456 lines
14 KiB
C++
456 lines
14 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* 2010 Ilya Popov <ilia_popov@rambler.ru>
|
|
* 2012 Emil Martinec <ejmartin@uchicago.edu>
|
|
*/
|
|
|
|
#ifndef CPLX_WAVELET_DEC_H_INCLUDED
|
|
#define CPLX_WAVELET_DEC_H_INCLUDED
|
|
|
|
#include <cstddef>
|
|
#include <math.h>
|
|
|
|
|
|
#include "cplx_wavelet_level.h"
|
|
#include "cplx_wavelet_filter_coeffs.h"
|
|
|
|
namespace rtengine {
|
|
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
template <typename A>
|
|
void copy_out(A * a, A * b, size_t datalen)
|
|
{// for standard wavelet decomposition
|
|
memcpy(b, a, datalen*sizeof(A));
|
|
}
|
|
|
|
template <typename A, typename B>
|
|
void copy_out(A ** a, B * b, size_t datalen)
|
|
{// for complex wavelet decomposition
|
|
for (size_t j=0; j<datalen; j++) {
|
|
b[j] = static_cast<B> (0.25*(a[0][j]+a[1][j]+a[2][j]+a[3][j]));
|
|
}
|
|
}
|
|
|
|
template <typename A, typename B>
|
|
void copy_out(A * a, B * b, size_t datalen)
|
|
{// for standard wavelet decomposition
|
|
for (size_t j=0; j<datalen; j++) {
|
|
b[j] = static_cast<B> (a[j]);
|
|
}
|
|
}
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
class cplx_wavelet_decomposition
|
|
{
|
|
public:
|
|
|
|
typedef float internal_type;
|
|
|
|
private:
|
|
|
|
// static const int maxlevels = 8;//should be greater than any conceivable order of decimation
|
|
static const int maxlevels = 9;//should be greater than any conceivable order of decimation
|
|
|
|
int lvltot, subsamp;
|
|
size_t m_w, m_h;//dimensions
|
|
|
|
int first_lev_len, first_lev_offset;
|
|
float *first_lev_anal;
|
|
float *first_lev_synth;
|
|
|
|
int wavfilt_len, wavfilt_offset;
|
|
float *wavfilt_anal;
|
|
float *wavfilt_synth;
|
|
|
|
int testfilt_len, testfilt_offset;
|
|
float *testfilt_anal;
|
|
float *testfilt_synth;
|
|
|
|
wavelet_level<internal_type> * dual_tree[maxlevels][4];
|
|
|
|
public:
|
|
|
|
template<typename E>
|
|
cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling);
|
|
|
|
~cplx_wavelet_decomposition();
|
|
|
|
internal_type ** level_coeffs(int level, int branch) const
|
|
{
|
|
return dual_tree[level][branch]->subbands();
|
|
}
|
|
|
|
int level_W(int level, int branch) const
|
|
{
|
|
return dual_tree[level][branch]->width();
|
|
}
|
|
|
|
int level_H(int level, int branch) const
|
|
{
|
|
return dual_tree[level][branch]->height();
|
|
}
|
|
|
|
int level_pad(int level, int branch) const
|
|
{
|
|
return dual_tree[level][branch]->padding();
|
|
}
|
|
|
|
int maxlevel() const
|
|
{
|
|
return lvltot;
|
|
}
|
|
|
|
template<typename E>
|
|
void reconstruct(E * dst);
|
|
|
|
};
|
|
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
template<typename E>
|
|
cplx_wavelet_decomposition::cplx_wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling)
|
|
: lvltot(0), subsamp(subsampling), m_w(width), m_h(height)
|
|
{
|
|
|
|
//initialize wavelet filters
|
|
|
|
first_lev_len = FSFarras_len;
|
|
first_lev_offset = FSFarras_offset;
|
|
first_lev_anal = new float[4*first_lev_len];
|
|
first_lev_synth = new float[4*first_lev_len];
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int m=0; m<2; m++) {
|
|
for (int i=0; i<first_lev_len; i++) {
|
|
first_lev_anal[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][i]/sqrt(2);
|
|
first_lev_synth[first_lev_len*(2*n+m)+i] = FSFarras_anal[n][m][first_lev_len-1-i]/sqrt(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*first_lev_len = AntonB_len;
|
|
first_lev_offset = AntonB_offset;
|
|
first_lev_anal = new float[4*first_lev_len];
|
|
first_lev_synth = new float[4*first_lev_len];
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int m=0; m<2; m++) {
|
|
for (int i=0; i<first_lev_len; i++) {
|
|
first_lev_anal[first_lev_len*(2*n+m)+i] = AntonB_anal[n][m][i];
|
|
first_lev_synth[first_lev_len*(2*n+m)+i] = 2*AntonB_synth[n][m][i];
|
|
}
|
|
}
|
|
}*/
|
|
|
|
wavfilt_len = Kingsbury_len;
|
|
wavfilt_offset = Kingsbury_offset;
|
|
wavfilt_anal = new float[4*wavfilt_len];
|
|
wavfilt_synth = new float[4*wavfilt_len];
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int m=0; m<2; m++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][i]/sqrt(2);
|
|
wavfilt_synth[wavfilt_len*(2*n+m)+i] = Kingsbury_anal[n][m][first_lev_len-1-i]/sqrt(2);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
// after coefficient rotation, data structure is:
|
|
// dual_tree[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
//srand((unsigned)time(0));
|
|
//for (int i=0; i<m_w*m_h; i++ )
|
|
// src[i] = (float)rand()/(float)RAND_MAX;
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int m=0; m<2; m++) {
|
|
lvltot=0;
|
|
float padding = 0;//1<<(maxlvl-1);
|
|
dual_tree[0][2*n+m] = new wavelet_level<internal_type>(src, lvltot, subsamp, padding, m_w, m_h, first_lev_anal+first_lev_len*2*n, \
|
|
first_lev_anal+first_lev_len*2*m, first_lev_len, first_lev_offset);
|
|
while(lvltot < maxlvl) {
|
|
lvltot++;
|
|
dual_tree[lvltot][2*n+m] = new wavelet_level<internal_type>(dual_tree[lvltot-1][2*n+m]->lopass()/*lopass*/, lvltot, subsamp, 0/*no padding*/, \
|
|
dual_tree[lvltot-1][2*n+m]->width(), \
|
|
dual_tree[lvltot-1][2*n+m]->height(), \
|
|
wavfilt_anal+wavfilt_len*2*n, wavfilt_anal+wavfilt_len*2*m, \
|
|
wavfilt_len, wavfilt_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//rotate detail coefficients
|
|
float coeffave[5][4][3];
|
|
|
|
float root2 = sqrt(2);
|
|
for (int lvl=0; lvl<lvltot; lvl++) {
|
|
int Wlvl = dual_tree[lvl][0]->width();
|
|
int Hlvl = dual_tree[lvl][0]->height();
|
|
for (int n=0; n<4; n++)
|
|
for (int m=1; m<4; m++)
|
|
coeffave[lvl][n][m-1]=0;
|
|
|
|
for (int m=1; m<4; m++) {//detail coefficients only
|
|
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
|
|
|
|
float wavtmp = (dual_tree[lvl][0]->wavcoeffs[m][i] + dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][3]->wavcoeffs[m][i] = (dual_tree[lvl][0]->wavcoeffs[m][i] - dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][0]->wavcoeffs[m][i] = wavtmp;
|
|
|
|
wavtmp = (dual_tree[lvl][1]->wavcoeffs[m][i] + dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][2]->wavcoeffs[m][i] = (dual_tree[lvl][1]->wavcoeffs[m][i] - dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][1]->wavcoeffs[m][i] = wavtmp;
|
|
|
|
for (int n=0; n<4; n++) coeffave[lvl][n][m-1] += fabs(dual_tree[lvl][n]->wavcoeffs[m][i]);
|
|
}
|
|
}
|
|
for (int n=0; n<4; n++)
|
|
for (int i=0; i<3; i++)
|
|
coeffave[lvl][n][i] /= Wlvl*Hlvl;
|
|
}
|
|
|
|
}
|
|
|
|
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
|
|
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
|
|
|
|
|
|
template<typename E>
|
|
void cplx_wavelet_decomposition::reconstruct(E * dst) {
|
|
|
|
// data structure is wavcoeffs[scale][2*n+m=2*(Re/Im)+dir][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
//rotate detail coefficients
|
|
float root2 = sqrt(2);
|
|
for (int lvl=0; lvl<lvltot; lvl++) {
|
|
int Wlvl = dual_tree[lvl][0]->width();
|
|
int Hlvl = dual_tree[lvl][0]->height();
|
|
for (int i=0; i<Wlvl*Hlvl; i++) {//pixel
|
|
for (int m=1; m<4; m++) {//detail coefficients only
|
|
float wavtmp = (dual_tree[lvl][0]->wavcoeffs[m][i] + dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][3]->wavcoeffs[m][i] = (dual_tree[lvl][0]->wavcoeffs[m][i] - dual_tree[lvl][3]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][0]->wavcoeffs[m][i] = wavtmp;
|
|
|
|
wavtmp = (dual_tree[lvl][1]->wavcoeffs[m][i] + dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][2]->wavcoeffs[m][i] = (dual_tree[lvl][1]->wavcoeffs[m][i] - dual_tree[lvl][2]->wavcoeffs[m][i])/root2;
|
|
dual_tree[lvl][1]->wavcoeffs[m][i] = wavtmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
internal_type ** tmp = new internal_type *[4];
|
|
for (int i=0; i<4; i++) {
|
|
tmp[i] = new internal_type[m_w*m_h];
|
|
}
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int m=0; m<2; m++) {
|
|
int skip=1<<(lvltot-1);
|
|
for (int lvl=lvltot-1; lvl>0; lvl--) {
|
|
dual_tree[lvl][2*n+m]->reconstruct_level(dual_tree[lvl-1][2*n+m]->wavcoeffs[0], wavfilt_synth+wavfilt_len*2*n, \
|
|
wavfilt_synth+wavfilt_len*2*m, wavfilt_len, wavfilt_offset);
|
|
skip /=2;
|
|
}
|
|
dual_tree[0][2*n+m]->reconstruct_level(tmp[2*n+m], first_lev_synth+first_lev_len*2*n,
|
|
first_lev_synth+first_lev_len*2*m, first_lev_len, first_lev_offset);
|
|
}
|
|
}
|
|
|
|
copy_out(tmp,dst,m_w*m_h);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
delete[] tmp[i];
|
|
}
|
|
delete[] tmp;
|
|
|
|
|
|
|
|
}
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
class wavelet_decomposition
|
|
{
|
|
public:
|
|
|
|
typedef float internal_type;
|
|
|
|
private:
|
|
|
|
static const int maxlevels = 9;//should be greater than any conceivable order of decimation
|
|
|
|
int lvltot, subsamp;
|
|
size_t m_w, m_h;//dimensions
|
|
|
|
int wavfilt_len, wavfilt_offset;
|
|
float *wavfilt_anal;
|
|
float *wavfilt_synth;
|
|
|
|
int testfilt_len, testfilt_offset;
|
|
float *testfilt_anal;
|
|
float *testfilt_synth;
|
|
|
|
wavelet_level<internal_type> * wavelet_decomp[maxlevels];
|
|
|
|
public:
|
|
|
|
template<typename E>
|
|
wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling);
|
|
|
|
~wavelet_decomposition();
|
|
|
|
internal_type ** level_coeffs(int level) const
|
|
{
|
|
return wavelet_decomp[level]->subbands();
|
|
}
|
|
|
|
int level_W(int level) const
|
|
{
|
|
return wavelet_decomp[level]->width();
|
|
}
|
|
|
|
int level_H(int level) const
|
|
{
|
|
return wavelet_decomp[level]->height();
|
|
}
|
|
|
|
int level_pad(int level) const
|
|
{
|
|
return wavelet_decomp[level]->padding();
|
|
}
|
|
|
|
int level_stride(int level) const
|
|
{
|
|
return wavelet_decomp[level]->stride();
|
|
}
|
|
|
|
int maxlevel() const
|
|
{
|
|
return lvltot;
|
|
}
|
|
|
|
int subsample() const
|
|
{
|
|
return subsamp;
|
|
}
|
|
|
|
template<typename E>
|
|
void reconstruct(E * dst);
|
|
|
|
};
|
|
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
template<typename E>
|
|
wavelet_decomposition::wavelet_decomposition(E * src, int width, int height, int maxlvl, int subsampling)
|
|
: lvltot(0), subsamp(subsampling), m_w(width), m_h(height)
|
|
{
|
|
|
|
//initialize wavelet filters
|
|
|
|
wavfilt_len = Daub4_len;
|
|
wavfilt_offset = Daub4_offset;
|
|
wavfilt_anal = new float[2*wavfilt_len];
|
|
wavfilt_synth = new float[2*wavfilt_len];
|
|
|
|
for (int n=0; n<2; n++) {
|
|
for (int i=0; i<wavfilt_len; i++) {
|
|
wavfilt_anal[wavfilt_len*(n)+i] = Daub4_anal[n][i];
|
|
wavfilt_synth[wavfilt_len*(n)+i] = Daub4_anal[n][wavfilt_len-1-i];
|
|
//n=0 lopass, n=1 hipass
|
|
}
|
|
}
|
|
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
// after coefficient rotation, data structure is:
|
|
// wavelet_decomp[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
//srand((unsigned)time(0));
|
|
//for (int i=0; i<m_w*m_h; i++ )
|
|
// src[i] = (float)rand()/(float)RAND_MAX;
|
|
|
|
int padding = 0;//pow(2, maxlvl);//must be a multiple of two
|
|
lvltot=0;
|
|
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(src, lvltot/*level*/, subsamp, padding/*padding*/, m_w, m_h, \
|
|
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset);
|
|
while(lvltot < maxlvl) {
|
|
lvltot++;
|
|
wavelet_decomp[lvltot] = new wavelet_level<internal_type>(wavelet_decomp[lvltot-1]->lopass()/*lopass*/, lvltot/*level*/, subsamp, 0/*no padding*/, \
|
|
wavelet_decomp[lvltot-1]->width(), wavelet_decomp[lvltot-1]->height(), \
|
|
wavfilt_anal, wavfilt_anal, wavfilt_len, wavfilt_offset);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
|
|
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
|
|
|
|
|
|
template<typename E>
|
|
void wavelet_decomposition::reconstruct(E * dst) {
|
|
|
|
// data structure is wavcoeffs[scale][channel={lo,hi1,hi2,hi3}][pixel_array]
|
|
|
|
//int skip=1<<(lvltot-1);
|
|
for (int lvl=lvltot-1; lvl>0; lvl--) {
|
|
wavelet_decomp[lvl]->reconstruct_level(wavelet_decomp[lvl-1]->wavcoeffs[0], wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
|
|
//skip /=2;
|
|
}
|
|
|
|
internal_type * tmp = new internal_type[m_w*m_h];
|
|
|
|
wavelet_decomp[0]->reconstruct_level(tmp, wavfilt_synth, wavfilt_synth, wavfilt_len, wavfilt_offset);
|
|
|
|
copy_out(tmp,dst,m_w*m_h);
|
|
|
|
delete[] tmp;
|
|
|
|
|
|
|
|
}
|
|
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
|
|
};
|
|
|
|
#endif
|