Files
rawTherapee/rtengine/image16.cc
Hombre 8b2eac9a3d Pipette and "On Preview Widgets" branch. See issue 227
The pipette part is already working quite nice but need to be finished. The widgets part needs more work...
2014-01-21 23:37:36 +01:00

328 lines
10 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include "image16.h"
#include "imagefloat.h"
#include "image8.h"
#include <cstring>
#include <cstdio>
#include "rtengine.h"
using namespace rtengine;
Image16::Image16 () {
}
Image16::Image16 (int w, int h) {
allocate (w, h);
}
Image16::~Image16 () {
}
void Image16::getScanline (int row, unsigned char* buffer, int bps) {
if (data==NULL)
return;
if (bps==16) {
int ix = 0;
unsigned short* sbuffer = (unsigned short*) buffer;
for (int i=0; i<width; i++) {
sbuffer[ix++] = r(row,i);
sbuffer[ix++] = g(row,i);
sbuffer[ix++] = b(row,i);
}
}
else if (bps==8) {
int ix = 0;
for (int i=0; i<width; i++) {
buffer[ix++] = r(row,i) >> 8;
buffer[ix++] = g(row,i) >> 8;
buffer[ix++] = b(row,i) >> 8;
}
}
}
/*
* void Image16::setScanline (int row, unsigned char* buffer, int bps, int minValue[3], int maxValue[3]);
* has not been implemented yet, because as of now, this method is called for IIOSF_FLOAT sample format only
*/
void Image16::setScanline (int row, unsigned char* buffer, int bps, float *minValue, float *maxValue) {
if (data==NULL)
return;
// For optimization purpose, we're assuming that this class never have to provide min/max bound
assert(!minValue);
switch (sampleFormat) {
case (IIOSF_UNSIGNED_CHAR):
{
int ix = 0;
for (int i=0; i<width; i++) {
r(row,i) = (unsigned short)(buffer[ix++]) << 8;
g(row,i) = (unsigned short)(buffer[ix++]) << 8;
b(row,i) = (unsigned short)(buffer[ix++]) << 8;
}
break;
}
case (IIOSF_UNSIGNED_SHORT):
{
unsigned short* sbuffer = (unsigned short*) buffer;
int ix = 0;
for (int i=0; i<width; i++) {
r(row,i) = sbuffer[ix++];
g(row,i) = sbuffer[ix++];
b(row,i) = sbuffer[ix++];
}
break;
}
default:
// Other type are ignored, but could be implemented if necessary
break;
}
/*
* Not used for now
*
*/
}
Image16* Image16::copy () {
Image16* cp = new Image16 (width, height);
copyData(cp);
return cp;
}
void Image16::getStdImage (ColorTemp ctemp, int tran, Imagefloat* image, PreviewProps pp, bool first, procparams::ToneCurveParams hrp)
{
// compute channel multipliers
double drm, dgm, dbm;
ctemp.getMultipliers (drm, dgm, dbm);
float rm=drm,gm=dgm,bm=dbm;
rm = 1.0 / rm;
gm = 1.0 / gm;
bm = 1.0 / bm;
float mul_lum = 0.299*rm + 0.587*gm + 0.114*bm;
rm /= mul_lum;
gm /= mul_lum;
bm /= mul_lum;
int sx1, sy1, sx2, sy2;
transform (pp, tran, sx1, sy1, sx2, sy2);
int imwidth=image->width; // Destination image
int imheight=image->height; // Destination image
if (((tran & TR_ROT) == TR_R90)||((tran & TR_ROT) == TR_R270)) {
int swap = imwidth;
imwidth=imheight;
imheight=swap;
}
int maxx=width; // Source image
int maxy=height; // Source image
int mtran = tran & TR_ROT;
int skip = pp.skip;
//if ((sx1 + skip*imwidth)>maxx) imwidth -- ; // we have a boundary condition that can cause errors
// improve speed by integrating the area division into the multipliers
// switched to using ints for the red/green/blue channel buffer.
// Incidentally this improves accuracy too.
float area=skip*skip;
float rm2=rm;
float gm2=gm;
float bm2=bm;
rm/=area;
gm/=area;
bm/=area;
#define GCLIP( x ) Color::gamma_srgb(CLIP(x))
#ifdef _OPENMP
#pragma omp parallel
{
#endif
AlignedBuffer<float> abR(imwidth);
AlignedBuffer<float> abG(imwidth);
AlignedBuffer<float> abB(imwidth);
float *lineR = abR.data;
float *lineG = abG.data;
float *lineB = abB.data;
#ifdef _OPENMP
#pragma omp for
#endif
// Iterating all the rows of the destination image
for (int iy=0; iy<imheight; iy++) {
if (skip==1) {
// special case (speedup for 1:1 scale)
// i: source image, first line of the current destination row
int src_y=sy1+iy;
// overflow security check, not sure that it's necessary
if (src_y>=maxy)
continue;
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x++) {
// overflow security check, not sure that it's necessary
if (src_x>=maxx)
continue;
lineR[dst_x] = CLIP(rm2*r(src_y, src_x));
lineG[dst_x] = CLIP(gm2*g(src_y, src_x));
lineB[dst_x] = CLIP(bm2*b(src_y, src_x));
}
}
else {
// source image, first line of the current destination row
int src_y=sy1+skip*iy;
if (src_y>=maxy)
continue;
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
if (src_x>=maxx)
continue;
int src_sub_width = MIN(maxx-src_x, skip);
int src_sub_height = MIN(maxy-src_y, skip);
float rtot,gtot,btot; // RGB accumulators
rtot=gtot=btot=0.;
for (int src_sub_y=0; src_sub_y<src_sub_height; src_sub_y++)
for (int src_sub_x=0; src_sub_x<src_sub_width; src_sub_x++) {
rtot += r(src_y+src_sub_y, src_x+src_sub_x);
gtot += g(src_y+src_sub_y, src_x+src_sub_x);
btot += b(src_y+src_sub_y, src_x+src_sub_x);
}
// convert back to gamma and clip
if (src_sub_width == skip && src_sub_height == skip) {
// Common case where the sub-region is complete
lineR[dst_x] = CLIP(rm*rtot);
lineG[dst_x] = CLIP(gm*gtot);
lineB[dst_x] = CLIP(bm*btot);
}
else {
// computing a special factor for this incomplete sub-region
float area = src_sub_width*src_sub_height;
lineR[dst_x] = CLIP(rm2*rtot/area);
lineG[dst_x] = CLIP(gm2*gtot/area);
lineB[dst_x] = CLIP(bm2*btot/area);
}
}
}
if (mtran == TR_NONE)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(iy, dst_x) = lineR[dst_x];
image->g(iy, dst_x) = lineG[dst_x];
image->b(iy, dst_x) = lineB[dst_x];
}
else if (mtran == TR_R180)
for (int dst_x=0; dst_x<imwidth; dst_x++) {
image->r(imheight-1-iy, imwidth-1-dst_x) = lineR[dst_x];
image->g(imheight-1-iy, imwidth-1-dst_x) = lineG[dst_x];
image->b(imheight-1-iy, imwidth-1-dst_x) = lineB[dst_x];
}
else if (mtran == TR_R90)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(dst_x, imheight-1-iy) = lineR[dst_x];
image->g(dst_x, imheight-1-iy) = lineG[dst_x];
image->b(dst_x, imheight-1-iy) = lineB[dst_x];
}
else if (mtran == TR_R270)
for (int dst_x=0,src_x=sx1; dst_x<imwidth; dst_x++,src_x+=skip) {
image->r(imwidth-1-dst_x, iy) = lineR[dst_x];
image->g(imwidth-1-dst_x, iy) = lineG[dst_x];
image->b(imwidth-1-dst_x, iy) = lineB[dst_x];
}
}
#ifdef _OPENMP
}
#endif
#undef GCLIP
}
Image8*
Image16::to8()
{
Image8* img8 = new Image8(width,height);
for ( int h = 0; h < height; ++h )
{
for ( int w = 0; w < width; ++w )
{
img8->r(h, w) = (unsigned char)( r(h,w) >> 8);
img8->g(h, w) = (unsigned char)( g(h,w) >> 8);
img8->b(h, w) = (unsigned char)( b(h,w) >> 8);
}
}
return img8;
}
Imagefloat*
Image16::tofloat()
{
Imagefloat* imgfloat = new Imagefloat(width,height);
for ( int h = 0; h < height; ++h )
{
for ( int w = 0; w < width; ++w )
{
imgfloat->r(h,w) = (float)r(h,w);
imgfloat->g(h,w) = (float)g(h,w);
imgfloat->b(h,w) = (float)b(h,w);
}
}
return imgfloat;
}
// Parallized transformation; create transform with cmsFLAGS_NOCACHE!
void Image16::ExecCMSTransform(cmsHTRANSFORM hTransform) {
//cmsDoTransform(hTransform, data, data, planestride);
// LittleCMS cannot parallelize planar setups -- Hombre: LCMS2.4 can! But it we use this new feature, memory allocation have to be modified too
// so build temporary buffers to allow multi processor execution
#ifdef _OPENMP
#pragma omp parallel
#endif
{
AlignedBuffer<unsigned short> buffer(width*3);
#ifdef _OPENMP
#pragma omp for schedule(static)
#endif
for (int y=0; y<height; y++) {
unsigned short *p=buffer.data, *pR=r(y), *pG=g(y), *pB=b(y);
for (int x=0; x<width; x++) {
*(p++) = *(pR++); *(p++) = *(pG++); *(p++) = *(pB++);
}
cmsDoTransform (hTransform, buffer.data, buffer.data, width);
p=buffer.data; pR=r(y); pG=g(y); pB=b(y);
for (int x=0; x<width; x++) {
*(pR++) = *(p++); *(pG++) = *(p++); *(pB++) = *(p++);
}
} // End of parallelization
}
}