355 lines
23 KiB
C++
355 lines
23 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2017-2020 Luis Sanz Rodriguez (luis.sanz.rodriguez(at)gmail(dot)com) and Ingo Weyrich (heckflosse67@gmx.de)
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <cmath>
|
|
|
|
#include "rawimagesource.h"
|
|
#include "rt_math.h"
|
|
#include "../rtgui/multilangmgr.h"
|
|
#include "opthelper.h"
|
|
#include "StopWatch.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace
|
|
{
|
|
unsigned fc(const unsigned int cfa[2][2], int r, int c) {
|
|
return cfa[r & 1][c & 1];
|
|
}
|
|
}
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
/**
|
|
* RATIO CORRECTED DEMOSAICING
|
|
* Luis Sanz Rodriguez (luis.sanz.rodriguez(at)gmail(dot)com)
|
|
*
|
|
* Release 2.3 @ 171125
|
|
*
|
|
* Original code from https://github.com/LuisSR/RCD-Demosaicing
|
|
* Licensed under the GNU GPL version 3
|
|
*/
|
|
// Tiled version by Ingo Weyrich (heckflosse67@gmx.de)
|
|
void RawImageSource::rcd_demosaic(size_t chunkSize, bool measure)
|
|
{
|
|
// Test for RGB cfa
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
if (FC(i, j) == 3) {
|
|
// avoid crash
|
|
std::cout << "rcd_demosaic supports only RGB Colour filter arrays. Falling back to igv_interpolate" << std::endl;
|
|
igv_interpolate(W, H);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<StopWatch> stop;
|
|
|
|
if (measure) {
|
|
std::cout << "Demosaicing " << W << "x" << H << " image using rcd with " << chunkSize << " tiles per thread" << std::endl;
|
|
stop.reset(new StopWatch("rcd demosaic"));
|
|
}
|
|
|
|
double progress = 0.0;
|
|
|
|
if (plistener) {
|
|
plistener->setProgressStr(Glib::ustring::compose(M("TP_RAW_DMETHOD_PROGRESSBAR"), M("TP_RAW_RCD")));
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
const unsigned int cfarray[2][2] = {{FC(0,0), FC(0,1)}, {FC(1,0), FC(1,1)}};
|
|
constexpr int rcdBorder = 9;
|
|
constexpr int tileSize = 214;
|
|
constexpr int tileSizeN = tileSize - 2 * rcdBorder;
|
|
const int numTh = H / (tileSizeN) + ((H % (tileSizeN)) ? 1 : 0);
|
|
const int numTw = W / (tileSizeN) + ((W % (tileSizeN)) ? 1 : 0);
|
|
constexpr int w1 = tileSize, w2 = 2 * tileSize, w3 = 3 * tileSize, w4 = 4 * tileSize;
|
|
//Tolerance to avoid dividing by zero
|
|
constexpr float eps = 1e-5f;
|
|
constexpr float epssq = 1e-10f;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
int progresscounter = 0;
|
|
float *cfa = (float*) calloc(tileSize * tileSize, sizeof *cfa);
|
|
float (*rgb)[tileSize * tileSize] = (float (*)[tileSize * tileSize])malloc(3 * sizeof *rgb);
|
|
float *VH_Dir = (float*) calloc(tileSize * tileSize, sizeof *VH_Dir);
|
|
float *PQ_Dir = (float*) calloc(tileSize * tileSize, sizeof *PQ_Dir);
|
|
float *lpf = PQ_Dir; // reuse buffer, they don't overlap in usage
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic, chunkSize) collapse(2) nowait
|
|
#endif
|
|
for (int tr = 0; tr < numTh; ++tr) {
|
|
for (int tc = 0; tc < numTw; ++tc) {
|
|
const int rowStart = tr * tileSizeN;
|
|
const int rowEnd = std::min(rowStart + tileSize, H);
|
|
if (rowStart + rcdBorder == rowEnd - rcdBorder) {
|
|
continue;
|
|
}
|
|
const int colStart = tc * tileSizeN;
|
|
const int colEnd = std::min(colStart + tileSize, W);
|
|
if (colStart + rcdBorder == colEnd - rcdBorder) {
|
|
continue;
|
|
}
|
|
|
|
const int tileRows = std::min(rowEnd - rowStart, tileSize);
|
|
const int tilecols = std::min(colEnd - colStart, tileSize);
|
|
|
|
for (int row = rowStart; row < rowEnd; row++) {
|
|
int indx = (row - rowStart) * tileSize;
|
|
int c0 = fc(cfarray, row, colStart);
|
|
int c1 = fc(cfarray, row, colStart + 1);
|
|
int col = colStart;
|
|
|
|
for (; col < colEnd - 1; col+=2, indx+=2) {
|
|
cfa[indx] = rgb[c0][indx] = LIM01(rawData[row][col] / 65535.f);
|
|
cfa[indx + 1] = rgb[c1][indx + 1] = LIM01(rawData[row][col + 1] / 65535.f);
|
|
}
|
|
if (col < colEnd) {
|
|
cfa[indx] = rgb[c0][indx] = LIM01(rawData[row][col] / 65535.f);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STEP 1: Find cardinal and diagonal interpolation directions
|
|
*/
|
|
|
|
for (int row = 4; row < tileRows - 4; row++) {
|
|
for (int col = 4, indx = row * tileSize + col; col < tilecols - 4; col++, indx++) {
|
|
const float cfai = cfa[indx];
|
|
//Calculate h/v local discrimination
|
|
float V_Stat = max(epssq, -18.f * cfai * (cfa[indx - w1] + cfa[indx + w1] + 2.f * (cfa[indx - w2] + cfa[indx + w2]) - cfa[indx - w3] - cfa[indx + w3]) - 2.f * cfai * (cfa[indx - w4] + cfa[indx + w4] - 19.f * cfai) - cfa[indx - w1] * (70.f * cfa[indx + w1] + 12.f * cfa[indx - w2] - 24.f * cfa[indx + w2] + 38.f * cfa[indx - w3] - 16.f * cfa[indx + w3] - 12.f * cfa[indx - w4] + 6.f * cfa[indx + w4] - 46.f * cfa[indx - w1]) + cfa[indx + w1] * (24.f * cfa[indx - w2] - 12.f * cfa[indx + w2] + 16.f * cfa[indx - w3] - 38.f * cfa[indx + w3] - 6.f * cfa[indx - w4] + 12.f * cfa[indx + w4] + 46.f * cfa[indx + w1]) + cfa[indx - w2] * (14.f * cfa[indx + w2] - 12.f * cfa[indx + w3] - 2.f * cfa[indx - w4] + 2.f * cfa[indx + w4] + 11.f * cfa[indx - w2]) + cfa[indx + w2] * (-12.f * cfa[indx - w3] + 2.f * (cfa[indx - w4] - cfa[indx + w4]) + 11.f * cfa[indx + w2]) + cfa[indx - w3] * (2.f * cfa[indx + w3] - 6.f * cfa[indx - w4] + 10.f * cfa[indx - w3]) + cfa[indx + w3] * (-6.f * cfa[indx + w4] + 10.f * cfa[indx + w3]) + cfa[indx - w4] * cfa[indx - w4] + cfa[indx + w4] * cfa[indx + w4]);
|
|
float H_Stat = max(epssq, -18.f * cfai * (cfa[indx - 1] + cfa[indx + 1] + 2.f * (cfa[indx - 2] + cfa[indx + 2]) - cfa[indx - 3] - cfa[indx + 3]) - 2.f * cfai * (cfa[indx - 4] + cfa[indx + 4] - 19.f * cfai) - cfa[indx - 1] * (70.f * cfa[indx + 1] + 12.f * cfa[indx - 2] - 24.f * cfa[indx + 2] + 38.f * cfa[indx - 3] - 16.f * cfa[indx + 3] - 12.f * cfa[indx - 4] + 6.f * cfa[indx + 4] - 46.f * cfa[indx - 1]) + cfa[indx + 1] * (24.f * cfa[indx - 2] - 12.f * cfa[indx + 2] + 16.f * cfa[indx - 3] - 38.f * cfa[indx + 3] - 6.f * cfa[indx - 4] + 12.f * cfa[indx + 4] + 46.f * cfa[indx + 1]) + cfa[indx - 2] * (14.f * cfa[indx + 2] - 12.f * cfa[indx + 3] - 2.f * cfa[indx - 4] + 2.f * cfa[indx + 4] + 11.f * cfa[indx - 2]) + cfa[indx + 2] * (-12.f * cfa[indx - 3] + 2.f * (cfa[indx - 4] - cfa[indx + 4]) + 11.f * cfa[indx + 2]) + cfa[indx - 3] * (2.f * cfa[indx + 3] - 6.f * cfa[indx - 4] + 10.f * cfa[indx - 3]) + cfa[indx + 3] * (-6.f * cfa[indx + 4] + 10.f * cfa[indx + 3]) + cfa[indx - 4] * cfa[indx - 4] + cfa[indx + 4] * cfa[indx + 4]);
|
|
|
|
VH_Dir[indx] = V_Stat / (V_Stat + H_Stat);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STEP 2: Calculate the low pass filter
|
|
*/
|
|
// Step 2.1: Low pass filter incorporating green, red and blue local samples from the raw data
|
|
|
|
for (int row = 2; row < tileRows - 2; row++) {
|
|
for (int col = 2 + (fc(cfarray, row, 0) & 1), indx = row * tileSize + col; col < tilecols - 2; col += 2, indx += 2) {
|
|
lpf[indx>>1] = 0.25f * cfa[indx] + 0.125f * (cfa[indx - w1] + cfa[indx + w1] + cfa[indx - 1] + cfa[indx + 1]) + 0.0625f * (cfa[indx - w1 - 1] + cfa[indx - w1 + 1] + cfa[indx + w1 - 1] + cfa[indx + w1 + 1]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STEP 3: Populate the green channel
|
|
*/
|
|
// Step 3.1: Populate the green channel at blue and red CFA positions
|
|
for (int row = 4; row < tileRows - 4; row++) {
|
|
int col = 4 + (fc(cfarray, row, 0) & 1);
|
|
int indx = row * tileSize + col;
|
|
|
|
#ifdef __SSE2__
|
|
for (; col < tilecols - 7; col += 8, indx += 8) {
|
|
// Cardinal gradients
|
|
const vfloat cfai = LC2VFU(cfa[indx]);
|
|
const vfloat N_Grad = eps + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx + w1])) + vabsf(cfai - LC2VFU(cfa[indx - w2]))) + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx - w3])) + vabsf(LC2VFU(cfa[indx - w2]) - LC2VFU(cfa[indx - w4])));
|
|
const vfloat S_Grad = eps + (vabsf(LC2VFU(cfa[indx - w1]) - LC2VFU(cfa[indx + w1])) + vabsf(cfai - LC2VFU(cfa[indx + w2]))) + (vabsf(LC2VFU(cfa[indx + w1]) - LC2VFU(cfa[indx + w3])) + vabsf(LC2VFU(cfa[indx + w2]) - LC2VFU(cfa[indx + w4])));
|
|
const vfloat W_Grad = eps + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx + 1])) + vabsf(cfai - LC2VFU(cfa[indx - 2]))) + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx - 3])) + vabsf(LC2VFU(cfa[indx - 2]) - LC2VFU(cfa[indx - 4])));
|
|
const vfloat E_Grad = eps + (vabsf(LC2VFU(cfa[indx - 1]) - LC2VFU(cfa[indx + 1])) + vabsf(cfai - LC2VFU(cfa[indx + 2]))) + (vabsf(LC2VFU(cfa[indx + 1]) - LC2VFU(cfa[indx + 3])) + vabsf(LC2VFU(cfa[indx + 2]) - LC2VFU(cfa[indx + 4])));
|
|
|
|
// Cardinal pixel estimations
|
|
const vfloat lpfi = LVFU(lpf[indx>>1]);
|
|
const vfloat N_Est = LC2VFU(cfa[indx - w1]) + (LC2VFU(cfa[indx - w1]) * (lpfi - LVFU(lpf[(indx - w2)>>1])) / (eps + lpfi + LVFU(lpf[(indx - w2)>>1])));
|
|
const vfloat S_Est = LC2VFU(cfa[indx + w1]) + (LC2VFU(cfa[indx + w1]) * (lpfi - LVFU(lpf[(indx + w2)>>1])) / (eps + lpfi + LVFU(lpf[(indx + w2)>>1])));
|
|
const vfloat W_Est = LC2VFU(cfa[indx - 1]) + (LC2VFU(cfa[indx - 1]) * (lpfi - LVFU(lpf[(indx - 2)>>1])) / (eps + lpfi + LVFU(lpf[(indx - 2)>>1])));
|
|
const vfloat E_Est = LC2VFU(cfa[indx + 1]) + (LC2VFU(cfa[indx + 1]) * (lpfi - LVFU(lpf[(indx + 2)>>1])) / (eps + lpfi + LVFU(lpf[(indx + 2)>>1])));
|
|
|
|
// Vertical and horizontal estimations
|
|
const vfloat V_Est = (S_Grad * N_Est + N_Grad * S_Est) / (N_Grad + S_Grad);
|
|
const vfloat H_Est = (W_Grad * E_Est + E_Grad * W_Est) / (E_Grad + W_Grad);
|
|
|
|
// G@B and G@R interpolation
|
|
// Refined vertical and horizontal local discrimination
|
|
const vfloat VH_Central_Value = LC2VFU(VH_Dir[indx]);
|
|
const vfloat VH_Neighbourhood_Value = 0.25f * ((LC2VFU(VH_Dir[indx - w1 - 1]) + LC2VFU(VH_Dir[indx - w1 + 1])) + (LC2VFU(VH_Dir[indx + w1 - 1]) + LC2VFU(VH_Dir[indx + w1 + 1])));
|
|
|
|
const vfloat VH_Disc = vabsf(0.5f - VH_Central_Value) < vabsf(0.5f - VH_Neighbourhood_Value) ? VH_Neighbourhood_Value : VH_Central_Value;
|
|
STC2VFU(rgb[1][indx], vintpf(VH_Disc, H_Est, V_Est));
|
|
}
|
|
#endif
|
|
for (; col < tilecols - 4; col += 2, indx += 2) {
|
|
// Cardinal gradients
|
|
const float cfai = cfa[indx];
|
|
const float N_Grad = eps + (std::fabs(cfa[indx - w1] - cfa[indx + w1]) + std::fabs(cfai - cfa[indx - w2])) + (std::fabs(cfa[indx - w1] - cfa[indx - w3]) + std::fabs(cfa[indx - w2] - cfa[indx - w4]));
|
|
const float S_Grad = eps + (std::fabs(cfa[indx - w1] - cfa[indx + w1]) + std::fabs(cfai - cfa[indx + w2])) + (std::fabs(cfa[indx + w1] - cfa[indx + w3]) + std::fabs(cfa[indx + w2] - cfa[indx + w4]));
|
|
const float W_Grad = eps + (std::fabs(cfa[indx - 1] - cfa[indx + 1]) + std::fabs(cfai - cfa[indx - 2])) + (std::fabs(cfa[indx - 1] - cfa[indx - 3]) + std::fabs(cfa[indx - 2] - cfa[indx - 4]));
|
|
const float E_Grad = eps + (std::fabs(cfa[indx - 1] - cfa[indx + 1]) + std::fabs(cfai - cfa[indx + 2])) + (std::fabs(cfa[indx + 1] - cfa[indx + 3]) + std::fabs(cfa[indx + 2] - cfa[indx + 4]));
|
|
|
|
// Cardinal pixel estimations
|
|
const float lpfi = lpf[indx>>1];
|
|
const float N_Est = cfa[indx - w1] * (1.f + (lpfi - lpf[(indx - w2)>>1]) / (eps + lpfi + lpf[(indx - w2)>>1]));
|
|
const float S_Est = cfa[indx + w1] * (1.f + (lpfi - lpf[(indx + w2)>>1]) / (eps + lpfi + lpf[(indx + w2)>>1]));
|
|
const float W_Est = cfa[indx - 1] * (1.f + (lpfi - lpf[(indx - 2)>>1]) / (eps + lpfi + lpf[(indx - 2)>>1]));
|
|
const float E_Est = cfa[indx + 1] * (1.f + (lpfi - lpf[(indx + 2)>>1]) / (eps + lpfi + lpf[(indx + 2)>>1]));
|
|
|
|
// Vertical and horizontal estimations
|
|
const float V_Est = (S_Grad * N_Est + N_Grad * S_Est) / (N_Grad + S_Grad);
|
|
const float H_Est = (W_Grad * E_Est + E_Grad * W_Est) / (E_Grad + W_Grad);
|
|
|
|
// G@B and G@R interpolation
|
|
// Refined vertical and horizontal local discrimination
|
|
const float VH_Central_Value = VH_Dir[indx];
|
|
const float VH_Neighbourhood_Value = 0.25f * ((VH_Dir[indx - w1 - 1] + VH_Dir[indx - w1 + 1]) + (VH_Dir[indx + w1 - 1] + VH_Dir[indx + w1 + 1]));
|
|
|
|
const float VH_Disc = std::fabs(0.5f - VH_Central_Value) < std::fabs(0.5f - VH_Neighbourhood_Value) ? VH_Neighbourhood_Value : VH_Central_Value;
|
|
rgb[1][indx] = VH_Disc * H_Est + (1.f - VH_Disc) * V_Est;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* STEP 4: Populate the red and blue channels
|
|
*/
|
|
|
|
// Step 4.1: Calculate P/Q diagonal local discrimination
|
|
for (int row = rcdBorder - 4; row < tileRows - rcdBorder + 4; row++) {
|
|
for (int col = rcdBorder - 4 + (fc(cfarray, row, rcdBorder) & 1), indx = row * tileSize + col; col < tilecols - rcdBorder + 4; col += 2, indx += 2) {
|
|
const float cfai = cfa[indx];
|
|
|
|
float P_Stat = max(epssq, - 18.f * cfai * (cfa[indx - w1 - 1] + cfa[indx + w1 + 1] + 2.f * (cfa[indx - w2 - 2] + cfa[indx + w2 + 2]) - cfa[indx - w3 - 3] - cfa[indx + w3 + 3]) - 2.f * cfai * (cfa[indx - w4 - 4] + cfa[indx + w4 + 4] - 19.f * cfai) - cfa[indx - w1 - 1] * (70.f * cfa[indx + w1 + 1] - 12.f * cfa[indx - w2 - 2] + 24.f * cfa[indx + w2 + 2] - 38.f * cfa[indx - w3 - 3] + 16.f * cfa[indx + w3 + 3] + 12.f * cfa[indx - w4 - 4] - 6.f * cfa[indx + w4 + 4] + 46.f * cfa[indx - w1 - 1]) + cfa[indx + w1 + 1] * (24.f * cfa[indx - w2 - 2] - 12.f * cfa[indx + w2 + 2] + 16.f * cfa[indx - w3 - 3] - 38.f * cfa[indx + w3 + 3] - 6.f * cfa[indx - w4 - 4] + 12.f * cfa[indx + w4 + 4] + 46.f * cfa[indx + w1 + 1]) + cfa[indx - w2 - 2] * (14.f * cfa[indx + w2 + 2] - 12.f * cfa[indx + w3 + 3] - 2.f * (cfa[indx - w4 - 4] - cfa[indx + w4 + 4]) + 11.f * cfa[indx - w2 - 2]) - cfa[indx + w2 + 2] * (12.f * cfa[indx - w3 - 3] + 2.f * (cfa[indx - w4 - 4] - cfa[indx + w4 + 4]) + 11.f * cfa[indx + w2 + 2]) + cfa[indx - w3 - 3] * (2.f * cfa[indx + w3 + 3] - 6.f * cfa[indx - w4 - 4] + 10.f * cfa[indx - w3 - 3]) - cfa[indx + w3 + 3] * (6.f * cfa[indx + w4 + 4] + 10.f * cfa[indx + w3 + 3]) + cfa[indx - w4 - 4] * cfa[indx - w4 - 4] + cfa[indx + w4 + 4] * cfa[indx + w4 + 4]);
|
|
float Q_Stat = max(epssq, - 18.f * cfai * (cfa[indx + w1 - 1] + cfa[indx - w1 + 1] + 2.f * (cfa[indx + w2 - 2] + cfa[indx - w2 + 2]) - cfa[indx + w3 - 3] - cfa[indx - w3 + 3]) - 2.f * cfai * (cfa[indx + w4 - 4] + cfa[indx - w4 + 4] - 19.f * cfai) - cfa[indx + w1 - 1] * (70.f * cfa[indx - w1 + 1] - 12.f * cfa[indx + w2 - 2] + 24.f * cfa[indx - w2 + 2] - 38.f * cfa[indx + w3 - 3] + 16.f * cfa[indx - w3 + 3] + 12.f * cfa[indx + w4 - 4] - 6.f * cfa[indx - w4 + 4] + 46.f * cfa[indx + w1 - 1]) + cfa[indx - w1 + 1] * (24.f * cfa[indx + w2 - 2] - 12.f * cfa[indx - w2 + 2] + 16.f * cfa[indx + w3 - 3] - 38.f * cfa[indx - w3 + 3] - 6.f * cfa[indx + w4 - 4] + 12.f * cfa[indx - w4 + 4] + 46.f * cfa[indx - w1 + 1]) + cfa[indx + w2 - 2] * (14.f * cfa[indx - w2 + 2] - 12.f * cfa[indx - w3 + 3] - 2.f * (cfa[indx + w4 - 4] - cfa[indx - w4 + 4]) + 11.f * cfa[indx + w2 - 2]) - cfa[indx - w2 + 2] * (12.f * cfa[indx + w3 - 3] + 2.f * (cfa[indx + w4 - 4] - cfa[indx - w4 + 4]) + 11.f * cfa[indx - w2 + 2]) + cfa[indx + w3 - 3] * (2.f * cfa[indx - w3 + 3] - 6.f * cfa[indx + w4 - 4] + 10.f * cfa[indx + w3 - 3]) - cfa[indx - w3 + 3] * (6.f * cfa[indx - w4 + 4] + 10.f * cfa[indx - w3 + 3]) + cfa[indx + w4 - 4] * cfa[indx + w4 - 4] + cfa[indx - w4 + 4] * cfa[indx - w4 + 4]);
|
|
|
|
PQ_Dir[indx] = P_Stat / (P_Stat + Q_Stat);
|
|
}
|
|
}
|
|
|
|
// Step 4.2: Populate the red and blue channels at blue and red CFA positions
|
|
for (int row = rcdBorder - 3; row < tileRows - rcdBorder + 3; row++) {
|
|
for (int col = rcdBorder - 3 + (fc(cfarray, row, rcdBorder - 1) & 1), indx = row * tileSize + col, c = 2 - fc(cfarray, row, col); col < tilecols - rcdBorder + 3; col += 2, indx += 2) {
|
|
|
|
// Refined P/Q diagonal local discrimination
|
|
float PQ_Central_Value = PQ_Dir[indx];
|
|
float PQ_Neighbourhood_Value = 0.25f * (PQ_Dir[indx - w1 - 1] + PQ_Dir[indx - w1 + 1] + PQ_Dir[indx + w1 - 1] + PQ_Dir[indx + w1 + 1]);
|
|
|
|
float PQ_Disc = (std::fabs(0.5f - PQ_Central_Value) < std::fabs(0.5f - PQ_Neighbourhood_Value)) ? PQ_Neighbourhood_Value : PQ_Central_Value;
|
|
|
|
// Diagonal gradients
|
|
float NW_Grad = eps + std::fabs(rgb[c][indx - w1 - 1] - rgb[c][indx + w1 + 1]) + std::fabs(rgb[c][indx - w1 - 1] - rgb[c][indx - w3 - 3]) + std::fabs(rgb[1][indx] - rgb[1][indx - w2 - 2]);
|
|
float NE_Grad = eps + std::fabs(rgb[c][indx - w1 + 1] - rgb[c][indx + w1 - 1]) + std::fabs(rgb[c][indx - w1 + 1] - rgb[c][indx - w3 + 3]) + std::fabs(rgb[1][indx] - rgb[1][indx - w2 + 2]);
|
|
float SW_Grad = eps + std::fabs(rgb[c][indx - w1 + 1] - rgb[c][indx + w1 - 1]) + std::fabs(rgb[c][indx + w1 - 1] - rgb[c][indx + w3 - 3]) + std::fabs(rgb[1][indx] - rgb[1][indx + w2 - 2]);
|
|
float SE_Grad = eps + std::fabs(rgb[c][indx - w1 - 1] - rgb[c][indx + w1 + 1]) + std::fabs(rgb[c][indx + w1 + 1] - rgb[c][indx + w3 + 3]) + std::fabs(rgb[1][indx] - rgb[1][indx + w2 + 2]);
|
|
|
|
// Diagonal colour differences
|
|
float NW_Est = rgb[c][indx - w1 - 1] - rgb[1][indx - w1 - 1];
|
|
float NE_Est = rgb[c][indx - w1 + 1] - rgb[1][indx - w1 + 1];
|
|
float SW_Est = rgb[c][indx + w1 - 1] - rgb[1][indx + w1 - 1];
|
|
float SE_Est = rgb[c][indx + w1 + 1] - rgb[1][indx + w1 + 1];
|
|
|
|
// P/Q estimations
|
|
float P_Est = (NW_Grad * SE_Est + SE_Grad * NW_Est) / (NW_Grad + SE_Grad);
|
|
float Q_Est = (NE_Grad * SW_Est + SW_Grad * NE_Est) / (NE_Grad + SW_Grad);
|
|
|
|
// R@B and B@R interpolation
|
|
rgb[c][indx] = rgb[1][indx] + (1.f - PQ_Disc) * P_Est + PQ_Disc * Q_Est;
|
|
}
|
|
}
|
|
|
|
// Step 4.3: Populate the red and blue channels at green CFA positions
|
|
for (int row = rcdBorder; row < tileRows - rcdBorder; row++) {
|
|
for (int col = rcdBorder + (fc(cfarray, row, rcdBorder - 1) & 1), indx = row * tileSize + col; col < tilecols - rcdBorder; col += 2, indx += 2) {
|
|
|
|
// Refined vertical and horizontal local discrimination
|
|
float VH_Central_Value = VH_Dir[indx];
|
|
float VH_Neighbourhood_Value = 0.25f * ((VH_Dir[indx - w1 - 1] + VH_Dir[indx - w1 + 1]) + (VH_Dir[indx + w1 - 1] + VH_Dir[indx + w1 + 1]));
|
|
|
|
float VH_Disc = (std::fabs(0.5f - VH_Central_Value) < std::fabs(0.5f - VH_Neighbourhood_Value)) ? VH_Neighbourhood_Value : VH_Central_Value;
|
|
float rgb1 = rgb[1][indx];
|
|
float N1 = eps + std::fabs(rgb1 - rgb[1][indx - w2]);
|
|
float S1 = eps + std::fabs(rgb1 - rgb[1][indx + w2]);
|
|
float W1 = eps + std::fabs(rgb1 - rgb[1][indx - 2]);
|
|
float E1 = eps + std::fabs(rgb1 - rgb[1][indx + 2]);
|
|
|
|
float rgb1mw1 = rgb[1][indx - w1];
|
|
float rgb1pw1 = rgb[1][indx + w1];
|
|
float rgb1m1 = rgb[1][indx - 1];
|
|
float rgb1p1 = rgb[1][indx + 1];
|
|
for (int c = 0; c <= 2; c += 2) {
|
|
// Cardinal gradients
|
|
float SNabs = std::fabs(rgb[c][indx - w1] - rgb[c][indx + w1]);
|
|
float EWabs = std::fabs(rgb[c][indx - 1] - rgb[c][indx + 1]);
|
|
float N_Grad = N1 + SNabs + std::fabs(rgb[c][indx - w1] - rgb[c][indx - w3]);
|
|
float S_Grad = S1 + SNabs + std::fabs(rgb[c][indx + w1] - rgb[c][indx + w3]);
|
|
float W_Grad = W1 + EWabs + std::fabs(rgb[c][indx - 1] - rgb[c][indx - 3]);
|
|
float E_Grad = E1 + EWabs + std::fabs(rgb[c][indx + 1] - rgb[c][indx + 3]);
|
|
|
|
// Cardinal colour differences
|
|
float N_Est = rgb[c][indx - w1] - rgb1mw1;
|
|
float S_Est = rgb[c][indx + w1] - rgb1pw1;
|
|
float W_Est = rgb[c][indx - 1] - rgb1m1;
|
|
float E_Est = rgb[c][indx + 1] - rgb1p1;
|
|
|
|
// Vertical and horizontal estimations
|
|
float V_Est = (N_Grad * S_Est + S_Grad * N_Est) / (N_Grad + S_Grad);
|
|
float H_Est = (E_Grad * W_Est + W_Grad * E_Est) / (E_Grad + W_Grad);
|
|
|
|
// R@G and B@G interpolation
|
|
rgb[c][indx] = rgb1 + (1.f - VH_Disc) * V_Est + VH_Disc * H_Est;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int row = rowStart + rcdBorder; row < rowEnd - rcdBorder; ++row) {
|
|
for (int col = colStart + rcdBorder; col < colEnd - rcdBorder; ++col) {
|
|
int idx = (row - rowStart) * tileSize + col - colStart ;
|
|
red[row][col] = std::max(0.f, rgb[0][idx] * 65535.f);
|
|
green[row][col] = std::max(0.f, rgb[1][idx] * 65535.f);
|
|
blue[row][col] = std::max(0.f, rgb[2][idx] * 65535.f);
|
|
}
|
|
}
|
|
|
|
if (plistener) {
|
|
progresscounter++;
|
|
if (progresscounter % 32 == 0) {
|
|
#ifdef _OPENMP
|
|
#pragma omp critical (rcdprogress)
|
|
#endif
|
|
{
|
|
progress += (double)32 * ((tileSizeN) * (tileSizeN)) / (H * W);
|
|
progress = progress > 1.0 ? 1.0 : progress;
|
|
plistener->setProgress(progress);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
free(cfa);
|
|
free(rgb);
|
|
free(VH_Dir);
|
|
free(PQ_Dir);
|
|
}
|
|
|
|
border_interpolate(W, H, rcdBorder, rawData, red, green, blue);
|
|
|
|
if (plistener) {
|
|
plistener->setProgress(1);
|
|
}
|
|
}
|
|
|
|
} /* namespace */
|