Files
rawTherapee/rtengine/cplx_wavelet_dec.h

370 lines
14 KiB
C++

/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* 2010 Ilya Popov <ilia_popov@rambler.ru>
* 2012 Emil Martinec <ejmartin@uchicago.edu>
*/
#ifndef CPLX_WAVELET_DEC_H_INCLUDED
#define CPLX_WAVELET_DEC_H_INCLUDED
#include <cstddef>
#include <math.h>
#include "cplx_wavelet_level.h"
#include "cplx_wavelet_filter_coeffs.h"
namespace rtengine {
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
template <typename A, typename B>
void copy_out(A ** a, B * b, size_t datalen)
{
for (size_t j=0; j<datalen; j++) {
b[j] = static_cast<B> (0.25f*(a[0][j]+a[1][j]+a[2][j]+a[3][j]));
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
class cplx_wavelet_decomposition
{
public:
typedef float internal_type;
private:
static const int maxlevels = 8;//should be greater than any conceivable order of decimation
int lvltot;
size_t m_w, m_h;//dimensions
size_t m_w1, m_h1;
int first_lev_len, first_lev_offset;
//multi_array2D<float,2> first_lev_anal;
//multi_array2D<float,2> first_lev_synth;
float *first_lev_anal;
float *first_lev_synth;
int wavfilt_len, wavfilt_offset;
//multi_array2D<float,2> wavfilt_anal;
//multi_array2D<float,2> wavfilt_synth;
float *wavfilt_anal;
float *wavfilt_synth;
cplx_wavelet_level<internal_type> * dual_tree_coeffs[maxlevels][4];//m_c in old code
public:
template<typename E>
cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl);
~cplx_wavelet_decomposition();
template<typename E>
void reconstruct(E * dst);
};
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*template<typename E>
cplx_wavelet_decomposition::cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl)
: lvltot(0), m_w(w), m_h(h), m_w1(0), m_h1(0)
{
m_w1 = w;
m_h1 = h;
m_c[0] = new cplx_wavelet_level<internal_type>(src, m_w1, m_h1, FSFarras);
lvltot = 1;
while(lvltot < maxlevels)
{
m_c[level] = new cplx_wavelet_level<internal_type>(m_c[lvltot-1]->data[0], m_c[lvltot-1]->width(),
m_c[lvltot-1]->height(), Kingsbury);
lvltot ++;
}
}*/
/*template<typename E, typename L>
void cplx_wavelet_decomposition::reconstruct(E * dst)
{
noop<internal_type> n;
for(int level = lvltot - 1; level > 0; level--)
{
int alpha = 1024 + 10 * c[level];
m_c[level]->reconstruct(m_c[level-1]->lowfreq(), alpha, n);
}
int alpha = 1024 + 10 * c[0];
m_c[0]->reconstruct(dst, alpha, l);
}*/
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
template<typename E>
cplx_wavelet_decomposition::cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl)
: lvltot(0), m_w(width), m_h(height), m_w1(0), m_h1(0)
{
m_w1 = width;
m_h1 = height;
//initialize wavelet filters
first_lev_len = FSFarras_len;
first_lev_offset = FSFarras_offset;
//multi_array2D<float,2> first_lev_anal(2,first_lev_len);
//multi_array2D<float,2> first_lev_synth(2,first_lev_len);
float *first_level_anal = new float[4*first_lev_len];
float *first_level_synth = new float[4*first_lev_len];
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int i=0; i<first_lev_len; i++) {
//first_lev_anal[n][m][i] = FSFarras_anal[n][m][i];
//first_lev_synth[n][m][i] = FSFarras_anal[n][m][first_lev_len-1-i];
first_lev_anal[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][i];
first_lev_synth[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][first_lev_len-1-i];
}
}
}
wavfilt_len = Kingsbury_len;
wavfilt_offset = Kingsbury_offset;
//multi_array2D<float,2> wavfilt_anal(2,Kingsbury_len);
//multi_array2D<float,2> wavfilt_synth(2,Kingsbury_len);
float *wavfilt_anal = new float[4*wavfilt_len];
float *wavfilt_synth = new float[4*wavfilt_len];
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int i=0; i<wavfilt_len; i++) {
//wavfilt_anal[n][m][i] = Kingsbury_anal[n][m][i];
//wavfilt_synth[n][m][i] = Kingsbury_anal[n][m][wavfilt_len-1-i];
wavfilt_anal[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][i];
wavfilt_synth[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][first_lev_len-1-i];
}
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Initialize wavelet coeffs
/*CplxWavelet AntonB = {
12,//length of filter
6,//offset
{//analysis filter
{{0, -0.08838834764832, 0.08838834764832, 0.69587998903400, 0.69587998903400,
0.08838834764832, -0.08838834764832, 0.01122679215254, 0.01122679215254, 0},
{0, 0, 0, 0.04563588155712, -0.02877176311425, -0.29563588155712 ,
0.55754352622850, -0.29563588155713, -0.02877176311425, 0.04563588155712, 0, 0}},
{{0 , 0 , 0.02674875741081, -0.01686411844287, -0.07822326652899, 0.26686411844288,
0.60294901823636, 0.26686411844287, -0.07822326652899, -0.01686411844287, 0.02674875741081, 0},
{0 , 0 , 0, 0 , 0.04563588155712, -0.02877176311425,
-0.29563588155712 , 0.55754352622850, -0.29563588155713, -0.02877176311425, 0.04563588155712 , 0}} },
{//synthesis filter
{{0 , 0 , 0, -0.04563588155712, -0.02877176311425, 0.29563588155712,
0.55754352622850, 0.29563588155713, -0.02877176311425, -0.04563588155712, 0, 0},
{0, 0.02674875741081, 0.01686411844287, -0.07822326652899, -0.26686411844288 , 0.60294901823636,
-0.26686411844287, -0.07822326652899, 0.01686411844287, 0.02674875741081, 0, 0}},
{{0 , 0, -0.04563588155712, -0.02877176311425, 0.29563588155712 , 0.55754352622850 ,
0.29563588155713, -0.02877176311425, -0.04563588155712, 0, 0 , 0},
{0.02674875741081 , 0.01686411844287, -0.07822326652899, -0.26686411844288 , 0.60294901823636, -0.26686411844287,
-0.07822326652899, 0.01686411844287 , 0.02674875741081 , 0 , 0, 0}} }
};*/
/*for (int i=0; i<4; i++)
for (int n=0; n<12; n++) {
AntonB.synth[i][n] *= 2;
}*/
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Initialize wavelet coeffs
//CplxWavelet FSFarras = {
/*int FSFarras_len = 10;//length of filter
int FSFarras_offset = 5;//offset
float FSFarras_anal[2][2][10] = {//analysis filter
{{0, -0.08838834764832, 0.08838834764832, 0.69587998903400, 0.69587998903400, 0.08838834764832, -0.08838834764832, 0.01122679215254 , 0.01122679215254, 0},
{ 0, -0.01122679215254, 0.01122679215254, 0.08838834764832, 0.08838834764832, -0.69587998903400, 0.69587998903400, -0.08838834764832, -0.08838834764832, 0}},
{{0.01122679215254, 0.01122679215254, -0.08838834764832, 0.08838834764832, 0.69587998903400, 0.69587998903400, 0.08838834764832, -0.08838834764832, 0, 0},
{0, 0, -0.08838834764832, -0.08838834764832, 0.69587998903400, -0.69587998903400, 0.08838834764832, 0.08838834764832, 0.01122679215254, -0.01122679215254}} };
float FSFarras_synth[2][2][10];*/
//};
/*for (int i=0; i<4; i++)
for (int n=0; n<10; n++) {
FSFarras_synth[i][n] = FSFarras_anal[i][9-n];
}*/
//sf = Reverse[af, 3];
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Initialize wavelet coeffs
/*
% Kingsbury Q-filters for the dual-tree complex DWT
%
% af{i},i=1,2-analysis filters for tree i
% sf{i},i=1,2-synthesis filters for tree i
% note:af{2} is the reverse of af{1}
% ordering is {af[1],af[2],sf[1],sf[2]}
% REFERENCE:% N.G.Kingsbury,"A dual-tree complex wavelet
% transform with improved orthogonality and symmetry
% properties",Proceedings of the IEEE Int.Conf.on
% Image Proc.(ICIP),2000 */
//CplxWavelet Kingsbury {
/*int Kingsbury_len = 10;//length of filter
int Kingsbury_offset = 5;//offset
float Kingsbury_anal[2][2][10] = {//analysis filter
{{0.03516384000000, 0, -0.08832942000000, 0.23389032000000, 0.76027237000000, 0.58751830000000, 0, -0.11430184000000 , 0, 0},
{ 0, 0, -0.11430184000000, 0, 0.58751830000000, -0.76027237000000, 0.23389032000000, 0.08832942000000, 0, -0.03516384000000}},
{{0, 0, -0.11430184000000, 0, 0.58751830000000, 0.76027237000000, 0.23389032000000, -0.08832942000000, 0, 0.03516384000000},
{-0.03516384000000, 0, 0.08832942000000, 0.23389032000000, -0.76027237000000, 0.58751830000000, 0, -0.11430184000000, 0, 0}} };
float Kingsbury_synth[2][2][10];*/
//};
/*for (int i=0; i<4; i++)
for (int n=0; n<10; n++) {
Kingsbury_synth[i][n] = Kingsbury_anal[i][9-n];
}*/
//sf = Reverse[af, 3];
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// data structure is dual_tree_coeffs[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
//dual_tree_coeffs[0][2*n+m] = new cplx_wavelet_level<internal_type>(src, first_lev_anal[n], first_lev_anal[m], first_lev_len, first_lev_offset);
dual_tree_coeffs[0][2*n+m] = new cplx_wavelet_level<internal_type>(src, m_w, m_h, first_lev_anal+first_lev_len*2*n, \
first_lev_anal+first_lev_len*2*m, first_lev_len, first_lev_offset);
lvltot=1;
while(lvltot < maxlevels) {
//dual_tree_coeffs[lvltot][2*n+m] = new cplx_wavelet_level<internal_type>(dual_tree_coeffs[lvltot-1][2*n+m]->lopass()/*lopass*/, \
wavfilt_anal[n], wavfilt_anal[m], wavfilt_len, wavfilt_offset);
dual_tree_coeffs[lvltot][2*n+m] = new cplx_wavelet_level<internal_type>(dual_tree_coeffs[lvltot-1][2*n+m]->lopass()/*lopass*/, \
dual_tree_coeffs[lvltot-1][2*n+m]->width(), \
dual_tree_coeffs[lvltot-1][2*n+m]->height(), \
wavfilt_anal+wavfilt_len*2*n, wavfilt_anal+wavfilt_len*2*m, wavfilt_len, wavfilt_offset);
lvltot++;
}
}
}
//rotate detail coefficients
float root2 = sqrt(2);
for (int lvl=0; lvl<lvltot; lvl++) {
int Wlvl = dual_tree_coeffs[lvl][0]->width();
int Hlvl = dual_tree_coeffs[lvl][0]->height();
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
for (int m=1; m<4; m++) {//detail coefficients only
float wavtmp = (dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] + dual_tree_coeffs[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][3]->wavcoeffs[m][i] = (dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] - dual_tree_coeffs[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] = wavtmp;
wavtmp = (dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] + dual_tree_coeffs[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][2]->wavcoeffs[m][i] = (dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] - dual_tree_coeffs[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] = wavtmp;
}
}
}
}
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* function y=reconstruct(w,J,Fsf,sf) */
template<typename E>
void cplx_wavelet_decomposition::reconstruct(E * dst) {
// data structure is wavcoeffs[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
//rotate detail coefficients
float root2 = sqrt(2);
for (int lvl=0; lvl<lvltot; lvl++) {
int Wlvl = dual_tree_coeffs[lvl][0]->width();
int Hlvl = dual_tree_coeffs[lvl][0]->height();
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
for (int m=1; m<4; m++) {//detail coefficients only
float wavtmp = (dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] + dual_tree_coeffs[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][3]->wavcoeffs[m][i] = (dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] - dual_tree_coeffs[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][0]->wavcoeffs[m][i] = wavtmp;
wavtmp = (dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] + dual_tree_coeffs[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][2]->wavcoeffs[m][i] = (dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] - dual_tree_coeffs[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree_coeffs[lvl][1]->wavcoeffs[m][i] = wavtmp;
}
}
}
//y = ConstantArray[0, {vsizetmp, hsizetmp}];
array2D<internal_type> tmp(4,m_w*m_h);
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int lvl=lvltot-1; lvl>0; lvl--) {
//m_c[level]->reconstruct(m_c[level-1]->lowfreq(), alpha, n);
//dual_tree_coeffs[lvl][2*n+m]->reconstruct_level(dual_tree_coeffs[lvl-1][2*n+m]->wavcoeffs[0], wavfilt_synth[n], wavfilt_synth[m], wavfilt_len, wavfilt_offset);
dual_tree_coeffs[lvl][2*n+m]->reconstruct_level(dual_tree_coeffs[lvl-1][2*n+m]->wavcoeffs[0], wavfilt_synth+wavfilt_len*2*n, \
wavfilt_synth+wavfilt_len*2*m, wavfilt_len, wavfilt_offset);
}
//dual_tree_coeffs[0][2*n+m]->reconstruct_level(tmp[2*n+m], first_lev_synth[n], first_lev_synth[m], first_lev_len, first_lev_offset);
dual_tree_coeffs[0][2*n+m]->reconstruct_level(tmp[2*n+m], first_lev_synth+wavfilt_len*2*n, first_lev_synth+wavfilt_len*2*m, first_lev_len, first_lev_offset);
}
}
copy_out(tmp,dst,m_w*m_h);
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
};
#endif