384 lines
10 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "shmap.h"
#include "gauss.h"
#include "rtengine.h"
#include "rt_math.h"
#include "rawimagesource.h"
#include "sleef.c"
#undef THREAD_PRIORITY_NORMAL
#ifdef __SSE2__
#include "sleefsseavx.c"
#endif // __SSE2__
namespace rtengine {
extern const Settings* settings;
SHMap::SHMap (int w, int h, bool multiThread) : W(w), H(h), multiThread(multiThread) {
map = new float*[H];
for (int i=0; i<H; i++)
map[i] = new float[W];
}
SHMap::~SHMap () {
for (int i=0; i<H; i++)
delete [] map[i];
delete [] map;
}
void SHMap::update (Imagefloat* img, double radius, double lumi[3], bool hq, int skip) {
// fill with luminance
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++) {
map[i][j] = lumi[0]*std::max(img->r(i,j),0.f) + lumi[1]*std::max(img->g(i,j),0.f) + lumi[2]*std::max(img->b(i,j),0.f);
}
if (!hq) {
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBufferMP<double>* pBuffer = new AlignedBufferMP<double> (max(W,H));
gaussHorizontal<float> (map, map, *pBuffer, W, H, radius);
gaussVertical<float> (map, map, *pBuffer, W, H, radius);
delete pBuffer;
}
}
else {
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//experimental dirpyr shmap
float thresh = 100*radius;//1000;
LUTf rangefn(0x10000);
float ** dirpyrlo[2];
int intfactor = 1024;//16384;
//set up range functions
for (int i=0; i<0x10000; i++) {
//rangefn[i] = (int)(((thresh)/((double)(i) + (thresh)))*intfactor);
rangefn[i] = static_cast<int>(xexpf(-(min(10.0f,(static_cast<float>(i)*i) / (thresh*thresh))))*intfactor);
//if (rangefn[i]<0 || rangefn[i]>intfactor)
//printf("i=%d rangefn=%d arg=%f \n",i,rangefn[i], float(i*i) / (thresh*thresh));
}
dirpyrlo[0] = allocArray<float> (W, H);
dirpyrlo[1] = allocArray<float> (W, H);
int scale=1;
int level=0;
int indx=0;
dirpyr_shmap(map, dirpyrlo[indx], W, H, rangefn, 0, scale );
scale *= 2;
level += 1;
indx = 1-indx;
while (skip*scale<16) {
dirpyr_shmap(dirpyrlo[1-indx], dirpyrlo[indx], W, H, rangefn, level, scale );
scale *= 2;
level += 1;
indx = 1-indx;
}
dirpyr_shmap(dirpyrlo[1-indx], map, W, H, rangefn, level, scale );
freeArray<float>(dirpyrlo[0], H);
freeArray<float>(dirpyrlo[1], H);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*
// anti-alias filtering the result
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<H; i++)
for (int j=0; j<W; j++)
if (i>0 && j>0 && i<H-1 && j<W-1)
map[i][j] = (buffer[i-1][j-1]+buffer[i-1][j]+buffer[i-1][j+1]+buffer[i][j-1]+buffer[i][j]+buffer[i][j+1]+buffer[i+1][j-1]+buffer[i+1][j]+buffer[i+1][j+1])/9;
else
map[i][j] = buffer[i][j];
*/
}
// update average, minimum, maximum
float _avg = 0.0f;
min_f = 65535;
max_f = 0;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float _min_f = 65535.0f;
float _max_f = 0.0f;
float _val;
#ifdef _OPENMP
#pragma omp for reduction(+:_avg) nowait
#endif
for (int i=32; i<H-32; i++)
for (int j=32; j<W-32; j++) {
_val = map[i][j];
if (_val < _min_f)
_min_f = _val;
if (_val > _max_f)
_max_f = _val;
_avg += _val;
}
#ifdef _OPENMP
#pragma omp critical
#endif
{
if(_min_f < min_f )
min_f = _min_f;
if(_max_f > max_f )
max_f = _max_f;
}
}
_avg /= ((H-64)*(W-64));
avg = _avg;
}
void SHMap::forceStat (float max_, float min_, float avg_) {
max_f = max_;
min_f = min_;
avg = avg_;
}
#if defined( __SSE__ ) && defined( WIN32 )
__attribute__((force_align_arg_pointer)) void SHMap::dirpyr_shmap(float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale)
#else
void SHMap::dirpyr_shmap(float ** data_fine, float ** data_coarse, int width, int height, LUTf & rangefn, int level, int scale)
#endif
{
//scale is spacing of directional averaging weights
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// calculate weights, compute directionally weighted average
int scalewin, halfwin;
if(level < 2) {
halfwin = 1;
scalewin = halfwin*scale;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#if defined( __SSE2__ ) && defined( __x86_64__ )
__m128 dirwtv, valv, normv;
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j%scale; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#if defined( __SSE2__ ) && defined( __x86_64__ )
for(; j < (width-scalewin)-3; j+=4)
{
valv= _mm_setzero_ps();
normv= _mm_setzero_ps();
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = ( rangefn[_mm_cvttps_epi32(vabsf(LVFU(data_fine[inbr][jnbr])-LVFU(data_fine[i][j])))] );
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv/normv);
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<width; jnbr+=scale) {
dirwt = ( rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
}
}
}
else {
halfwin=2;
scalewin = halfwin*scale;
int domker[5][5] = {{1,1,1,1,1},{1,2,2,2,1},{1,2,2,2,1},{1,2,2,2,1},{1,1,1,1,1}};
//generate domain kernel
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#if defined( __SSE2__ ) && defined( __x86_64__ )
__m128 dirwtv, valv, normv;
float domkerv[5][5][4] __attribute__ ((aligned (16))) = {{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{2,2,2,2},{2,2,2,2},{2,2,2,2},{1,1,1,1}},{{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}}};
#endif // __SSE2__
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
float dirwt;
for(j = 0; j < scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j%scale; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#if defined( __SSE2__ ) && defined( __x86_64__ )
for(; j < width-scalewin-3; j+=4)
{
valv = _mm_setzero_ps();
normv = _mm_setzero_ps();
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwtv = ( _mm_load_ps((float*)&domkerv[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin]) * rangefn[_mm_cvttps_epi32(vabsf(LVFU(data_fine[inbr][jnbr])-LVFU(data_fine[i][j])))] );
valv += dirwtv*LVFU(data_fine[inbr][jnbr]);
normv += dirwtv;
}
}
_mm_storeu_ps( &data_coarse[i][j], valv/normv);
}
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#else
for(; j < width-scalewin; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<=j+scalewin; jnbr+=scale) {
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
#endif
for(; j < width; j++)
{
float val=0;
float norm=0;
for(int inbr=max(i-scalewin,i%scale); inbr<=min(i+scalewin, height-1); inbr+=scale) {
for (int jnbr=j-scalewin; jnbr<width; jnbr+=scale) {
dirwt = ( domker[(inbr-i)/scale+halfwin][(jnbr-j)/scale+halfwin] * rangefn[abs(data_fine[inbr][jnbr]-data_fine[i][j])] );
val += dirwt*data_fine[inbr][jnbr];
norm += dirwt;
}
}
data_coarse[i][j] = val/norm; // low pass filter
}
}
}
}
}
}//end of SHMap