rawTherapee/rtengine/cplx_wavelet_dec.h

456 lines
14 KiB
C++

/*
* This file is part of RawTherapee.
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*
* 2010 Ilya Popov <ilia_popov@rambler.ru>
* 2012 Emil Martinec <ejmartin@uchicago.edu>
*/
#ifndef CPLX_WAVELET_DEC_H_INCLUDED
#define CPLX_WAVELET_DEC_H_INCLUDED
#include <cstddef>
#include <math.h>
#include "cplx_wavelet_level.h"
#include "cplx_wavelet_filter_coeffs.h"
namespace rtengine {
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
template <typename A>
void copy_out(A * a, A * b, size_t datalen)
{// for standard wavelet decomposition
memcpy(b, a, datalen*sizeof(A));
}
template <typename A, typename B>
void copy_out(A ** a, B * b, size_t datalen)
{// for complex wavelet decomposition
for (size_t j=0; j<datalen; j++) {
b[j] = static_cast<B> (0.25*(a[0][j]+a[1][j]+a[2][j]+a[3][j]));
}
}
template <typename A, typename B>
void copy_out(A * a, B * b, size_t datalen)
{// for standard wavelet decomposition
for (size_t j=0; j<datalen; j++) {
b[j] = static_cast<B> (a[j]);
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
class cplx_wavelet_decomposition
{
public:
typedef float internal_type;
private:
// static const int maxlevels = 8;//should be greater than any conceivable order of decimation
static const int maxlevels = 9;//should be greater than any conceivable order of decimation
int lvltot, subsamp;
size_t m_w, m_h;//dimensions
int first_lev_len, first_lev_offset;
float *first_lev_anal;
float *first_lev_synth;
int wavfilt_len, wavfilt_offset;
float *wavfilt_anal;
float *wavfilt_synth;
int testfilt_len, testfilt_offset;
float *testfilt_anal;
float *testfilt_synth;
wavelet_level<internal_type> * dual_tree[maxlevels][4];
public:
template<typename E>
cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling);
~cplx_wavelet_decomposition();
internal_type ** level_coeffs(int level, int branch) const
{
return dual_tree[level][branch]->subbands();
}
int level_W(int level, int branch) const
{
return dual_tree[level][branch]->width();
}
int level_H(int level, int branch) const
{
return dual_tree[level][branch]->height();
}
int level_pad(int level, int branch) const
{
return dual_tree[level][branch]->padding();
}
int maxlevel() const
{
return lvltot;
}
template<typename E>
void reconstruct(E * dst);
};
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
template<typename E>
cplx_wavelet_decomposition::cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling)
: lvltot(0), subsamp(subsampling), m_w(width), m_h(height)
{
//initialize wavelet filters
first_lev_len = FSFarras_len;
first_lev_offset = FSFarras_offset;
first_lev_anal = new float[4*first_lev_len];
first_lev_synth = new float[4*first_lev_len];
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int i=0; i<first_lev_len; i++) {
first_lev_anal[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][i]/sqrt(2);
first_lev_synth[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][first_lev_len-1-i]/sqrt(2);
}
}
}
/*first_lev_len = AntonB_len;
first_lev_offset = AntonB_offset;
first_lev_anal = new float[4*first_lev_len];
first_lev_synth = new float[4*first_lev_len];
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int i=0; i<first_lev_len; i++) {
first_lev_anal[first_lev_len*(2*n+m)+i] = AntonB_anal[n][m][i];
first_lev_synth[first_lev_len*(2*n+m)+i] = 2*AntonB_synth[n][m][i];
}
}
}*/
wavfilt_len = Kingsbury_len;
wavfilt_offset = Kingsbury_offset;
wavfilt_anal = new float[4*wavfilt_len];
wavfilt_synth = new float[4*wavfilt_len];
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
for (int i=0; i<wavfilt_len; i++) {
wavfilt_anal[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][i]/sqrt(2);
wavfilt_synth[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][first_lev_len-1-i]/sqrt(2);
}
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// after coefficient rotation, data structure is:
// dual_tree[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
//srand((unsigned)time(0));
//for (int i=0; i<m_w*m_h; i++ )
// src[i] = (float)rand()/(float)RAND_MAX;
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
lvltot=0;
float padding = 0;//1<<(maxlvl-1);
dual_tree[0][2*n+m] = new wavelet_level<internal_type>(src, lvltot, subsamp, padding, m_w, m_h, first_lev_anal+first_lev_len*2*n, \
first_lev_anal+first_lev_len*2*m, first_lev_len, first_lev_offset);
while(lvltot < maxlvl) {
lvltot++;
dual_tree[lvltot][2*n+m] = new wavelet_level<internal_type>(dual_tree[lvltot-1][2*n+m]->lopass()/*lopass*/, lvltot, subsamp, 0/*no padding*/, \
dual_tree[lvltot-1][2*n+m]->width(), \
dual_tree[lvltot-1][2*n+m]->height(), \
wavfilt_anal+wavfilt_len*2*n, wavfilt_anal+wavfilt_len*2*m, \
wavfilt_len, wavfilt_offset);
}
}
}
//rotate detail coefficients
float coeffave[5][4][3];
float root2 = sqrt(2);
for (int lvl=0; lvl<lvltot; lvl++) {
int Wlvl = dual_tree[lvl][0]->width();
int Hlvl = dual_tree[lvl][0]->height();
for (int n=0; n<4; n++)
for (int m=1; m<4; m++)
coeffave[lvl][n][m-1]=0;
for (int m=1; m<4; m++) {//detail coefficients only
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
float wavtmp = (dual_tree[lvl][0]->wavcoeffs[m][i] + dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree[lvl][3]->wavcoeffs[m][i] = (dual_tree[lvl][0]->wavcoeffs[m][i] - dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree[lvl][0]->wavcoeffs[m][i] = wavtmp;
wavtmp = (dual_tree[lvl][1]->wavcoeffs[m][i] + dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree[lvl][2]->wavcoeffs[m][i] = (dual_tree[lvl][1]->wavcoeffs[m][i] - dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree[lvl][1]->wavcoeffs[m][i] = wavtmp;
for (int n=0; n<4; n++) coeffave[lvl][n][m-1] += fabs(dual_tree[lvl][n]->wavcoeffs[m][i]);
}
}
for (int n=0; n<4; n++)
for (int i=0; i<3; i++)
coeffave[lvl][n][i] /= Wlvl*Hlvl;
}
}
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
template<typename E>
void cplx_wavelet_decomposition::reconstruct(E * dst) {
// data structure is wavcoeffs[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
//rotate detail coefficients
float root2 = sqrt(2);
for (int lvl=0; lvl<lvltot; lvl++) {
int Wlvl = dual_tree[lvl][0]->width();
int Hlvl = dual_tree[lvl][0]->height();
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
for (int m=1; m<4; m++) {//detail coefficients only
float wavtmp = (dual_tree[lvl][0]->wavcoeffs[m][i] + dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree[lvl][3]->wavcoeffs[m][i] = (dual_tree[lvl][0]->wavcoeffs[m][i] - dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
dual_tree[lvl][0]->wavcoeffs[m][i] = wavtmp;
wavtmp = (dual_tree[lvl][1]->wavcoeffs[m][i] + dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree[lvl][2]->wavcoeffs[m][i] = (dual_tree[lvl][1]->wavcoeffs[m][i] - dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
dual_tree[lvl][1]->wavcoeffs[m][i] = wavtmp;
}
}
}
internal_type ** tmp = new internal_type *[4];
for (int i=0; i<4; i++) {
tmp[i] = new internal_type[m_w*m_h];
}
for (int n=0; n<2; n++) {
for (int m=0; m<2; m++) {
int skip=1<<(lvltot-1);
for (int lvl=lvltot-1; lvl>0; lvl--) {
dual_tree[lvl][2*n+m]->reconstruct_level(dual_tree[lvl-1][2*n+m]->wavcoeffs[0], wavfilt_synth+wavfilt_len*2*n, \
wavfilt_synth+wavfilt_len*2*m, wavfilt_len, wavfilt_offset);
skip /=2;
}
dual_tree[0][2*n+m]->reconstruct_level(tmp[2*n+m], first_lev_synth+first_lev_len*2*n,
first_lev_synth+first_lev_len*2*m, first_lev_len, first_lev_offset);
}
}
copy_out(tmp,dst,m_w*m_h);
for (int i=0; i<4; i++) {
delete[] tmp[i];
}
delete[] tmp;
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
class wavelet_decomposition
{
public:
typedef float internal_type;
private:
static const int maxlevels = 9;//should be greater than any conceivable order of decimation
int lvltot, subsamp;
size_t m_w, m_h;//dimensions
int wavfilt_len, wavfilt_offset;
float *wavfilt_anal;
float *wavfilt_synth;
int testfilt_len, testfilt_offset;
float *testfilt_anal;
float *testfilt_synth;
wavelet_level<internal_type> * wavelet_decomp[maxlevels];
public:
template<typename E>
wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling);
~wavelet_decomposition();
internal_type ** level_coeffs(int level) const
{
return wavelet_decomp[level]->subbands();
}
int level_W(int level) const
{
return wavelet_decomp[level]->width();
}
int level_H(int level) const
{
return wavelet_decomp[level]->height();
}
int level_pad(int level) const
{
return wavelet_decomp[level]->padding();
}
int level_stride(int level) const
{
return wavelet_decomp[level]->stride();
}
int maxlevel() const
{
return lvltot;
}
int subsample() const
{
return subsamp;
}
template<typename E>
void reconstruct(E * dst);
};
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
template<typename E>
wavelet_decomposition::wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling)
: lvltot(0), subsamp(subsampling), m_w(width), m_h(height)
{
//initialize wavelet filters
wavfilt_len = Daub4_len;
wavfilt_offset = Daub4_offset;
wavfilt_anal = new float[2*wavfilt_len];
wavfilt_synth = new float[2*wavfilt_len];
for (int n=0; n<2; n++) {
for (int i=0; i<wavfilt_len; i++) {
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal[n][i];
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal[n][wavfilt_len-1-i];
//n=0 lopass, n=1 hipass
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// after coefficient rotation, data structure is:
// wavelet_decomp[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
//srand((unsigned)time(0));
//for (int i=0; i<m_w*m_h; i++ )
// src[i] = (float)rand()/(float)RAND_MAX;
int padding = 0;//pow(2, maxlvl);//must be a multiple of two
lvltot=0;
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(src, lvltot/*level*/, subsamp, padding/*padding*/, m_w, m_h, \
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset);
while(lvltot < maxlvl) {
lvltot++;
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(wavelet_decomp[lvltot-1]->lopass()/*lopass*/, lvltot/*level*/, subsamp, 0/*no padding*/, \
wavelet_decomp[lvltot-1]->width(), wavelet_decomp[lvltot-1]->height(), \
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset);
}
}
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
template<typename E>
void wavelet_decomposition::reconstruct(E * dst) {
// data structure is wavcoeffs[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
//int skip=1<<(lvltot-1);
for (int lvl=lvltot-1; lvl>0; lvl--) {
wavelet_decomp[lvl]->reconstruct_level(wavelet_decomp[lvl-1]->wavcoeffs[0], wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
//skip /=2;
}
internal_type * tmp = new internal_type[m_w*m_h];
wavelet_decomp[0]->reconstruct_level(tmp, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
copy_out(tmp,dst,m_w*m_h);
delete[] tmp;
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
};
#endif