (call <= 3) { //simpleprocess, dcrop, improccoordinator
float meansob = 0.f;
bufcolorig.reset(new LabImage(bfw, bfh));
bufcolfin.reset(new LabImage(bfw, bfh));
if (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 5) {
bufmaskblurcol.reset(new LabImage(bfw, bfh, true));
originalmaskcol.reset(new LabImage(bfw, bfh));
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh ; y++) {
for (int x = 0; x < bfw; x++) {
bufcolorig->L[y][x] = original->L[y + ystart][x + xstart];
bufcolfin->L[y][x] = original->L[y + ystart][x + xstart];
}
}
const int spotSi = std::max(1 + 2 * max(1, lp.cir / sk), 5);
const bool blend = bfw > 2 * spotSi && bfh > 2 * spotSi && lp.struco > 0.f;
if (blend) {
blend2(bfw, bfh);
ImProcFunctions::blendstruc(bfw, bfh, bufcolorig.get(), 3.f / (sk * 1.4f), lp.struco, blend2, sk, multiThread);
if (lp.showmaskcolmet == 4) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = ystart; y < yend ; y++) {
for (int x = xstart; x < xend; x++) {
transformed->L[y][x] = blend2[y - ystart][x - xstart];
transformed->a[y][x] = 0.f;
transformed->b[y][x] = 0.f;
}
}
return;
}
}
array2D<float> ble(bfw, bfh);
array2D<float> guid(bfw, bfh);
float meanfab, fab;
mean_fab(xstart, ystart, bfw, bfh, bufcolorig.get(), original, fab, meanfab, lp.chromacol);
if (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 5) {
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int y = 0; y < bfh; y++) {
for (int x = 0; x < bfw; x++) {
bufmaskblurcol->L[y][x] = original->L[y + ystart][x + xstart];
bufmaskblurcol->a[y][x] = original->a[y + ystart][x + xstart];
bufmaskblurcol->b[y][x] = original->b[y + ystart][x + xstart];
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
float atan2Buffer[bfw] ALIGNED64;
#endif
#ifdef _OPENMP
#pragma omp for schedule(dynamic, 16)
#endif
for (int ir = 0; ir < bfh; ir++) {
#ifdef __SSE2__
if (lochhmasCurve && lhmasutili) {
int i = 0;
for (; i < bfw - 3; i += 4) {
STVF(atan2Buffer[i], xatan2f(LVFU(bufcolorig->b[ir][i]), LVFU(bufcolorig->a[ir][i])));
}
for (; i < bfw; i++) {
atan2Buffer[i] = xatan2f(bufcolorig->b[ir][i], bufcolorig->a[ir][i]);
}
}
#endif
for (int jr = 0; jr < bfw; jr++) {
float kmaskL = 0.f;
float kmaskC = 0.f;
float kmaskHL = 0.f;
float kmaskH = 0.f;
if (locllmasCurve && llmasutili) {
kmaskL = 32768.f * LIM01(1.f - locllmasCurve[(500.f / 32768.f) * bufcolorig->L[ir][jr]]);
}
if (lp.showmaskcolmet != 5 && locccmasCurve && lcmasutili) {
kmaskC = LIM01(1.f - locccmasCurve[500.f * (0.0001f + sqrt(SQR(bufcolorig->a[ir][jr]) + SQR(bufcolorig->b[ir][jr])) / fab)]);
}
if (lochhmasCurve && lhmasutili) {
#ifdef __SSE2__
const float huema = atan2Buffer[jr];
#else
const float huema = xatan2f(bufcolorig->b[ir][jr], bufcolorig->a[ir][jr]);
#endif
float h = Color::huelab_to_huehsv2(huema);
h += 1.f / 6.f;
if (h > 1.f) {
h -= 1.f;
}
const float valHH = LIM01(1.f - lochhmasCurve[500.f * h]);
if (lp.showmaskcolmet != 5) {
kmaskH = valHH;
}
kmaskHL = 32768.f * valHH;
}
bufmaskblurcol->L[ir][jr] = CLIPLOC(kmaskL + kmaskHL);
bufmaskblurcol->a[ir][jr] = CLIPC(kmaskC + kmaskH);
bufmaskblurcol->b[ir][jr] = CLIPC(kmaskC + kmaskH);
ble[ir][jr] = bufmaskblurcol->L[ir][jr] / 32768.f;
guid[ir][jr] = bufcolorig->L[ir][jr] / 32768.f;
}
}
}
if (lp.radmacol > 0.f) {
guidedFilter(guid, ble, ble, lp.radmacol * 10.f / sk, 0.001, multiThread, 4);
}
LUTf lutTonemaskexp(65536);
calcGammaLut(lp.gammacol, lp.slomacol, lutTonemaskexp);
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++) {
for (int jr = 0; jr < bfw; jr++) {
bufmaskblurcol->L[ir][jr] = lutTonemaskexp[LIM01(ble[ir][jr]) * 65536.f];
}
}
}
const float radiusb = 1.f / sk;
if (lp.showmaskcolmet == 2 || lp.enaColorMask || lp.showmaskcolmet == 3 || lp.showmaskcolmet == 5) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur(bufmaskblurcol->L, bufmaskblurcol->L, bfw, bfh, radiusb);
gaussianBlur(bufmaskblurcol->a, bufmaskblurcol->a, bfw, bfh, 1.f + (0.5f * lp.radmacol) / sk);
gaussianBlur(bufmaskblurcol->b, bufmaskblurcol->b, bfw, bfh, 1.f + (0.5f * lp.radmacol) / sk);
}
if (lp.showmaskcolmet == 0 || lp.showmaskcolmet == 1 || lp.showmaskcolmet == 2 || lp.showmaskcolmet == 4 || lp.showmaskcolmet == 5 || lp.enaColorMask) {
originalmaskcol->CopyFrom(transformed);
blendmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufcolorig.get(), original, bufmaskblurcol.get(), originalmaskcol.get(), lp.blendmacol);
} else if (lp.showmaskcolmet == 3) {
showmask(lp, xstart, ystart, cx, cy, bfw, bfh, bufcolorig.get(), transformed, bufmaskblurcol.get());
return;
}
}
if (lp.showmaskcolmet == 4) {
return;
}
if (lp.showmaskcolmet == 0 || lp.showmaskcolmet == 1 || lp.showmaskcolmet == 2 || lp.showmaskcolmet == 5 || lp.enaColorMask) {
float chprosl = 1.f;
if (lp.chro != 0.f) {
const float ch = (1.f + 0.01f * lp.chro) ;
if (ch <= 1.f) {
chprosl = 99.f * ch - 99.f;
} else {
constexpr float ampli = 70.f;
chprosl = CLIPCHRO(ampli * ch - ampli);
}
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
float bufcolcalca = bufcolorig->a[ir][jr];
float bufcolcalcb = bufcolorig->b[ir][jr];
float bufcolcalcL = bufcolorig->L[ir][jr];
float chprocu = 1.f;
if (cclocalcurve && lp.qualcurvemet != 0 && localcutili) { // C=f(C) curve
const float chromat = sqrt(SQR(bufcolcalca) + SQR(bufcolcalcb));
const float ch = cclocalcurve[chromat * adjustr] / ((chromat + 0.00001f) * adjustr); //ch between 0 and 0 50 or more
constexpr float ampli = 25.f;
chprocu = CLIPCHRO(ampli * ch - ampli);
}
bufchro[ir][jr] = chprosl + chprocu;
if (lochhCurve && HHutili && lp.qualcurvemet != 0) {
const float hhforcurv = xatan2f(bufcolcalcb, bufcolcalca);
const float valparam = float ((lochhCurve[500.f * Color::huelab_to_huehsv2(hhforcurv)] - 0.5f)); //get H=f(H) 1.7 optimisation !
bufhh[ir][jr] = CLIPRET(200.f * valparam);
}
if (lp.ligh != 0.f || lp.cont != 0) {
calclight(bufcolcalcL, lp.ligh, bufcolcalcL, lightCurveloc); //replace L-curve
}
if (lllocalcurve && locallutili && lp.qualcurvemet != 0) {// L=f(L) curve enhanced
bufcolcalcL = 0.5f * lllocalcurve[bufcolcalcL * 2.f];
}
if (loclhCurve && LHutili && lp.qualcurvemet != 0) {
const float rhue = xatan2f(bufcolcalcb, bufcolcalca);
float l_r = bufcolcalcL / 32768.f; //Luminance Lab in 0..1
const float valparam = loclhCurve[500.f * Color::huelab_to_huehsv2(rhue)] - 0.5f; //get l_r=f(H)
if (valparam > 0.f) {
l_r = (1.f - valparam) * l_r + valparam * (1.f - SQR(((SQR(1.f - min(l_r, 1.0f))))));
} else {
constexpr float khu = 1.9f; //in reserve in case of!
//for negative
l_r *= (1.f + khu * valparam);
}
bufcolcalcL = l_r * 32768.f;
}
if (ctoning) {
if (lp.gridmet == 0) {
bufcolcalca += bufcolcalcL * a_scale + a_base;
bufcolcalcb += bufcolcalcL * b_scale + b_base;
} else if (lp.gridmet == 1) {
bufcolcalca += scaledirect * a_scale;
bufcolcalcb += scaledirect * b_scale;
}
bufcolcalca = CLIPC(bufcolcalca);
bufcolcalcb = CLIPC(bufcolcalcb);
}
// buflight[ir][jr] = CLIPRET((bufcolcalcL - bufcolorig->L[ir][jr]) / 328.f);
buf_a[ir][jr] = CLIPRET((bufcolcalca - bufcolorig->a[ir][jr]) / 328.f);;
buf_b[ir][jr] = CLIPRET((bufcolcalcb - bufcolorig->b[ir][jr]) / 328.f);;
bufcolfin->L[ir][jr] = bufcolcalcL;
}
if (lp.softradiuscol > 0.f) {
softproc(bufcolorig.get(), bufcolfin.get(), lp.softradiuscol, bfh, bfw, 0.0001, 0.00001, 0.0001f, sk, multiThread);
// softprocess(bufcolorig.get(), buflight, lp.softradiuscol, bfh, bfw, sk, multiThread);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int ir = 0; ir < bfh; ir++)
for (int jr = 0; jr < bfw; jr++) {
buflight[ir][jr] = CLIPRET((bufcolfin->L[ir][jr] - bufcolorig->L[ir][jr]) / 328.f);
}
}
float **temp = nullptr;
if (blend) {
temp = blend2;
}
transit_shapedetect(0, bufcolorig.get(), originalmaskcol.get(), buflight, bufchro, buf_a, buf_b, bufhh, HHutili, hueref, chromaref, lumaref, sobelref, meansob, temp, lp, original, transformed, cx, cy, sk);
}
}
}
//inverse
else if (lp.inv && (lp.chro != 0 || lp.ligh != 0 || exlocalcurve) && lp.colorena) {
float adjustr = 1.0f;
//adapt chroma to working profile
if (params->icm.workingProfile == "ProPhoto") {
adjustr = 1.2f; // 1.2 instead 1.0 because it's very rare to have C>170..
} else if (params->icm.workingProfile == "Adobe RGB") {
adjustr = 1.8f;
} else if (params->icm.workingProfile == "sRGB") {
adjustr = 2.0f;
} else if (params->icm.workingProfile == "WideGamut") {
adjustr = 1.2f;
} else if (params->icm.workingProfile == "Beta RGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BestRGB") {
adjustr = 1.4f;
} else if (params->icm.workingProfile == "BruceRGB") {
adjustr = 1.8f;
}
InverseColorLight_Local(sp, 0, lp, lightCurveloc, hltonecurveloc, shtonecurveloc, tonecurveloc, exlocalcurve, cclocalcurve, adjustr, localcutili, lllocalcurve, locallutili, original, transformed, cx, cy, hueref, chromaref, lumaref, sk);
}
// Gamut and Munsell control - very important do not desactivated to avoid crash
if (params->locallab.spots.at(sp).avoid) {
const float ach = (float)lp.trans / 100.f;
TMatrix wiprof = ICCStore::getInstance()->workingSpaceInverseMatrix(params->icm.workingProfile);
const float wip[3][3] = {
{static_cast<float>(wiprof[0][0]), static_cast<float>(wiprof[0][1]), static_cast<float>(wiprof[0][2])},
{static_cast<float>(wiprof[1][0]), static_cast<float>(wiprof[1][1]), static_cast<float>(wiprof[1][2])},
{static_cast<float>(wiprof[2][0]), static_cast<float>(wiprof[2][1]), static_cast<float>(wiprof[2][2])}
};
const bool highlight = params->toneCurve.hrenabled;
const bool needHH = (lp.chro != 0.f);
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
#endif
{
#ifdef __SSE2__
float atan2Buffer[transformed->W] ALIGNED16;
float sqrtBuffer[transformed->W] ALIGNED16;
float sincosyBuffer[transformed->W] ALIGNED16;
float sincosxBuffer[transformed->W] ALIGNED16;
vfloat c327d68v = F2V(327.68f);
vfloat onev = F2V(1.f);
#endif
#ifdef _OPENMP
#ifdef _DEBUG
#pragma omp for schedule(dynamic,16) firstprivate(MunsDebugInfo)
#else
#pragma omp for schedule(dynamic,16)
#endif
#endif
for (int y = 0; y < transformed->H; y++) {
const int loy = cy + y;
const bool isZone0 = loy > lp.yc + lp.ly || loy < lp.yc - lp.lyT; // whole line is zone 0 => we can skip a lot of processing
if (isZone0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
#ifdef __SSE2__
int i = 0;
for (; i < transformed->W - 3; i += 4) {
vfloat av = LVFU(transformed->a[y][i]);
vfloat bv = LVFU(transformed->b[y][i]);
if (needHH) { // only do expensive atan2 calculation if needed
STVF(atan2Buffer[i], xatan2f(bv, av));
}
vfloat Chprov1v = vsqrtf(SQRV(bv) + SQRV(av));
STVF(sqrtBuffer[i], Chprov1v / c327d68v);
vfloat sincosyv = av / Chprov1v;
vfloat sincosxv = bv / Chprov1v;
vmask selmask = vmaskf_eq(Chprov1v, ZEROV);
sincosyv = vself(selmask, onev, sincosyv);
sincosxv = vselfnotzero(selmask, sincosxv);
STVF(sincosyBuffer[i], sincosyv);
STVF(sincosxBuffer[i], sincosxv);
}
for (; i < transformed->W; i++) {
float aa = transformed->a[y][i];
float bb = transformed->b[y][i];
if (needHH) { // only do expensive atan2 calculation if needed
atan2Buffer[i] = xatan2f(bb, aa);
}
float Chprov1 = sqrtf(SQR(bb) + SQR(aa));
sqrtBuffer[i] = Chprov1 / 327.68f;
if (Chprov1 == 0.0f) {
sincosyBuffer[i] = 1.f;
sincosxBuffer[i] = 0.0f;
} else {
sincosyBuffer[i] = aa / Chprov1;
sincosxBuffer[i] = bb / Chprov1;
}
}
#endif
for (int x = 0; x < transformed->W; x++) {
int lox = cx + x;
int zone = 0;
float localFactor = 1.f;
if (lp.shapmet == 0) {
calcTransition(lox, loy, ach, lp, zone, localFactor);
} else if (lp.shapmet == 1) {
calcTransitionrect(lox, loy, ach, lp, zone, localFactor);
}
if (zone == 0) { // outside selection and outside transition zone => no effect, keep original values
continue;
}
float Lprov1 = transformed->L[y][x] / 327.68f;
float2 sincosval;
#ifdef __SSE2__
float HH = atan2Buffer[x]; // reading HH from line buffer even if line buffer is not filled is faster than branching
float Chprov1 = sqrtBuffer[x];
sincosval.y = sincosyBuffer[x];
sincosval.x = sincosxBuffer[x];
float chr = 0.f;
#else
float aa = transformed->a[y][x];
float bb = transformed->b[y][x];
float HH = 0.f, chr = 0.f;
if (needHH) { // only do expensive atan2 calculation if needed
HH = xatan2f(bb, aa);
}
float Chprov1 = sqrtf(SQR(aa) + SQR(bb)) / 327.68f;
if (Chprov1 == 0.0f) {
sincosval.y = 1.f;
sincosval.x = 0.0f;
} else {
sincosval.y = aa / (Chprov1 * 327.68f);
sincosval.x = bb / (Chprov1 * 327.68f);
}
#endif
#ifdef _DEBUG
bool neg = false;
bool more_rgb = false;
Chprov1 = min(Chprov1, chr);
Color::gamutLchonly(sincosval, Lprov1, Chprov1, wip, highlight, 0.15f, 0.92f, neg, more_rgb);
#else
Color::pregamutlab(Lprov1, HH, chr);
Chprov1 = min(Chprov1, chr);
Color::gamutLchonly(sincosval, Lprov1, Chprov1, wip, highlight, 0.15f, 0.92f);
#endif
transformed->L[y][x] = Lprov1 * 327.68f;
transformed->a[y][x] = 327.68f * Chprov1 * sincosval.y;
transformed->b[y][x] = 327.68f * Chprov1 * sincosval.x;
if (needHH) {
float Lprov2 = original->L[y][x] / 327.68f;
float correctionHue = 0.f; // Munsell's correction
float correctlum = 0.f;
float memChprov = sqrtf(SQR(original->a[y][x]) + SQR(original->b[y][x])) / 327.68f;
float Chprov = sqrtf(SQR(transformed->a[y][x]) + SQR(transformed->b[y][x])) / 327.68f;
#ifdef _DEBUG
Color::AllMunsellLch(true, Lprov1, Lprov2, HH, Chprov, memChprov, correctionHue, correctlum, MunsDebugInfo);
#else
Color::AllMunsellLch(true, Lprov1, Lprov2, HH, Chprov, memChprov, correctionHue, correctlum);
#endif
if (fabs(correctionHue) < 0.015f) {
HH += correctlum; // correct only if correct Munsell chroma very little.
}
sincosval = xsincosf(HH + correctionHue);
transformed->a[y][x] = 327.68f * Chprov * sincosval.y; // apply Munsell
transformed->b[y][x] = 327.68f * Chprov * sincosval.x;
}
}
}
}
}
#ifdef _DEBUG
delete MunsDebugInfo;
#endif
}
}
}