rawTherapee/rtengine/rawimage.cc
Stephen Shkardoon 23f2a2fc9f Use _WIN32 instead of WIN32 to detect Windows
`WIN32` is not defined when building a 64-bit executable on Windows with Clang. `_WIN32` is the more appropriate option here.
http://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system contains a handy table/matrix of the options and why this is best.
2023-08-13 17:09:49 +12:00

1082 lines
36 KiB
C++

/*
* This file is part of RawTherapee.
*
* Created on: 20/nov/2010
*/
#include <strings.h>
#ifdef _WIN32
#include <winsock2.h>
#else
#include <netinet/in.h>
#endif
#include "rawimage.h"
#include "settings.h"
#include "camconst.h"
#include "utils.h"
#include "rtengine.h"
namespace rtengine
{
RawImage::RawImage(const Glib::ustring &name)
: data(nullptr)
, prefilters(0)
, filename(name)
, rotate_deg(0)
, profile_data(nullptr)
, allocation(nullptr)
{
memset(maximum_c4, 0, sizeof(maximum_c4));
RT_matrix_from_constant = ThreeValBool::X;
RT_blacklevel_from_constant = ThreeValBool::X;
RT_whitelevel_from_constant = ThreeValBool::X;
}
RawImage::~RawImage()
{
if (ifp) {
fclose(ifp);
ifp = nullptr;
}
if (image) {
free(image);
}
if (allocation) {
delete [] allocation;
allocation = nullptr;
}
if (float_raw_image) {
delete [] float_raw_image;
float_raw_image = nullptr;
}
if (data) {
delete [] data;
data = nullptr;
}
if (profile_data) {
delete [] profile_data;
profile_data = nullptr;
}
}
eSensorType RawImage::getSensorType() const
{
if (isBayer()) {
return ST_BAYER;
} else if (isXtrans()) {
return ST_FUJI_XTRANS;
} else if (isFoveon()) {
return ST_FOVEON;
}
return ST_NONE;
}
/* Similar to dcraw scale_colors for coeff. calculation, but without actual pixels scaling.
* need pixels in data[][] available
*/
void RawImage::get_colorsCoeff(float *pre_mul_, float *scale_mul_, float *cblack_, bool forceAutoWB)
{
if (!pre_mul_ && !scale_mul_ && !forceAutoWB) {
// only black levels
if (isXtrans()) {
// for xtrans files dcraw stores black levels in cblack[6] .. cblack[41], but all are equal, so we just use cblack[6]
for (int c = 0; c < 4; c++) {
cblack_[c] = (float) this->get_cblack(6);
}
} else if ((this->get_cblack(4) + 1) / 2 == 1 && (this->get_cblack(5) + 1) / 2 == 1) {
for (int c = 0; c < 4; c++) {
cblack_[c] = this->get_cblack(c);
}
for (int c = 0; c < 4; c++) {
cblack_[FC(c / 2, c % 2)] = this->get_cblack(6 + c / 2 % this->get_cblack(4) * this->get_cblack(5) + c % 2 % this->get_cblack(5));
}
} else {
for (int c = 0; c < 4; c++) {
cblack_[c] = (float) this->get_cblack(c);
}
}
return;
}
unsigned sum[8], c;
unsigned W = this->get_width();
unsigned H = this->get_height();
float val;
double dsum[8], dmin, dmax;
if (isXtrans()) {
// for xtrans files dcraw stores black levels in cblack[6] .. cblack[41], but all are equal, so we just use cblack[6]
for (int c = 0; c < 4; c++) {
cblack_[c] = (float) this->get_cblack(6);
pre_mul_[c] = this->get_pre_mul(c);
}
} else if ((this->get_cblack(4) + 1) / 2 == 1 && (this->get_cblack(5) + 1) / 2 == 1) {
for (int c = 0; c < 4; c++) {
cblack_[c] = this->get_cblack(c);
}
for (int c = 0; c < 4; c++) {
cblack_[FC(c / 2, c % 2)] = this->get_cblack(6 + c / 2 % this->get_cblack(4) * this->get_cblack(5) + c % 2 % this->get_cblack(5));
pre_mul_[c] = this->get_pre_mul(c);
}
} else {
for (int c = 0; c < 4; c++) {
cblack_[c] = (float) this->get_cblack(c);
pre_mul_[c] = this->get_pre_mul(c);
}
}
if (this->get_cam_mul(0) == -1 || forceAutoWB) {
if (!data) { // this happens only for thumbnail creation when get_cam_mul(0) == -1
compress_image(0, false);
}
memset(dsum, 0, sizeof dsum);
constexpr float blackThreshold = 8.f;
constexpr float whiteThreshold = 25.f;
if (this->isBayer()) {
// calculate number of pixels per color
dsum[FC(0, 0) + 4] += (int)(((W + 1) / 2) * ((H + 1) / 2));
dsum[FC(0, 1) + 4] += (int)(((W / 2) * ((H + 1) / 2)));
dsum[FC(1, 0) + 4] += (int)(((W + 1) / 2) * (H / 2));
dsum[FC(1, 1) + 4] += (int)((W / 2) * (H / 2));
#ifdef _OPENMP
#pragma omp parallel private(val)
#endif
{
double dsumthr[8];
memset(dsumthr, 0, sizeof dsumthr);
float sum[4];
// make local copies of the black and white values to avoid calculations and conversions
float cblackfloat[4];
float whitefloat[4];
for (int c = 0; c < 4; c++) {
cblackfloat[c] = cblack_[c] + blackThreshold;
whitefloat[c] = this->get_white(c) - whiteThreshold;
}
float *tempdata = data[0];
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (size_t row = 0; row < H; row += 8) {
size_t ymax = row + 8 < H ? row + 8 : H;
for (size_t col = 0; col < W ; col += 8) {
size_t xmax = col + 8 < W ? col + 8 : W;
memset(sum, 0, sizeof sum);
for (size_t y = row; y < ymax; y++)
for (size_t x = col; x < xmax; x++) {
int c = FC(y, x);
val = tempdata[y * W + x];
if (val > whitefloat[c] || val < cblackfloat[c]) { // calculate number of pixels to be subtracted from sum and skip the block
dsumthr[FC(row, col) + 4] += (int)(((xmax - col + 1) / 2) * ((ymax - row + 1) / 2));
dsumthr[FC(row, col + 1) + 4] += (int)(((xmax - col) / 2) * ((ymax - row + 1) / 2));
dsumthr[FC(row + 1, col) + 4] += (int)(((xmax - col + 1) / 2) * ((ymax - row) / 2));
dsumthr[FC(row + 1, col + 1) + 4] += (int)(((xmax - col) / 2) * ((ymax - row) / 2));
goto skip_block2;
}
sum[c] += val;
}
for (int c = 0; c < 4; c++) {
dsumthr[c] += static_cast<double>(sum[c]);
}
skip_block2:
;
}
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
for (int c = 0; c < 4; c++) {
dsum[c] += dsumthr[c];
}
for (int c = 4; c < 8; c++) {
dsum[c] -= dsumthr[c];
}
}
}
for (int c = 0; c < 4; c++) {
dsum[c] -= static_cast<double>(cblack_[c]) * dsum[c + 4];
}
} else if (isXtrans()) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
double dsumthr[8];
memset(dsumthr, 0, sizeof dsumthr);
float sum[8];
// make local copies of the black and white values to avoid calculations and conversions
float cblackfloat[4];
float whitefloat[4];
for (int c = 0; c < 4; c++)
{
cblackfloat[c] = cblack_[c] + blackThreshold;
whitefloat[c] = this->get_white(c) - whiteThreshold;
}
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (size_t row = 0; row < H; row += 8)
for (size_t col = 0; col < W ; col += 8)
{
memset(sum, 0, sizeof sum);
for (size_t y = row; y < row + 8 && y < H; y++)
for (size_t x = col; x < col + 8 && x < W; x++) {
int c = XTRANSFC(y, x);
float val = data[y][x];
if (val > whitefloat[c] || val < cblackfloat[c]) {
goto skip_block3;
}
val -= cblack_[c];
sum[c] += val;
sum[c + 4]++;
}
for (int c = 0; c < 8; c++) {
dsumthr[c] += static_cast<double>(sum[c]);
}
skip_block3:
;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
for (int c = 0; c < 8; c++)
{
dsum[c] += dsumthr[c];
}
}
}
} else if (colors == 1) {
for (int c = 0; c < 4; c++) {
pre_mul_[c] = 1;
}
} else {
for (size_t row = 0; row < H; row += 8)
for (size_t col = 0; col < W ; col += 8) {
memset(sum, 0, sizeof sum);
for (size_t y = row; y < row + 8 && y < H; y++)
for (size_t x = col; x < col + 8 && x < W; x++)
for (int c = 0; c < 3; c++) {
val = data[y][3 * x + c];
if (val > this->get_white(c) - whiteThreshold || val < cblack_[c] + blackThreshold) {
goto skip_block;
}
val -= cblack_[c];
sum[c] += val;
sum[c + 4]++;
}
for (c = 0; c < 8; c++) {
dsum[c] += sum[c];
}
skip_block:
;
}
}
for (int c = 0; c < 4; c++)
if (dsum[c]) {
pre_mul_[c] = dsum[c + 4] / dsum[c];
}
} else {
memset(sum, 0, sizeof sum);
for (size_t row = 0; row < 8; row++)
for (size_t col = 0; col < 8; col++) {
int c = FC(row, col);
if ((val = white[row][col] - cblack_[c]) > 0) {
sum[c] += val;
}
sum[c + 4]++;
}
if (sum[0] && sum[1] && sum[2] && sum[3])
for (int c = 0; c < 4; c++) {
pre_mul_[c] = (float) sum[c + 4] / sum[c];
} else if (this->get_cam_mul(0) && this->get_cam_mul(2)) {
pre_mul_[0] = this->get_cam_mul(0);
pre_mul_[1] = this->get_cam_mul(1);
pre_mul_[2] = this->get_cam_mul(2);
pre_mul_[3] = this->get_cam_mul(3);
} else {
fprintf(stderr, "Cannot use camera white balance.\n");
}
}
if (pre_mul_[3] == 0) {
pre_mul_[3] = this->get_colors() < 4 ? pre_mul_[1] : 1;
} else if (this->get_colors() < 4) {
pre_mul_[3] = pre_mul_[1] = (pre_mul_[3] + pre_mul_[1]) / 2;
}
if (colors == 1) {
// there are monochrome cameras with wrong matrix. We just replace with this one.
rgb_cam[0][0] = 1; rgb_cam[1][0] = 0; rgb_cam[2][0] = 0;
rgb_cam[0][1] = 0; rgb_cam[1][1] = 1; rgb_cam[2][1] = 0;
rgb_cam[0][2] = 0; rgb_cam[1][2] = 0; rgb_cam[2][2] = 1;
for (c = 1; c < 4; c++) {
cblack_[c] = cblack_[0];
}
}
bool multiple_whites = false;
int largest_white = this->get_white(0);
for (c = 1; c < 4; c++) {
if (this->get_white(c) != this->get_white(0)) {
multiple_whites = true;
if (this->get_white(c) > largest_white) {
largest_white = this->get_white(c);
}
}
}
if (multiple_whites) {
// dcraw's pre_mul/cam_mul expects a single white, so if we have provided multiple whites we need
// to adapt scaling to avoid color shifts.
for (c = 0; c < 4; c++) {
// we don't really need to do the largest_white division but do so just to keep pre_mul in similar
// range as before adjustment so they don't look strangely large if someone would print them
pre_mul_[c] *= (float)this->get_white(c) / largest_white;
}
}
for (dmin = DBL_MAX, dmax = c = 0; c < 4; c++) {
dmin = rtengine::min<double>(dmin, pre_mul_[c]);
dmax = rtengine::max<double>(dmax, pre_mul_[c]);
}
for (c = 0; c < 4; c++) {
int sat = this->get_white(c) - cblack_[c];
pre_mul_[c] /= static_cast<float>(dmax);
scale_mul_[c] = pre_mul_[c] * 65535.f / sat;
}
if (settings->verbose) {
float asn[4] = { 1 / cam_mul[0], 1 / cam_mul[1], 1 / cam_mul[2], 1 / cam_mul[3] };
for (dmax = c = 0; c < 4; c++) {
if (cam_mul[c] == 0) {
asn[c] = 0;
}
if (asn[c] > static_cast<float>(dmax)) {
dmax = asn[c];
}
}
for (c = 0; c < 4; c++) {
asn[c] /= static_cast<float>(dmax);
}
printf("cam_mul:[%f %f %f %f], AsShotNeutral:[%f %f %f %f]\n",
static_cast<double>(cam_mul[0]), static_cast<double>(cam_mul[1]),
static_cast<double>(cam_mul[2]), static_cast<double>(cam_mul[3]),
static_cast<double>(asn[0]), static_cast<double>(asn[1]), static_cast<double>(asn[2]), static_cast<double>(asn[3]));
printf("pre_mul:[%f %f %f %f], scale_mul:[%f %f %f %f], cblack:[%f %f %f %f]\n",
static_cast<double>(pre_mul_[0]), static_cast<double>(pre_mul_[1]),
static_cast<double>(pre_mul_[2]), static_cast<double>(pre_mul_[3]),
static_cast<double>(scale_mul_[0]), static_cast<double>(scale_mul_[1]),
static_cast<double>(scale_mul_[2]), static_cast<double>(scale_mul_[3]),
static_cast<double>(cblack_[0]), static_cast<double>(cblack_[1]),
static_cast<double>(cblack_[2]), static_cast<double>(cblack_[3]));
printf("rgb_cam:[ [ %f %f %f], [%f %f %f], [%f %f %f] ]%s\n",
static_cast<double>(rgb_cam[0][0]), static_cast<double>(rgb_cam[1][0]), static_cast<double>(rgb_cam[2][0]),
static_cast<double>(rgb_cam[0][1]), static_cast<double>(rgb_cam[1][1]), static_cast<double>(rgb_cam[2][1]),
static_cast<double>(rgb_cam[0][2]), static_cast<double>(rgb_cam[1][2]), static_cast<double>(rgb_cam[2][2]),
(!this->isBayer()) ? " (not bayer)" : "");
}
}
int RawImage::loadRaw(bool loadData, unsigned int imageNum, bool closeFile, ProgressListener *plistener, double progressRange)
{
ifname = filename.c_str();
image = nullptr;
verbose = settings->verbose;
oprof = nullptr;
if (!ifp) {
ifp = gfopen(ifname); // Maps to either file map or direct fopen
} else {
fseek(ifp, 0, SEEK_SET);
}
if (!ifp) {
return 3;
}
imfile_set_plistener(ifp, plistener, 0.9 * progressRange);
thumb_length = 0;
thumb_offset = 0;
thumb_load_raw = nullptr;
use_camera_wb = 0;
highlight = 1;
half_size = 0;
raw_image = nullptr;
//***************** Read ALL raw file info
// set the number of the frame to extract. If the number is larger then number of existing frames - 1, dcraw will handle that correctly
shot_select = imageNum;
identify();
// in case dcraw didn't handle the above mentioned case...
shot_select = std::min(shot_select, std::max(is_raw, 1u) - 1);
if (!is_raw) {
fclose(ifp);
ifp = nullptr;
if (plistener) {
plistener->setProgress(1.0 * progressRange);
}
return 2;
}
if (!strcmp(make, "Fujifilm") && raw_height * raw_width * 2u != raw_size) {
if (raw_width * raw_height * 7u / 4u == raw_size) {
load_raw = &RawImage::fuji_14bit_load_raw;
} else {
parse_fuji_compressed_header();
}
}
if (flip == 5) {
this->rotate_deg = 270;
} else if (flip == 3) {
this->rotate_deg = 180;
} else if (flip == 6) {
this->rotate_deg = 90;
} else if (flip % 90 == 0 && flip < 360) {
this->rotate_deg = flip;
} else {
this->rotate_deg = 0;
}
if (loadData) {
use_camera_wb = 1;
shrink = 0;
if (settings->verbose) {
printf("Loading %s %s image from %s...\n", make, model, filename.c_str());
}
iheight = height;
iwidth = width;
if (filters || colors == 1) {
raw_image = (ushort *) calloc ((static_cast<unsigned int>(raw_height) + 7u) * static_cast<unsigned int>(raw_width), 2);
merror(raw_image, "main()");
}
// dcraw needs this global variable to hold pixel data
image = (dcrawImage_t)calloc (static_cast<unsigned int>(height) * static_cast<unsigned int>(width) * sizeof * image + meta_length, 1);
if(!image) {
return 200;
}
meta_data = (char *) (image + static_cast<unsigned int>(height) * static_cast<unsigned int>(width));
/* Issue 2467
if (setjmp (failure)) {
if (image) { free (image); image=NULL; }
if (raw_image) { free(raw_image); raw_image=NULL; }
fclose(ifp); ifp=NULL;
return 100;
}
*/
// Load raw pixels data
fseek(ifp, data_offset, SEEK_SET);
(this->*load_raw)();
if (!float_raw_image) { // apply baseline exposure only for float DNGs
RT_baseline_exposure = 0;
}
if (plistener) {
plistener->setProgress(0.9 * progressRange);
}
CameraConstantsStore* ccs = CameraConstantsStore::getInstance();
const CameraConst *cc = ccs->get(make, model);
bool raw_crop_cc = false;
int orig_raw_width = width;
int orig_raw_height = height;
if (raw_image) {
orig_raw_width = raw_width;
orig_raw_height = raw_height;
if (cc && cc->has_rawCrop(raw_width, raw_height)) {
raw_crop_cc = true;
int lm, tm, w, h;
cc->get_rawCrop(raw_width, raw_height, lm, tm, w, h);
if (isXtrans()) {
shiftXtransMatrix(6 - ((top_margin - tm) % 6), 6 - ((left_margin - lm) % 6));
} else {
if (((int)top_margin - tm) & 1) { // we have an odd border difference
filters = (filters << 4) | (filters >> 28); // left rotate filters by 4 bits
}
}
left_margin = lm;
top_margin = tm;
if (w < 0) {
iwidth += w;
iwidth -= left_margin;
width += w;
width -= left_margin;
} else if (w > 0) {
iwidth = width = min((int)width, w);
}
if (h < 0) {
iheight += h;
iheight -= top_margin;
height += h;
height -= top_margin;
} else if (h > 0) {
iheight = height = min((int)height, h);
}
}
if (cc && cc->has_rawMask(orig_raw_width, orig_raw_height, 0)) {
for (int i = 0; i < 2 && cc->has_rawMask(orig_raw_width, orig_raw_height, i); i++) {
cc->get_rawMask(orig_raw_width, orig_raw_height, i, mask[i][0], mask[i][1], mask[i][2], mask[i][3]);
}
}
crop_masked_pixels();
free(raw_image);
raw_image = nullptr;
} else {
if (get_maker() == "Sigma" && cc && cc->has_rawCrop(width, height)) { // foveon images
raw_crop_cc = true;
int lm, tm, w, h;
cc->get_rawCrop(width, height, lm, tm, w, h);
left_margin = lm;
top_margin = tm;
if (w < 0) {
width += w;
width -= left_margin;
} else if (w > 0) {
width = min((int)width, w);
}
if (h < 0) {
height += h;
height -= top_margin;
} else if (h > 0) {
height = min((int)height, h);
}
}
}
// Load embedded profile
if (profile_length) {
profile_data = new char[profile_length];
fseek(ifp, profile_offset, SEEK_SET);
fread(profile_data, 1, profile_length, ifp);
}
/*
Setting the black level, there are three sources:
dcraw single value 'black' or multi-value 'cblack', can be calculated or come
from a hard-coded table or come from a stored value in the raw file, and
finally there's 'black_c4' which are table values provided by RT camera constants.
Any of these may or may not be set.
We reduce these sources to one four channel black level, and do this by picking
the highest found.
*/
int black_c4[4] = { -1, -1, -1, -1 };
bool white_from_cc = false;
bool black_from_cc = false;
if (cc) {
for (int i = 0; i < 4; i++) {
if (RT_blacklevel_from_constant == ThreeValBool::T) {
int blackFromCc = cc->get_BlackLevel(i, iso_speed);
// if black level from camconst > 0xffff it is an absolute value.
black_c4[i] = blackFromCc > 0xffff ? (blackFromCc & 0xffff) : blackFromCc + cblack[i];
}
// load 4 channel white level here, will be used if available
if (RT_whitelevel_from_constant == ThreeValBool::T) {
maximum_c4[i] = cc->get_WhiteLevel(i, iso_speed, aperture);
if (tiff_bps > 0 && maximum_c4[i] > 0 && !isFoveon()) {
unsigned compare = ((uint64_t)1 << tiff_bps) - 1; // use uint64_t to avoid overflow if tiff_bps == 32
while (static_cast<uint64_t>(maximum_c4[i]) > compare) {
maximum_c4[i] >>= 1;
}
}
}
}
}
if (black_c4[0] == -1) {
if (isXtrans())
for (int c = 0; c < 4; c++) {
black_c4[c] = cblack[6];
} else
// RT constants not set, bring in the DCRAW single channel black constant
for (int c = 0; c < 4; c++) {
black_c4[c] = black + cblack[c];
}
} else {
black_from_cc = true;
}
if (maximum_c4[0] > 0) {
white_from_cc = true;
}
for (int c = 0; c < 4; c++) {
if (static_cast<int>(cblack[c]) < black_c4[c]) {
cblack[c] = black_c4[c];
}
}
if (settings->verbose) {
if (cc) {
printf("constants exists for \"%s %s\" in camconst.json\n", make, model);
} else {
printf("no constants in camconst.json exists for \"%s %s\" (relying only on dcraw defaults)\n", make, model);
}
printf("raw dimensions: %d x %d\n", orig_raw_width, orig_raw_height);
printf("black levels: R:%d G1:%d B:%d G2:%d (%s)\n", get_cblack(0), get_cblack(1), get_cblack(2), get_cblack(3),
black_from_cc ? "provided by camconst.json" : "provided by dcraw");
printf("white levels: R:%d G1:%d B:%d G2:%d (%s)\n", get_white(0), get_white(1), get_white(2), get_white(3),
white_from_cc ? "provided by camconst.json" : "provided by dcraw");
printf("raw crop: %d %d %d %d (provided by %s)\n", left_margin, top_margin, iwidth, iheight, raw_crop_cc ? "camconst.json" : "dcraw");
printf("color matrix provided by %s\n", (cc && cc->has_dcrawMatrix()) ? "camconst.json" : "dcraw");
}
}
if (closeFile) {
fclose(ifp);
ifp = nullptr;
}
if (plistener) {
plistener->setProgress(1.0 * progressRange);
}
return 0;
}
float** RawImage::compress_image(unsigned int frameNum, bool freeImage)
{
if (!image) {
return nullptr;
}
if (isBayer() || isXtrans()) {
if (!allocation) {
// shift the beginning of all frames but the first by 32 floats to avoid cache miss conflicts on CPUs which have <= 4-way associative L1-Cache
allocation = new float[static_cast<unsigned int>(height) * static_cast<unsigned int>(width) + frameNum * 32u];
data = new float*[height];
for (int i = 0; i < height; i++) {
data[i] = allocation + i * width + frameNum * 32;
}
}
} else if (colors == 1) {
// Monochrome
if (!allocation) {
allocation = new float[static_cast<unsigned long>(height) * static_cast<unsigned long>(width)];
data = new float*[height];
for (int i = 0; i < height; i++) {
data[i] = allocation + i * width;
}
}
} else {
if (!allocation) {
allocation = new float[3UL * static_cast<unsigned long>(height) * static_cast<unsigned long>(width)];
data = new float*[height];
for (int i = 0; i < height; i++) {
data[i] = allocation + 3 * i * width;
}
}
}
// copy pixel raw data: the compressed format earns space
if (float_raw_image) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
this->data[row][col] = float_raw_image[(row + top_margin) * raw_width + col + left_margin];
}
delete [] float_raw_image;
float_raw_image = nullptr;
} else if (filters != 0 && !isXtrans()) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
this->data[row][col] = image[row * width + col][FC(row, col)];
}
} else if (isXtrans()) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
this->data[row][col] = image[row * width + col][XTRANSFC(row, col)];
}
} else if (colors == 1) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
this->data[row][col] = image[row * width + col][0];
}
} else {
if((get_maker() == "Sigma" || get_maker() == "Pentax" || get_maker() == "Sony") && dng_version) { // Hack to prevent sigma dng files and dng files from PixelShift2DNG from crashing
height -= top_margin;
width -= left_margin;
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
this->data[row][3 * col + 0] = image[(row + top_margin) * iwidth + col + left_margin][0];
this->data[row][3 * col + 1] = image[(row + top_margin) * iwidth + col + left_margin][1];
this->data[row][3 * col + 2] = image[(row + top_margin) * iwidth + col + left_margin][2];
}
}
if (freeImage) {
free(image); // we don't need this anymore
image = nullptr;
}
return data;
}
bool
RawImage::is_supportedThumb() const
{
return ((thumb_width * thumb_height) > 0 &&
(write_thumb == &rtengine::RawImage::jpeg_thumb ||
write_thumb == &rtengine::RawImage::ppm_thumb) &&
!thumb_load_raw);
}
bool
RawImage::is_jpegThumb() const
{
return ((thumb_width * thumb_height) > 0 &&
write_thumb == &rtengine::RawImage::jpeg_thumb &&
!thumb_load_raw);
}
bool
RawImage::is_ppmThumb() const
{
return ((thumb_width * thumb_height) > 0 &&
write_thumb == &rtengine::RawImage::ppm_thumb &&
!thumb_load_raw);
}
void RawImage::getXtransMatrix(int XtransMatrix[6][6])
{
for (int row = 0; row < 6; row++)
for (int col = 0; col < 6; col++) {
XtransMatrix[row][col] = xtrans[row][col];
}
}
void RawImage::getRgbCam(float rgbcam[3][4])
{
for (int row = 0; row < 3; row++)
for (int col = 0; col < 4; col++) {
rgbcam[row][col] = rgb_cam[row][col];
}
}
bool
RawImage::get_thumbSwap() const
{
return (order == 0x4949) == (ntohs(0x1234) == 0x1234);
}
} //namespace rtengine
bool
DCraw::dcraw_coeff_overrides(const char make[], const char model[], const int iso_speed, short trans[12], int *black_level, int *white_level)
{
static const int dcraw_arw2_scaling_bugfix_shift = 2;
static const struct {
const char *prefix;
int black_level, white_level; // set to -1 for no change
short trans[12]; // set first value to 0 for no change
} table[] = {
{
"Canon EOS 5D", -1, 0xe6c, /* RT */
{ 6319, -793, -614, -5809, 13342, 2738, -1132, 1559, 7971 }
},
{
"Canon EOS 20D", -1, 0xfff, /* RT */
{ 7590, -1646, -673, -4697, 12411, 2568, -627, 1118, 7295 }
},
{
"Canon EOS 450D", -1, 0x390d, /* RT */
{ 6246, -1272, -523, -5075, 12357, 3075, -1035, 1825, 7333 }
},
{
"Canon EOS-1D Mark III", 0, 0x3bb0, /* RT */
{ 7406, -1592, -646, -4856, 12457, 2698, -432, 726, 7921 }
},
{
"Canon PowerShot G10", -1, -1, /* RT */
{ 12535, -5030, -796, -2711, 10134, 3006, -413, 1605, 5264 }
},
{
"Fujifilm X100", -1, -1, /* RT - Colin Walker */
{ 10841, -3288, -807, -4652, 12552, 2344, -642, 1355, 7206 }
},
{
"Nikon D200", -1, 0xfbc, /* RT */
{ 8498, -2633, -295, -5423, 12869, 2860, -777, 1077, 8124 }
},
{
"Nikon D3000", -1, -1, /* RT */
{ 9211, -2521, -104, -6487, 14280, 2394, -754, 1122, 8033 }
},
{
"Nikon D3100", -1, -1, /* RT */
{ 7729, -2212, -481, -5709, 13148, 2858, -1295, 1908, 8936 }
},
{
"Nikon D5200", -1, -1, // color matrix copied from D5200 DNG D65 matrix
{ 8322, -3112, -1047, -6367, 14342, 2179, -988, 1638, 6394 }
},
{
"Nikon D7100", -1, -1, // color matrix and WP copied from D7100 DNG D65 matrix
{ 8322, -3112, -1047, -6367, 14342, 2179, -988, 1638, 6394 }
},
{
"Olympus E-30", -1, 0xfbc, /* RT - Colin Walker */
{ 8510, -2355, -693, -4819, 12520, 2578, -1029, 2067, 7752 }
},
{
"Olympus E-5", -1, 0xeec, /* RT - Colin Walker */
{ 9732, -2629, -999, -4899, 12931, 2173, -1243, 2353, 7457 }
},
{
"Olympus E-P1", -1, 0xffd, /* RT - Colin Walker */
{ 8834, -2344, -804, -4691, 12503, 2448, -978, 1919, 7603 }
},
{
"Olympus E-P2", -1, 0xffd, /* RT - Colin Walker */
{ 7758, -1619, -800, -5002, 12886, 2349, -985, 1964, 8305 }
},
{
"Olympus E-P3", -1, -1, /* RT - Colin Walker */
{ 7041, -1794, -336, -3790, 11192, 2984, -1364, 2625, 6217 }
},
{
"Olympus E-PL1s", -1, -1, /* RT - Colin Walker */
{ 9010, -2271, -838, -4792, 12753, 2263, -1059, 2058, 7589 }
},
{
"Olympus E-PL1", -1, -1, /* RT - Colin Walker */
{ 9010, -2271, -838, -4792, 12753, 2263, -1059, 2058, 7589 }
},
{
"Olympus E-PL2", -1, -1, /* RT - Colin Walker */
{ 11975, -3351, -1184, -4500, 12639, 2061, -1230, 2353, 7009 }
},
{
"Olympus E-PL3", -1, -1, /* RT - Colin Walker */
{ 7041, -1794, -336, -3790, 11192, 2984, -1364, 2625, 6217 }
},
{
"Olympus XZ-1", -1, -1, /* RT - Colin Walker */
{ 8665, -2247, -762, -2424, 10372, 2382, -1011, 2286, 5189 }
},
{
"Pentax K200D", -1, -1, /* RT */
{ 10962, -4428, -542, -5486, 13023, 2748, -569, 842, 8390 }
},
{
"Leica Camera AG M9 Digital Camera", -1, -1, /* RT */
{ 7181, -1706, -55, -3557, 11409, 2450, -621, 2072, 7533 }
},
{
"SONY NEX-3", 128 << dcraw_arw2_scaling_bugfix_shift, -1, /* RT - Colin Walker */
{ 5145, -741, -123, -4915, 12310, 2945, -794, 1489, 6906 }
},
{
"SONY NEX-5", 128 << dcraw_arw2_scaling_bugfix_shift, -1, /* RT - Colin Walker */
{ 5154, -716, -115, -5065, 12506, 2882, -988, 1715, 6800 }
},
{
"Sony NEX-5N", 128 << dcraw_arw2_scaling_bugfix_shift, -1, /* RT - Colin Walker */
{ 5130, -1055, -269, -4473, 11797, 3050, -701, 1310, 7121 }
},
{
"Sony NEX-5R", 128 << dcraw_arw2_scaling_bugfix_shift, -1,
{ 6129, -1545, -418, -4930, 12490, 2743, -977, 1693, 6615 }
},
{
"SONY NEX-C3", 128 << dcraw_arw2_scaling_bugfix_shift, -1, /* RT - Colin Walker */
{ 5130, -1055, -269, -4473, 11797, 3050, -701, 1310, 7121 }
},
{
"Sony SLT-A77", 128 << dcraw_arw2_scaling_bugfix_shift, -1, /* RT - Colin Walker */
{ 5126, -830, -261, -4788, 12196, 2934, -948, 1602, 7068 }
},
};
*black_level = -1;
*white_level = -1;
const bool is_pentax_dng = dng_version && !strncmp(RT_software.c_str(), "PENTAX", 6);
if (RT_blacklevel_from_constant == ThreeValBool::F && !is_pentax_dng) {
*black_level = black;
}
if (RT_whitelevel_from_constant == ThreeValBool::F && !is_pentax_dng) {
*white_level = maximum;
}
memset(trans, 0, sizeof(*trans) * 12);
// // indicate that DCRAW wants these from constants (rather than having loaded these from RAW file
// // note: this is simplified so far, in some cases dcraw calls this when it has say the black level
// // from file, but then we will not provide any black level in the tables. This case is mainly just
// // to avoid loading table values if we have loaded a DNG conversion of a raw file (which already
// // have constants stored in the file).
// if (RT_whitelevel_from_constant == ThreeValBool::X || is_pentax_dng) {
// RT_whitelevel_from_constant = ThreeValBool::T;
// }
// if (RT_blacklevel_from_constant == ThreeValBool::X || is_pentax_dng) {
// RT_blacklevel_from_constant = ThreeValBool::T;
// }
// if (RT_matrix_from_constant == ThreeValBool::X) {
// RT_matrix_from_constant = ThreeValBool::T;
// }
{
// test if we have any information in the camera constants store, if so we take that.
rtengine::CameraConstantsStore* ccs = rtengine::CameraConstantsStore::getInstance();
const rtengine::CameraConst *cc = ccs->get(make, model);
if (cc) {
if (RT_blacklevel_from_constant == ThreeValBool::T) {
*black_level = cc->get_BlackLevel(0, iso_speed);
}
if (RT_whitelevel_from_constant == ThreeValBool::T) {
*white_level = cc->get_WhiteLevel(0, iso_speed, aperture);
}
if (RT_matrix_from_constant == ThreeValBool::T && cc->has_dcrawMatrix()) {
const short *mx = cc->get_dcrawMatrix();
for (int j = 0; j < 12; j++) {
trans[j] = mx[j];
}
}
return true;
}
}
const std::size_t name_size = strlen(make) + strlen(model) + 32;
char name[name_size];
snprintf(name, name_size, "%s %s", make, model);
for (size_t i = 0; i < sizeof table / sizeof(table[0]); i++) {
if (strcasecmp(name, table[i].prefix) == 0) {
if (RT_blacklevel_from_constant == ThreeValBool::T) {
*black_level = table[i].black_level;
}
if (RT_whitelevel_from_constant == ThreeValBool::T) {
*white_level = table[i].white_level;
}
for (int j = 0; j < 12; j++) {
trans[j] = table[i].trans[j];
}
return true;
}
}
return false;
}