281 lines
7.9 KiB
C++
281 lines
7.9 KiB
C++
/* -*- C++ -*-
|
|
*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2018 Alberto Griggio <alberto.griggio@gmail.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**
|
|
* This is a Fast Guided Filter implementation, derived directly from the
|
|
* pseudo-code of the paper:
|
|
*
|
|
* Fast Guided Filter
|
|
* by Kaiming He, Jian Sun
|
|
*
|
|
* available at https://arxiv.org/abs/1505.00996
|
|
*/
|
|
|
|
#include "array2D.h"
|
|
#include "boxblur.h"
|
|
#include "guidedfilter.h"
|
|
#include "boxblur.h"
|
|
#include "sleef.h"
|
|
#include "rescale.h"
|
|
#include "imagefloat.h"
|
|
|
|
namespace rtengine {
|
|
|
|
#if 0
|
|
# define DEBUG_DUMP(arr) \
|
|
do { \
|
|
Imagefloat im(arr.width(), arr.height()); \
|
|
const char *out = "/tmp/" #arr ".tif"; \
|
|
for (int y = 0; y < im.getHeight(); ++y) { \
|
|
for (int x = 0; x < im.getWidth(); ++x) { \
|
|
im.r(y, x) = im.g(y, x) = im.b(y, x) = arr[y][x] * 65535.f; \
|
|
} \
|
|
} \
|
|
im.saveTIFF(out, 16); \
|
|
} while (false)
|
|
#else
|
|
# define DEBUG_DUMP(arr)
|
|
#endif
|
|
|
|
|
|
namespace {
|
|
|
|
int calculate_subsampling(int w, int h, int r)
|
|
{
|
|
if (r == 1) {
|
|
return 1;
|
|
}
|
|
|
|
if (max(w, h) <= 600) {
|
|
return 1;
|
|
}
|
|
|
|
for (int s = 5; s > 0; --s) {
|
|
if (r % s == 0) {
|
|
return s;
|
|
}
|
|
}
|
|
|
|
return LIM(r / 2, 2, 4);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
void guidedFilter(const array2D<float> &guide, const array2D<float> &src, array2D<float> &dst, int r, float epsilon, bool multithread, int subsampling)
|
|
{
|
|
|
|
const int W = src.getWidth();
|
|
const int H = src.getHeight();
|
|
|
|
if (subsampling <= 0) {
|
|
subsampling = calculate_subsampling(W, H, r);
|
|
}
|
|
|
|
enum Op { MUL, DIVEPSILON, ADD, SUB, ADDMUL, SUBMUL };
|
|
|
|
const auto apply =
|
|
[=](Op op, array2D<float> &res, const array2D<float> &a, const array2D<float> &b, const array2D<float> &c=array2D<float>()) -> void
|
|
{
|
|
const int w = res.getWidth();
|
|
const int h = res.getHeight();
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < h; ++y) {
|
|
for (int x = 0; x < w; ++x) {
|
|
float r;
|
|
float aa = a[y][x];
|
|
float bb = b[y][x];
|
|
switch (op) {
|
|
case MUL:
|
|
r = aa * bb;
|
|
break;
|
|
case DIVEPSILON:
|
|
r = aa / (bb + epsilon);
|
|
break;
|
|
case ADD:
|
|
r = aa + bb;
|
|
break;
|
|
case SUB:
|
|
r = aa - bb;
|
|
break;
|
|
case ADDMUL:
|
|
r = aa * bb + c[y][x];
|
|
break;
|
|
case SUBMUL:
|
|
r = c[y][x] - (aa * bb);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
r = 0;
|
|
break;
|
|
}
|
|
res[y][x] = r;
|
|
}
|
|
}
|
|
};
|
|
|
|
// use the terminology of the paper (Algorithm 2)
|
|
const array2D<float> &I = guide;
|
|
const array2D<float> &p = src;
|
|
array2D<float> &q = dst;
|
|
|
|
const auto f_subsample =
|
|
[=](array2D<float> &d, const array2D<float> &s) -> void
|
|
{
|
|
if (d.getWidth() == s.getWidth() && d.getHeight() == s.getHeight()) {
|
|
#ifdef _OPENMP
|
|
# pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < s.getHeight(); ++y) {
|
|
for (int x = 0; x < s.getWidth(); ++x) {
|
|
d[y][x] = s[y][x];
|
|
}
|
|
}
|
|
} else {
|
|
rescaleBilinear(s, d, multithread);
|
|
}
|
|
};
|
|
|
|
// const auto f_upsample = f_subsample;
|
|
|
|
const size_t w = W / subsampling;
|
|
const size_t h = H / subsampling;
|
|
|
|
const auto f_mean =
|
|
[multithread](array2D<float> &d, array2D<float> &s, int rad) -> void
|
|
{
|
|
rad = LIM(rad, 0, (min(s.getWidth(), s.getHeight()) - 1) / 2 - 1);
|
|
// boxblur(s, d, rad, s.getWidth(), s.getHeight(), multithread);
|
|
boxblur(static_cast<float**>(s), static_cast<float**>(d), rad, s.getWidth(), s.getHeight(), multithread);
|
|
};
|
|
|
|
array2D<float> I1(w, h);
|
|
array2D<float> p1(w, h);
|
|
|
|
f_subsample(I1, I);
|
|
f_subsample(p1, p);
|
|
|
|
DEBUG_DUMP(I);
|
|
DEBUG_DUMP(p);
|
|
DEBUG_DUMP(I1);
|
|
DEBUG_DUMP(p1);
|
|
|
|
float r1 = float(r) / subsampling;
|
|
|
|
array2D<float> meanI(w, h);
|
|
f_mean(meanI, I1, r1);
|
|
DEBUG_DUMP(meanI);
|
|
|
|
array2D<float> meanp(w, h);
|
|
f_mean(meanp, p1, r1);
|
|
DEBUG_DUMP(meanp);
|
|
|
|
array2D<float> &corrIp = p1;
|
|
apply(MUL, corrIp, I1, p1);
|
|
f_mean(corrIp, corrIp, r1);
|
|
DEBUG_DUMP(corrIp);
|
|
|
|
array2D<float> &corrI = I1;
|
|
apply(MUL, corrI, I1, I1);
|
|
f_mean(corrI, corrI, r1);
|
|
DEBUG_DUMP(corrI);
|
|
|
|
array2D<float> &varI = corrI;
|
|
apply(SUBMUL, varI, meanI, meanI, corrI);
|
|
DEBUG_DUMP(varI);
|
|
|
|
array2D<float> &covIp = corrIp;
|
|
apply(SUBMUL, covIp, meanI, meanp, corrIp);
|
|
DEBUG_DUMP(covIp);
|
|
|
|
array2D<float> &a = varI;
|
|
apply(DIVEPSILON, a, covIp, varI);
|
|
DEBUG_DUMP(a);
|
|
|
|
array2D<float> &b = covIp;
|
|
apply(SUBMUL, b, a, meanI, meanp);
|
|
DEBUG_DUMP(b);
|
|
|
|
array2D<float> &meana = a;
|
|
f_mean(meana, a, r1);
|
|
DEBUG_DUMP(meana);
|
|
|
|
array2D<float> &meanb = b;
|
|
f_mean(meanb, b, r1);
|
|
DEBUG_DUMP(meanb);
|
|
|
|
// speedup by heckflosse67
|
|
const int Ws = meana.getWidth();
|
|
const int Hs = meana.getHeight();
|
|
const int Wd = q.getWidth();
|
|
const int Hd = q.getHeight();
|
|
const float col_scale = float(Ws) / float(Wd);
|
|
const float row_scale = float(Hs) / float(Hd);
|
|
|
|
#ifdef _OPENMP
|
|
# pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < Hd; ++y) {
|
|
float ymrs = y * row_scale;
|
|
for (int x = 0; x < Wd; ++x) {
|
|
q[y][x] = getBilinearValue(meana, x * col_scale, ymrs) * I[y][x] + getBilinearValue(meanb, x * col_scale, ymrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void guidedFilterLog(const array2D<float> &guide, float base, array2D<float> &chan, int r, float eps, bool multithread, int subsampling)
|
|
{
|
|
#ifdef _OPENMP
|
|
# pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < chan.getHeight(); ++y) {
|
|
for (int x = 0; x < chan.getWidth(); ++x) {
|
|
chan[y][x] = xlin2log(max(chan[y][x], 0.f), base);
|
|
}
|
|
}
|
|
|
|
guidedFilter(guide, chan, chan, r, eps, multithread, subsampling);
|
|
|
|
#ifdef _OPENMP
|
|
# pragma omp parallel for if (multithread)
|
|
#endif
|
|
for (int y = 0; y < chan.getHeight(); ++y) {
|
|
for (int x = 0; x < chan.getWidth(); ++x) {
|
|
chan[y][x] = xlog2lin(max(chan[y][x], 0.f), base);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void guidedFilterLog(float base, array2D<float> &chan, int r, float eps, bool multithread, int subsampling)
|
|
{
|
|
guidedFilterLog(chan, base, chan, r, eps, multithread, subsampling);
|
|
}
|
|
|
|
} // namespace rtengine
|
|
|
|
|
|
|
|
|