Files
rawTherapee/rtengine/ipwavelet.cc

1308 lines
43 KiB
C++

////////////////////////////////////////////////////////////////
//
//
//
//
// code dated: December , 2014
//
// Ipwaveletcc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// * 2014 Jacques Desmis <jdesmis@gmail.com>
// * 2014 Ingo Weyrich <heckflosse@i-weyrich.de>
//
////////////////////////////////////////////////////////////////
#include <math.h>
#include "../rtgui/threadutils.h"
#include "rtengine.h"
#include "improcfun.h"
#include "LUT.h"
#include "array2D.h"
#include "boxblur.h"
#include "rt_math.h"
#include "mytime.h"
#include "sleef.c"
#include "opthelper.h"
#include "StopWatch.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "cplx_wavelet_dec.h"
#define TS 64 // Tile size
#define offset 25 // shift between tiles
#define fTS ((TS/2+1)) // second dimension of Fourier tiles
#define blkrad 1 // radius of block averaging
#define PIX_SORT(a,b) { if ((a)>(b)) {temp=(a);(a)=(b);(b)=temp;} }
#define med3(a0,a1,a2,a3,a4,a5,a6,a7,a8,median) { \
pp[0]=a0; pp[1]=a1; pp[2]=a2; pp[3]=a3; pp[4]=a4; pp[5]=a5; pp[6]=a6; pp[7]=a7; pp[8]=a8; \
PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \
PIX_SORT(pp[0],pp[1]); PIX_SORT(pp[3],pp[4]); PIX_SORT(pp[6],pp[7]); \
PIX_SORT(pp[1],pp[2]); PIX_SORT(pp[4],pp[5]); PIX_SORT(pp[7],pp[8]); \
PIX_SORT(pp[0],pp[3]); PIX_SORT(pp[5],pp[8]); PIX_SORT(pp[4],pp[7]); \
PIX_SORT(pp[3],pp[6]); PIX_SORT(pp[1],pp[4]); PIX_SORT(pp[2],pp[5]); \
PIX_SORT(pp[4],pp[7]); PIX_SORT(pp[4],pp[2]); PIX_SORT(pp[6],pp[4]); \
PIX_SORT(pp[4],pp[2]); median=pp[4];} //pp4 = median
#define epsilon 0.001f/(TS*TS) //tolerance
namespace rtengine {
extern const Settings* settings;
struct cont_params {
float mul[10];
int chrom;
int chro;
int unif;
float th;
float thH;
float conres;
float conresH;
float chrores;
float sky;
float b_l,t_l,b_r,t_r;
float b_ly,t_ly,b_ry,t_ry;
float b_lsl,t_lsl,b_rsl,t_rsl;
float b_lhl,t_lhl,b_rhl,t_rhl;
float b_lpast,t_lpast,b_rpast,t_rpast;
float b_lsat,t_lsat,b_rsat,t_rsat;
int numlevH, numlevS;
float mulC[9];
float mulopaRG[9];
float mulopaBY[9];
bool curv;
bool opaBY;
bool opaRG;
int CHmet;
bool HSmet;
bool avoi;
};
int wavNestedLevels = 1;
void ImProcFunctions::ip_wavelet(LabImage * lab, LabImage * dst, int kall, const procparams::WaveletParams & waparams, const WavCurve & wavCLVCcurve, const WavOpacityCurveRG & waOpacityCurveRG, const WavOpacityCurveBY & waOpacityCurveBY, int skip)
{
MyTime t1e,t2e;
t1e.set();
#ifdef _DEBUG
// init variables to display Munsell corrections
MunsellDebugInfo* MunsDebugInfo = new MunsellDebugInfo();
#endif
TMatrix wiprof = iccStore->workingSpaceInverseMatrix (params->icm.working);
double wip[3][3] = {
{wiprof[0][0],wiprof[0][1],wiprof[0][2]},
{wiprof[1][0],wiprof[1][1],wiprof[1][2]},
{wiprof[2][0],wiprof[2][1],wiprof[2][2]}
};
const short int imheight=lab->H, imwidth=lab->W;
struct cont_params cp;
cp.avoi=false;
if(params->wavelet.avoid) cp.avoi=true;
int N=imheight*imwidth;
int maxmul=params->wavelet.thres;
cp.curv=false;
cp.opaRG=false;
cp.opaBY=false;
cp.CHmet=0;
cp.HSmet=false;
if(params->wavelet.CHmethod=="with") cp.CHmet=1;
if(params->wavelet.CHmethod=="link") cp.CHmet=2;
if(params->wavelet.HSmethod=="with") cp.HSmet=true;
if(wavCLVCcurve) cp.curv=true;
if(cp.curv) {//convert curve in discret values
cp.mulC[0]=200.f*(wavCLVCcurve[0]-0.5f);
cp.mulC[1]=200.f*(wavCLVCcurve[62]-0.5f);
cp.mulC[2]=200.f*(wavCLVCcurve[125]-0.5f);
cp.mulC[3]=200.f*(wavCLVCcurve[187]-0.5f);
cp.mulC[4]=200.f*(wavCLVCcurve[250]-0.5f);
cp.mulC[5]=200.f*(wavCLVCcurve[312]-0.5f);
cp.mulC[6]=200.f*(wavCLVCcurve[375]-0.5f);
cp.mulC[7]=200.f*(wavCLVCcurve[438]-0.5f);
cp.mulC[8]=200.f*(wavCLVCcurve[500]-0.5f);
}
else {
for(int level=0;level<9;level++)
cp.mulC[level] = 0.f;
}
if(waOpacityCurveRG) cp.opaRG=true;
if(cp.opaRG) {
cp.mulopaRG[0]=200.f*(waOpacityCurveRG[0]-0.5f);
cp.mulopaRG[1]=200.f*(waOpacityCurveRG[62]-0.5f);
cp.mulopaRG[2]=200.f*(waOpacityCurveRG[125]-0.5f);
cp.mulopaRG[3]=200.f*(waOpacityCurveRG[187]-0.5f);
cp.mulopaRG[4]=200.f*(waOpacityCurveRG[250]-0.5f);
cp.mulopaRG[5]=200.f*(waOpacityCurveRG[312]-0.5f);
cp.mulopaRG[6]=200.f*(waOpacityCurveRG[375]-0.5f);
cp.mulopaRG[7]=200.f*(waOpacityCurveRG[438]-0.5f);
cp.mulopaRG[8]=200.f*(waOpacityCurveRG[500]-0.5f);
}
else {
for(int level=0;level<9;level++)
cp.mulopaRG[level] = 0.f;
}
if(waOpacityCurveBY) cp.opaBY=true;
if(cp.opaBY) {
cp.mulopaBY[0]=200.f*(waOpacityCurveBY[0]-0.5f);
cp.mulopaBY[1]=200.f*(waOpacityCurveBY[62]-0.5f);
cp.mulopaBY[2]=200.f*(waOpacityCurveBY[125]-0.5f);
cp.mulopaBY[3]=200.f*(waOpacityCurveBY[187]-0.5f);
cp.mulopaBY[4]=200.f*(waOpacityCurveBY[250]-0.5f);
cp.mulopaBY[5]=200.f*(waOpacityCurveBY[312]-0.5f);
cp.mulopaBY[6]=200.f*(waOpacityCurveBY[375]-0.5f);
cp.mulopaBY[7]=200.f*(waOpacityCurveBY[438]-0.5f);
cp.mulopaBY[8]=200.f*(waOpacityCurveBY[500]-0.5f);
}
else {
for(int level=0;level<9;level++)
cp.mulopaBY[level] = 0.f;
}
for(int m=0;m<maxmul;m++)
cp.mul[m]=waparams.c[m];
cp.mul[9]=(float) waparams.sup;
cp.chro=waparams.chro;
cp.chrom=waparams.chroma;
cp.unif=waparams.unif;
cp.conres=waparams.rescon;
cp.conresH=waparams.resconH;
cp.chrores=waparams.reschro;
cp.th=float(waparams.thr);
cp.thH=float(waparams.thrH);
cp.sky=waparams.sky;
//skin
cp.b_l = static_cast<float>(params->wavelet.hueskin.value[0]) / 100.0f;
cp.t_l = static_cast<float>(params->wavelet.hueskin.value[1]) / 100.0f;
cp.b_r = static_cast<float>(params->wavelet.hueskin.value[2]) / 100.0f;
cp.t_r = static_cast<float>(params->wavelet.hueskin.value[3]) / 100.0f;
cp.b_ly = static_cast<float>(params->wavelet.hueskin2.value[0]) / 100.0f;
cp.t_ly = static_cast<float>(params->wavelet.hueskin2.value[1]) / 100.0f;
cp.b_ry = static_cast<float>(params->wavelet.hueskin2.value[2]) / 100.0f;
cp.t_ry = static_cast<float>(params->wavelet.hueskin2.value[3]) / 100.0f;
cp.numlevH=params->wavelet.threshold;
cp.numlevH=params->wavelet.threshold;
//shadows
cp.b_lsl = static_cast<float>(params->wavelet.bllev.value[0]);
cp.t_lsl = static_cast<float>(params->wavelet.bllev.value[1]);
cp.b_rsl = static_cast<float>(params->wavelet.bllev.value[2]);
cp.t_rsl = static_cast<float>(params->wavelet.bllev.value[3]);
cp.numlevS=params->wavelet.threshold2;
int maxlevS=9-cp.numlevH;
cp.numlevS = MIN(cp.numlevS,maxlevS);
//highlight
cp.b_lhl = static_cast<float>(params->wavelet.hllev.value[0]);
cp.t_lhl = static_cast<float>(params->wavelet.hllev.value[1]);
cp.b_rhl = static_cast<float>(params->wavelet.hllev.value[2]);
cp.t_rhl = static_cast<float>(params->wavelet.hllev.value[3]);
//printf("H=%d S=%d\n",cp.numlevH,cp.numlevS);
//pastel
cp.b_lpast = static_cast<float>(params->wavelet.pastlev.value[0]);
cp.t_lpast = static_cast<float>(params->wavelet.pastlev.value[1]);
cp.b_rpast = static_cast<float>(params->wavelet.pastlev.value[2]);
cp.t_rpast = static_cast<float>(params->wavelet.pastlev.value[3]);
//saturated
cp.b_lsat = static_cast<float>(params->wavelet.satlev.value[0]);
cp.t_lsat = static_cast<float>(params->wavelet.satlev.value[1]);
cp.b_rsat = static_cast<float>(params->wavelet.satlev.value[2]);
cp.t_rsat = static_cast<float>(params->wavelet.satlev.value[3]);
int minwin=min(imwidth,imheight);
int maxlevelcrop=9;
if(cp.mul[9]!=0)
maxlevelcrop=10;
// adap maximum level wavelet to size of crop
if(minwin*skip < 1024) maxlevelcrop = 9;//sampling wavelet 512
if(minwin*skip < 512) maxlevelcrop = 8;//sampling wavelet 256
if(minwin*skip < 256) maxlevelcrop = 7;//sampling 128
if(minwin*skip < 128) maxlevelcrop = 6;
if(minwin < 64) maxlevelcrop = 5;
// printf("minwin=%d maxcrop=%d\n",minwin, maxlevelcrop);
int levwav=params->wavelet.thres;
if(levwav==9 && cp.mul[9]!=0) levwav=10;
levwav=min(maxlevelcrop,levwav);
// determine number of levels to process.
// for(levwav=min(maxlevelcrop,levwav);levwav>0;levwav--)
// if(cp.mul[levwav-1]!=0.f || cp.curv)
// if(cp.mul[levwav-1]!=0.f)
// break;
// I suppress this fonctionality ==> crash for level < 3
if(levwav<1)
return; // nothing to do
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// begin tile processing of image
//output buffer
int realtile;
if(params->wavelet.Tilesmethod=="big") realtile=22;
if(params->wavelet.Tilesmethod=="lit") realtile=12;
int tilesize;
int overlap;
tilesize = 1024;
overlap = 128;
//tilesize=128*params->wavelet.tiles;
tilesize=128*realtile;
//overlap=(int) tilesize*params->wavelet.overl;
overlap=(int) tilesize*0.125f;
// printf("overl=%d\n",overlap);
int numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip;
if(params->wavelet.Tilesmethod=="full") kall=0;
Tile_calc (tilesize, overlap, kall, imwidth, imheight, numtiles_W, numtiles_H, tilewidth, tileheight, tileWskip, tileHskip);
const int numtiles = numtiles_W*numtiles_H;
LabImage * dsttmp;
if(numtiles == 1) {
dsttmp = dst;
} else {
dsttmp = new LabImage(imwidth,imheight);
for (int n=0; n<3*imwidth*imheight; n++) dsttmp->data[n] = 0;
}
//now we have tile dimensions, overlaps
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
int minsizetile=min(tilewidth, tileheight);
int maxlev2=10;
if(minsizetile < 1024 && levwav==10) maxlev2 = 9;
if(minsizetile < 512) maxlev2 = 8;
if(minsizetile < 256) maxlev2 = 7;
if(minsizetile < 128) maxlev2 = 6;
levwav=min(maxlev2,levwav);
//printf("levwav = %d\n",levwav);
int numthreads = 1;
int maxnumberofthreadsforwavelet =0;
//reduce memory for big tile size
if(kall!=0) {
if(realtile <= 22) maxnumberofthreadsforwavelet=2;
if(realtile <= 20) maxnumberofthreadsforwavelet=3;
if(realtile <= 18) maxnumberofthreadsforwavelet=4;
if(realtile <= 16) maxnumberofthreadsforwavelet=6;
if(realtile <= 14) maxnumberofthreadsforwavelet=8;
//printf("maxNRT=%d\n",maxnumberofthreadsforwavelet);
if((maxnumberofthreadsforwavelet==6 || maxnumberofthreadsforwavelet==8) && levwav==10) maxnumberofthreadsforwavelet-=2;
if(levwav <=7 && maxnumberofthreadsforwavelet ==8) maxnumberofthreadsforwavelet=0;
}
//printf("maxthre=%d\n",maxnumberofthreadsforwavelet);
#ifdef _OPENMP
// Calculate number of tiles. If less than omp_get_max_threads(), then limit num_threads to number of tiles
if( options.rgbDenoiseThreadLimit>0)
maxnumberofthreadsforwavelet = min(max(options.rgbDenoiseThreadLimit / 2, 1), maxnumberofthreadsforwavelet);
numthreads = MIN(numtiles,omp_get_max_threads());
if(maxnumberofthreadsforwavelet > 0)
numthreads = MIN(numthreads,maxnumberofthreadsforwavelet);
wavNestedLevels = omp_get_max_threads() / numthreads;
bool oldNested = omp_get_nested();
if(wavNestedLevels < 2)
wavNestedLevels = 1;
else
omp_set_nested(true);
if(maxnumberofthreadsforwavelet > 0)
while(wavNestedLevels*numthreads > maxnumberofthreadsforwavelet)
wavNestedLevels--;
if(settings->verbose)
printf("Ip Wavelet uses %d main thread(s) and up to %d nested thread(s) for each main thread\n",numthreads,wavNestedLevels);
#endif
#pragma omp parallel num_threads(numthreads)
{
float *mean = new float [9];
float *meanN = new float [9];
float *sigma = new float [9];
float *sigmaN = new float [9];
float** varhue = new float*[tileheight];
for (int i=0; i<tileheight; i++)
varhue[i] = new float[tilewidth];
float** varchro = new float*[tileheight];
for (int i=0; i<tileheight; i++)
varchro[i] = new float[tilewidth];
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2)
#endif
for (int tiletop=0; tiletop<imheight; tiletop+=tileHskip) {
for (int tileleft=0; tileleft<imwidth ; tileleft+=tileWskip) {
int tileright = MIN(imwidth,tileleft+tilewidth);
int tilebottom = MIN(imheight,tiletop+tileheight);
int width = tileright-tileleft;
int height = tilebottom-tiletop;
LabImage * labco;
if(numtiles == 1 && !cp.avoi) // untiled processing and no 'Avoid Colour Shift' => we can use output buffer for labco
labco = dst;
else
labco = new LabImage(width,height);
#ifdef _OPENMP
#pragma omp parallel for num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
for (int i=tiletop; i<tilebottom; i++) {
int i1 = i - tiletop;
for (int j=tileleft; j<tileright; j++) {
int j1 = j - tileleft;
float L=lab->L[i][j];
float a=lab->a[i][j];
float b=lab->b[i][j];
labco->L[i1][j1] = L;
labco->a[i1][j1] = a;
labco->b[i1][j1] = b;
varhue[i1][j1]=xatan2f(b,a);
varchro[i1][j1]=(sqrt(a*a+b*b))/327.68f;
}
}
//to avoid artifacts in blue sky
if(params->wavelet.median) {
float** tmL;
int wid=labco->W;
int hei=labco->H;
int borderL = 1;
tmL = new float*[hei];
for (int i=0; i<hei; i++)
tmL[i] = new float[wid];
for(int i = borderL; i < hei-borderL; i++ ) {
for(int j = borderL; j < wid-borderL; j++) {
tmL[i][j] = labco->L[i][j];
}
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
for (int i=1; i<hei-1; i++) {
float pp[9],temp;
for (int j=1; j<wid-1; j++) {
if((varhue[i][j] < -1.3f && varhue[i][j] > - 2.6f) && (varchro[i][j] > 15.f && varchro[i][j] < 55.f) && labco->L[i][j] > 5000.f) //blue sky + med3x3 ==> after for more effect use denoise
med3(labco->L[i][j] ,labco->L[i-1][j], labco->L[i+1][j] ,labco->L[i][j+1],labco->L[i][j-1], labco->L[i-1][j-1],labco->L[i-1][j+1],labco->L[i+1][j-1],labco->L[i+1][j+1],tmL[i][j]);//3x3
}
}
for(int i = borderL; i < hei-borderL; i++ ) {
for(int j = borderL; j < wid-borderL; j++) {
labco->L[i][j] = tmL[i][j];
}
}
for (int i=0; i<hei; i++)
delete [] tmL[i];
delete [] tmL;
// end blue sky
}
if(params->wavelet.skinprotect != 0.0 || (cp.curv && cp.CHmet!=2)) // reduce the arrays to get faster access in following processing
for (int i=0; i<(tileheight)/2; i++) {
for (int j=0; j<(tilewidth)/2; j++) {
varhue[i][j]=varhue[i*2][j*2];
}
}
int datalen = labco->W * labco->H;
wavelet_decomposition* Ldecomp = new wavelet_decomposition (labco->data, labco->W, labco->H, levwav, 1, skip, max(1,wavNestedLevels) );
if(!Ldecomp->memoryAllocationFailed) {
WaveletcontAllL(labco, varhue, varchro, *Ldecomp, cp);
Ldecomp->reconstruct(labco->data);
}
delete Ldecomp;
wavelet_decomposition* adecomp = new wavelet_decomposition (labco->data+datalen, labco->W, labco->H,levwav, 1, skip, max(1,wavNestedLevels) );
if(!adecomp->memoryAllocationFailed) {
WaveletcontAllAB(labco, varhue, varchro, *adecomp, cp, true);
adecomp->reconstruct(labco->data+datalen);
}
delete adecomp;
wavelet_decomposition* bdecomp = new wavelet_decomposition (labco->data+2*datalen, labco->W, labco->H, levwav, 1, skip, max(1,wavNestedLevels) );
if(!bdecomp->memoryAllocationFailed) {
WaveletcontAllAB(labco, varhue, varchro, *bdecomp, cp, false);
bdecomp->reconstruct(labco->data+2*datalen);
}
delete bdecomp;
if(numtiles > 1 || (numtiles == 1 && cp.avoi)) {
//calculate mask for feathering output tile overlaps
float Vmask[height+overlap] ALIGNED16;
float Hmask[width+overlap] ALIGNED16;
if(numtiles > 1) {
for (int i=0; i<height; i++) {
Vmask[i] = 1;
}
for (int j=0; j<width; j++) {
Hmask[j] = 1;
}
for (int i=0; i<overlap; i++) {
float mask = SQR(sin((M_PI*i)/(2*overlap)));
if (tiletop>0) Vmask[i] = mask;
if (tilebottom<imheight) Vmask[height-i] = mask;
if (tileleft>0) Hmask[i] = mask;
if (tileright<imwidth) Hmask[width-i] = mask;
}
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
for (int i=tiletop; i<tilebottom; i++){
int i1 = i-tiletop;
float X,Y,Z,L,a,b;
for (int j=tileleft; j<tileright; j++) {
int j1=j-tileleft;
L = labco->L[i1][j1];
a = labco->a[i1][j1];
b = labco->b[i1][j1];
if(cp.avoi){//Gamut and Munsell
float HH=xatan2f(b,a);
float Chprov1=sqrt(SQR(a/327.68f) + SQR(b/327.68f));
float Lprov1=L/327.68f;
float Lprov2 = lab->L[i][j]/327.68f;
float memChprov=varchro[i1][j1];
bool highlight = params->toneCurve.hrenabled;
float R,G,B;
#ifdef _DEBUG
bool neg=false;
bool more_rgb=false;
Color::gamutLchonly(HH,Lprov1,Chprov1, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb);
#else
Color::gamutLchonly(HH,Lprov1,Chprov1, R, G, B, wip, highlight, 0.15f, 0.96f);
#endif
L=Lprov1*327.68f;
float2 sincosv = xsincosf(HH);
a=327.68f*Chprov1*sincosv.y;//gamut
b=327.68f*Chprov1*sincosv.x;//gamut
{
float correctionHue=0.0f; // Munsell's correction
float correctlum=0.0f;
Lprov1=L/327.68f;
float Chprov=sqrt(SQR(a/327.68f)+ SQR(b/327.68f));
#ifdef _DEBUG
Color::AllMunsellLch(true, Lprov1,Lprov2,HH,Chprov,memChprov,correctionHue,correctlum, MunsDebugInfo);
#else
Color::AllMunsellLch(true, Lprov1,Lprov2,HH,Chprov,memChprov,correctionHue,correctlum);
#endif
if(fabs(correctionHue) < 0.015f) HH+=correctlum; // correct only if correct Munsell chroma very little.
float2 sincosval = xsincosf(HH+correctionHue);
a=327.68f*Chprov*sincosval.y;// apply Munsell
b=327.68f*Chprov*sincosval.x;//aply Munsell
}
}
if(numtiles > 1) {
float factor = Vmask[i1]*Hmask[j1];
dsttmp->L[i][j]+= factor*L;
dsttmp->a[i][j]+= factor*a;
dsttmp->b[i][j]+= factor*b;
} else {
dsttmp->L[i][j] = L;
dsttmp->a[i][j] = a;
dsttmp->b[i][j] = b;
}
}
}
}
if(numtiles>1 || cp.avoi)
delete labco;
}
}
for (int i=0; i<tileheight; i++)
delete [] varhue[i];
delete [] varhue;
for (int i=0; i<tileheight; i++)
delete [] varchro[i];
delete [] varchro;
delete [] mean;
delete [] meanN;
delete [] sigma;
delete [] sigmaN;
}
#ifdef _OPENMP
omp_set_nested(oldNested);
#endif
if(numtiles > 1) {
dst->CopyFrom(dsttmp);
delete dsttmp;
}
if (settings->verbose) {
t2e.set();
printf("Wavelet performed in %d usec:\n", t2e.etime(t1e));
}
}//end o
#undef TS
#undef fTS
#undef offset
#undef epsilon
void ImProcFunctions::Aver( float * RESTRICT DataList, int datalen, float &averagePlus, float &averageNeg, float &max, float &min) {
//find absolute mean
int averaP=0, averaN=0, count=0, countP=0, countN=0;
max=0.f;min=0.f;
averagePlus=0.f;averageNeg=0.f;
while (count<datalen) {
if(DataList[count] >= 0.f) {averaP += abs((int)DataList[count]);
if(abs((int)DataList[count])> max) max=abs((int)DataList[count]);
countP++;
}
if(DataList[count] < 0.f) {averaN += abs((int)DataList[count]);
if(abs((int)DataList[count])> min) min=abs((int)DataList[count]);
countN++;
}
count++;
}
averagePlus=averaP/countP;
averageNeg=averaN/countN;
}
void ImProcFunctions::Sigma( float * RESTRICT DataList, int datalen, float averagePlus, float averageNeg, float &sigmaPlus, float &sigmaNeg) {
int count=0, countP=0, countN=0;
float variP=0.f,variN=0.f;
while (count<datalen) {
if(DataList[count] >= 0.f) {variP += SQR(DataList[count] - averagePlus);
countP++;
}
else if(DataList[count] < 0.f) {variN += SQR(DataList[count] - averageNeg);
countN++;
}
count++;
}
sigmaPlus=sqrt(variP/countP);
sigmaNeg=sqrt(variN/countN);
}
void ImProcFunctions::Evaluate(wavelet_decomposition &WaveletCoeffs_L, wavelet_decomposition &WaveletCoeffs_a,
wavelet_decomposition &WaveletCoeffs_b, float *av_LL, float *av_aa, float *av_bb,struct cont_params cp, int ind, float *mean, float *meanN, float *sigma, float *sigmaN){
int maxlvl = WaveletCoeffs_L.maxlevel();
for (int lvl=0; lvl<maxlvl; lvl++) {
int Wlvl_L = WaveletCoeffs_L.level_W(lvl);
int Hlvl_L = WaveletCoeffs_L.level_H(lvl);
int Wlvl_ab = WaveletCoeffs_a.level_W(lvl);
int Hlvl_ab = WaveletCoeffs_a.level_H(lvl);
int skip_L = WaveletCoeffs_L.level_stride(lvl);
int skip_ab = WaveletCoeffs_a.level_stride(lvl);
float ** WavCoeffs_L = WaveletCoeffs_L.level_coeffs(lvl);
float ** WavCoeffs_a = WaveletCoeffs_a.level_coeffs(lvl);
float ** WavCoeffs_b = WaveletCoeffs_b.level_coeffs(lvl);
Eval (WavCoeffs_L, WavCoeffs_a, WavCoeffs_b, lvl, cp, Wlvl_L, Hlvl_L, Wlvl_ab, Hlvl_ab,skip_L, skip_ab, av_LL, av_aa, av_bb, ind, mean, meanN, sigma, sigmaN);
}
}
void ImProcFunctions::Eval (float ** WavCoeffs_L, float ** WavCoeffs_a, float ** WavCoeffs_b, int level,struct cont_params cp,
int W_L, int H_L, int W_ab, int H_ab,int skip_L, int skip_ab, float * av_LL, float * av_aa, float * av_bb, int ind, float *mean, float *meanN, float *sigma, float *sigmaN)
{
const float eps = 0.01f;
float ava[4], avb[4], avLP[4], avLN[4];
float maxL[4], minL[4], maxa[4], maxb[4];
float sigP[4], sigN[4];
float AvL,AvN,SL,SN;
float thr= params->wavelet.thres;
for (int dir=1; dir<4; dir++) {
{
float averagePlus=0.f,averageNeg=0.f, max, min;
// Aver(WavCoeffs_L[dir], W_L*H_L, averagePlus, averageNeg, max, min);
Aver(WavCoeffs_b[dir], W_L*H_L, averagePlus, averageNeg, max, min);
avLP[dir] = fabs(averagePlus);
avLN[dir] = -fabs(averageNeg);
maxL[dir] = max;
minL[dir] = -min;
float sigmaPlus, sigmaNeg;
Sigma(WavCoeffs_b[dir], W_L*H_L, avLP[dir], -avLN[dir], sigmaPlus, sigmaNeg);
sigP[dir]=sigmaPlus;
sigN[dir]=sigmaNeg;
// printf("dir=%d level=%d avLP=%f max=%f avLN=%f min=%f sigP=%f sigN=%f\n",dir,level,avLP[dir] ,maxL[dir], avLN[dir] ,minL[dir], sigP[dir], sigN[dir]);
}
}
AvL=0.f;AvN=0.f;SL=0.f;SN=0.f;
for (int dir=1; dir<4; dir++) {
AvL +=avLP[dir];
AvN +=avLN[dir];
SL +=sigP[dir];
SN +=sigN[dir];
}
AvL/=3;
AvN/=3;
SL/=3;
SN/=3;
mean[level]=AvL;
meanN[level]=AvN;
sigma[level]=SL;
sigmaN[level]=SN;
printf("Ind=%d Level=%d AvL=%f AvN=%f SL=%f SN=%f\n",ind, level,mean[level],meanN[level],sigma[level],sigmaN[level]);
}
void ImProcFunctions::WaveletcontAllL(LabImage * labco, float ** varhue, float **varchrom, wavelet_decomposition &WaveletCoeffs_L,
struct cont_params cp){
int maxlvl = WaveletCoeffs_L.maxlevel();
int W_L = WaveletCoeffs_L.level_W(1);
int H_L = WaveletCoeffs_L.level_H(1);
float * WavCoeffs_L0 = WaveletCoeffs_L.coeff0;
float maxh=2.5f;//amplification contrast above mean
float maxl=2.5f; //reduction contrast under mean
float contrast=cp.unif;
float multL=(float)contrast*(maxl-1.f)/100.f + 1.f;
float multH=(float) contrast*(maxh-1.f)/100.f + 1.f;
double avedbl=0.f; // use double precision for big summations
#ifdef _OPENMP
#pragma omp parallel for reduction(+:avedbl) num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
for (int i=0; i<W_L*H_L; i++) {
avedbl += WavCoeffs_L0[i];
}
float ave = avedbl / (double)(W_L*H_L);
float av=ave/327.68f;
float ah=(multH-1.f)/(av-100.f);//av ==> lumaref
float bh=1.f-100.f*ah;
float al=(multL-1.f)/av;
float bl=1.f;
float factorx=1.f;
#ifdef _OPENMP
#pragma omp parallel num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for (int i=0; i<W_L*H_L; i++) {//contrast
if(WavCoeffs_L0[i] < 32768.f) {
float prov;
if( WavCoeffs_L0[i]> ave) {
float kh = ah*(WavCoeffs_L0[i]/327.68f)+bh;
prov=WavCoeffs_L0[i];
WavCoeffs_L0[i]=ave+kh*(WavCoeffs_L0[i]-ave);
} else {
float kl = al*(WavCoeffs_L0[i]/327.68f)+1.f;
prov=WavCoeffs_L0[i];
WavCoeffs_L0[i]=ave-kl*(ave-WavCoeffs_L0[i]);
}
float diflc=WavCoeffs_L0[i]-prov;
diflc*=factorx;
WavCoeffs_L0[i] = prov + diflc;
}
}
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int i=0; i<W_L*H_L; i++) {
int ii = i/W_L;
int jj = i-ii*W_L;
float LL = labco->L[ii*2][jj*2];
float LL100 = LL/327.68f;
float tran = 5.f;//transition
//shadow
float alp=3.f;//increase contrast sahdow in lowlights between 1 and ??
if(cp.th > (100.f-tran))
tran=100.f-cp.th;
if(LL100 < cp.th){
float aalp=(1.f-alp)/cp.th;//no changes for LL100 = cp.th
float kk=aalp*LL100+alp;
WavCoeffs_L0[i] *= (1.f+kk*cp.conres/200.f);
}
else if(LL100 < cp.th + tran) {
float ath = -cp.conres/tran;
float bth = cp.conres-ath*cp.th;
WavCoeffs_L0[i] *= (1.f+(LL100*ath+bth)/200.f);
}
//highlight
tran=5.f;
if(cp.thH < (tran))
tran = cp.thH;
if(LL100 > cp.thH)
WavCoeffs_L0[i] *= (1.f+cp.conresH/200.f);
else if(LL100 > (cp.thH - tran)) {
float athH = cp.conresH/tran;
float bthH = cp.conresH-athH*cp.thH;
WavCoeffs_L0[i] *= (1.f+(LL100*athH+bthH)/200.f);
}
}
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2)
#endif
for (int dir=1; dir<4; dir++) {
for (int lvl=0; lvl<maxlvl; lvl++) {
int Wlvl_L = WaveletCoeffs_L.level_W(lvl);
int Hlvl_L = WaveletCoeffs_L.level_H(lvl);
float ** WavCoeffs_L = WaveletCoeffs_L.level_coeffs(lvl);
ContAllL (labco, varhue, varchrom, WavCoeffs_L, WavCoeffs_L0, lvl, dir, cp, Wlvl_L, Hlvl_L);
}
}
}
}
void ImProcFunctions::WaveletcontAllAB(LabImage * labco, float ** varhue, float **varchrom, wavelet_decomposition &WaveletCoeffs_ab,
struct cont_params cp, const bool useChannelA){
int maxlvl = WaveletCoeffs_ab.maxlevel();
int W_L = WaveletCoeffs_ab.level_W(1);
int H_L = WaveletCoeffs_ab.level_H(1);
float * WavCoeffs_ab0 = WaveletCoeffs_ab.coeff0;
#ifdef _OPENMP
#pragma omp parallel num_threads(wavNestedLevels) if(wavNestedLevels>1)
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int i=0; i<W_L*H_L; i++) {
const float skyprot = cp.sky;
//chroma
int ii = i/W_L;
int jj = i-ii*W_L;
float modhue = varhue[ii][jj];
float scale=1.f;
if(skyprot > 0.f){
if((modhue < cp.t_ry && modhue > cp.t_ly)) {
scale=(100.f-cp.sky)/100.1f;
} else if((modhue >= cp.t_ry && modhue < cp.b_ry)) {
scale=(100.f-cp.sky)/100.1f;
float ar=(scale-1.f)/(cp.t_ry- cp.b_ry);
float br=scale-cp.t_ry*ar;
scale=ar*modhue+br;
} else if((modhue > cp.b_ly && modhue < cp.t_ly)) {
scale=(100.f-cp.sky)/100.1f;
float al=(scale-1.f)/(-cp.b_ly + cp.t_ly);
float bl=scale-cp.t_ly*al;
scale=al*modhue+bl;
}
} else if(skyprot < 0.f){
if((modhue > cp.t_ry || modhue < cp.t_ly)){
scale=(100.f+cp.sky)/100.1f;
}
/* else if((modhue >= cp.t_ry && modhue < cp.b_ry)) {
scale=(100.f+cp.sky)/100.1f;
float ar=(scale-1.f)/(cp.t_ry- cp.b_ry);
float br=scale-cp.t_ry*ar;
scale=ar*modhue+br;
}
else if((modhue > cp.b_ly && modhue < cp.t_ly)) {
scale=(100.f+cp.sky)/100.1f;
float al=(scale-1.f)/(-cp.b_ly + cp.t_ly);
float bl=scale-cp.t_ly*al;
scale=al*modhue+bl;
}
*/
}
WavCoeffs_ab0[i]*=(1.f+cp.chrores*(scale)/100.f);
}
#ifdef _OPENMP
#pragma omp for schedule(dynamic) collapse(2)
#endif
for (int dir=1; dir<4; dir++) {
for (int lvl=0; lvl<maxlvl; lvl++) {
int Wlvl_ab = WaveletCoeffs_ab.level_W(lvl);
int Hlvl_ab = WaveletCoeffs_ab.level_H(lvl);
int skip_ab = WaveletCoeffs_ab.level_stride(lvl);
//printf("lev=%d skipL=%d skipab=%d\n",lvl, skip_L,skip_ab);
float ** WavCoeffs_ab = WaveletCoeffs_ab.level_coeffs(lvl);
ContAllAB (labco, varhue, varchrom, WavCoeffs_ab, WavCoeffs_ab0, lvl, dir, cp, Wlvl_ab, Hlvl_ab, useChannelA);
}
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void ImProcFunctions::ContAllL (LabImage * labco, float ** varhue, float **varchrom, float ** WavCoeffs_L, float * WavCoeffs_L0, int level, int dir, struct cont_params cp,
int W_L, int H_L)
{
const float eps = 0.01f;
//float thr= params->wavelet.thres;
float cpMul = cp.mul[level];
if(cpMul != 0.f) { // cpMul == 0.f means all will be multiplied by 1.f, so we can skip this
const float skinprot = params->wavelet.skinprotect;
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg/100.f);
//to adjust increase contrast with local contrast
//for each pixel
// float k[8]={0.85f, 0.7f, 0.55f, 0.4f, 0.3f, 0.25f, 0.2f, 0.1f};//values to tested with several images
float k[9]={0.95f, 0.85f, 0.7f, 0.6f, 0.45f, 0.3f, 0.2f, 0.15f, 0.1f};//values to tested with several images
//float meath[8]={700.f, 1400.f, 1900.f, 2200.f, 2800.f, 3500.f, 4500.f, 6000.f};//values to tested with several images
float meath[9]={1000.f, 1500.f, 2000.f, 2500.f, 3000.f, 3500.f, 4000.f, 4500.f, 6000.f};//values to tested with several images
float ampli[9]={1.2f, 1.4f, 1.7f, 2.2f, 2.5f, 3.f, 3.5f, 4.f, 4.5f};
float mea[9];
float tr=cp.th;//suppress 2 slider
tr=90.f;
for(int j=0;j<9;j++) mea[j]=meath[j]*(1.f+(ampli[j]-1.f)*(tr/100.f));
//
//float uni=(float) cp.unif;
float uni = 95.f;
float bbet=1.f;
float abet[9];
for(int h=0;h<9;h++) abet[h]=((k[h]-1.f)/100.f)*uni+bbet;
float beta;
bool skinControl = (skinprot != 0.f);
bool useChromAndHue = (skinprot != 0.f || cp.HSmet);
float modchro, kLlev;
for (int i=0; i<W_L*H_L; i++) {
kLlev=1.f;
if(cpMul<0.f) {
beta=1.f;// disabled for negatives values "less contrast"
} else {
float WavCL = fabsf(WavCoeffs_L[dir][i]);
if(WavCL < 30.f) beta=0.6f;//preserve very low contrast (sky...)
else if(WavCL < 100.f) beta=0.8f;
else if(WavCL < mea[0]) beta=1.f;//no changes
else if(WavCL < mea[1]) beta=abet[0];//linear regression
else if(WavCL < mea[2]) beta=abet[1];
else if(WavCL < mea[3]) beta=abet[2];
else if(WavCL < mea[4]) beta=abet[3];
else if(WavCL < mea[5]) beta=abet[4];
else if(WavCL < mea[6]) beta=abet[5];
else if(WavCL < mea[7]) beta=abet[6];
else if(WavCL < mea[8]) beta=abet[7];
// next condition is automatically true, so skip the if
else beta=abet[8];
}
float scale = 1.f;
float LL100;
if(useChromAndHue) {
int ii=i/W_L;
int jj=i-ii*W_L;
float LL = labco->L[ii*2][jj*2];
LL100=LL/327.68f;
float modhue = varhue[ii][jj];
modchro = varchrom[ii*2][jj*2];
// hue chroma skin with initial lab datas
scale=1.f;
if(skinprot > 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprot, scale, true, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 0); //0 for skin and extand
} else if(skinprot < 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprotneg, scale, false, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 0);
if (scale == 1.f)
scale=factorHard;
else
scale=1.f;
}
}
//linear transition HL
float alpha = (1024.f + 15.f *(float) cpMul*scale*beta)/1024.f ;
if(cp.HSmet){
float aaal=(1.f-alpha)/(cp.b_lhl-cp.t_lhl);
float bbal=1.f-aaal*cp.b_lhl;
float aaar=(alpha-1.f)/(cp.t_rhl-cp.b_rhl);
float bbbr=1.f-cp.b_rhl*aaar;
//linear transition Shadows
float aaalS=(1.f-alpha)/(cp.b_lsl-cp.t_lsl);
float bbalS=1.f-aaalS*cp.b_lsl;
float aaarS=(alpha-1.f)/(cp.t_rsl-cp.b_rsl);
float bbbrS=1.f-cp.b_rsl*aaarS;
if(level <=cp.numlevH) {//in function of levels
if((LL100 > cp.t_lhl && LL100 < cp.t_rhl)) kLlev=alpha;
else if((LL100 > cp.b_lhl && LL100 <= cp.t_lhl)) kLlev=aaal*LL100+bbal;
else if((LL100 > cp.t_rhl && LL100 <= cp.b_rhl)) kLlev=aaar*LL100+bbbr;
else kLlev=1.f;
}
if(level >=(9-cp.numlevS)) {
if((LL100 > cp.t_lsl && LL100 < cp.t_rsl)) kLlev=alpha;
else if((LL100 > cp.b_lsl && LL100 <= cp.t_lsl)) kLlev=aaalS*LL100+bbalS;
else if((LL100 > cp.t_rsl && LL100 <= cp.b_rsl)) kLlev=aaarS*LL100+bbbrS;
else kLlev=1.f;
} else
kLlev=alpha;
}
else kLlev=alpha;
WavCoeffs_L[dir][i]*=(kLlev);
}
}
// to see each level of wavelet ...level from 0 to 7
int choicelevel=0;
if(params->wavelet.Lmethod=="0_") choicelevel=0;
else if(params->wavelet.Lmethod=="1_") choicelevel=1;
else if(params->wavelet.Lmethod=="2_") choicelevel=2;
else if(params->wavelet.Lmethod=="3_") choicelevel=3;
else if(params->wavelet.Lmethod=="4_") choicelevel=4;
else if(params->wavelet.Lmethod=="5_") choicelevel=5;
else if(params->wavelet.Lmethod=="6_") choicelevel=6;
else if(params->wavelet.Lmethod=="7_") choicelevel=7;
else if(params->wavelet.Lmethod=="8_") choicelevel=8;
int choiceClevel=0;
if(params->wavelet.CLmethod=="one") choiceClevel=0;
else if(params->wavelet.CLmethod=="inf") choiceClevel=1;
else if(params->wavelet.CLmethod=="sup") choiceClevel=2;
else if(params->wavelet.CLmethod=="all") choiceClevel=3;
int choiceDir=0;
if(params->wavelet.Dirmethod=="one") choiceDir=1;
else if(params->wavelet.Dirmethod=="two") choiceDir=2;
else if(params->wavelet.Dirmethod=="thr") choiceDir=3;
else if(params->wavelet.Dirmethod=="all") choiceDir=0;
// printf("LUm lev=%d clev=%d dir=%d\n",choicelevel,choiceClevel,choiceDir);
if(choiceClevel==0){
if(choiceDir==0){
if(level != choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_L*H_L; i++) {
WavCoeffs_L[dir][i] =0.f;
WavCoeffs_L0[i] =0.f;
}
}
}
}
else {
if(level != choicelevel){
for (int i=0; i<W_L*H_L; i++) {
WavCoeffs_L0[i] =0.f;
if(choiceDir==1) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==2) {WavCoeffs_L[1][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==3) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[1][i] =0.f;}
}
}
}
}
else if (choiceClevel==1){
if(choiceDir==0){
if(level >= choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_L*H_L; i++) {
WavCoeffs_L[dir][i] =0.f;
WavCoeffs_L0[i] =0.f;
}
}
}
}
else {
if(level >= choicelevel){
for (int i=0; i<W_L*H_L; i++) {
WavCoeffs_L0[i] =0.f;
if(choiceDir==1) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==2) {WavCoeffs_L[1][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==3) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[1][i] =0.f;}
}
}
}
}
else if (choiceClevel==2){
if(choiceDir==0){
if(level <= choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_L*H_L; i++) {
WavCoeffs_L[dir][i] =0.f;
}
}
}
}
else {
if(level <= choicelevel){
for (int i=0; i<W_L*H_L; i++) {
if(choiceDir==1) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==2) {WavCoeffs_L[1][i] =0.f;WavCoeffs_L[3][i] =0.f;}
else if(choiceDir==3) {WavCoeffs_L[2][i] =0.f;WavCoeffs_L[1][i] =0.f;}
}
}
}
}
}
void ImProcFunctions::ContAllAB (LabImage * labco, float ** varhue, float **varchrom, float ** WavCoeffs_ab, float * WavCoeffs_ab0, int level, int dir, struct cont_params cp,
int W_ab, int H_ab, const bool useChannelA)
{
const float eps = 0.01f;
//float thr= params->wavelet.thres;
float cpMul = cp.mul[level];
if(cpMul != 0.f && cp.CHmet==2 && cp.chro != 0.f) { // cpMul == 0.f means all will be multiplied by 1.f, so we can skip this
const float skinprot = params->wavelet.skinprotect;
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg/100.f);
const float cpChrom = cp.chro;
//to adjust increase contrast with local contrast
bool useChromAndHue = (skinprot != 0.f);
float modchro;
for (int i=0; i<W_ab*H_ab; i++) {
float scale = 1.f;
float scaleSK = 1.f ;
if(useChromAndHue) {
int ii=i/W_ab;
int jj=i-ii*W_ab;
float LL = labco->L[ii*2][jj*2];
float LL100=LL/327.68f;
float modhue = varhue[ii][jj];
modchro = varchrom[ii*2][jj*2];
// hue chroma skin with initial lab datas
scale=1.f;
if(skinprot > 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprot, scale, true, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 0); //0 for skin and extand
} else if(skinprot < 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprotneg, scale, false, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 0);
if (scale == 1.f)
scale=factorHard;
else
scale=1.f;
}
}
float alphaC =(1024.f + 15.f *cpMul*cpChrom*scale*scaleSK/50.f)/1024.f ;
WavCoeffs_ab[dir][i]*=alphaC;
}
}
//Curve chro
bool useOpacity;
float mulOpacity;
if(useChannelA) {
useOpacity = cp.opaRG;
mulOpacity = cp.mulopaRG[level];
}
else {
useOpacity = cp.opaBY;
mulOpacity = cp.mulopaBY[level];
}
if(cp.curv && cp.CHmet!=2 && level < 9) {
float modchro, modhue, kLlev, kClev;
float cpMulC = cp.mulC[level];
const float skinprot = params->wavelet.skinprotect;
const float skinprotneg = -skinprot;
const float factorHard = (1.f - skinprotneg/100.f);
bool skinControl = (skinprot != 0.f);
for (int i=0; i<W_ab*H_ab; i++) {
int ii=i/W_ab;
int jj=i-ii*W_ab;
//WL and W_ab are identical
float LL = labco->L[ii*2][jj*2];
float LL100=LL/327.68f;
float scale=1.f;
modchro = varchrom[ii*2][jj*2];
float modhue = varhue[ii][jj];
if(skinControl) {
// hue chroma skin with initial lab datas
modhue = varhue[ii][jj];
scale=1.f;
if(skinprot > 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprot, scale, true, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 1); //1 for curve
}
else if(skinprot < 0.f){
Color::SkinSatCbdl2 (LL100, modhue, modchro, skinprotneg, scale, false, cp.b_l, cp.t_l, cp.t_r, cp.b_r, 1);
if (scale == 1.f) { scale=factorHard;}
else scale=1.f;
}
}
float scaleSK =1.f;
float beta = (1024.f + 20.f *(float) cpMulC*scale*scaleSK)/1024.f ;
if(beta < 0.02f) beta=0.02f;
//linear for saturated
float aaal=(1.f-beta)/(cp.b_lsat-cp.t_lsat);
float bbal=1.f-aaal*cp.b_lsat;
float aaar=(beta-1.f)/(cp.t_rsat-cp.b_rsat);
float bbbr=1.f-cp.b_rsat*aaar;
//linear for pastel
float aaalS=(1.f-beta)/(cp.b_lpast-cp.t_lpast);
float bbalS=1.f-aaalS*cp.b_lpast;
float aaarS=(beta-1.f)/(cp.t_rpast-cp.b_rpast);
float bbbrS=1.f-cp.b_rpast*aaarS;
kClev=beta;
if(cp.CHmet==1){
if(level < cp.chrom) {
if((modchro > cp.t_lsat && modchro < cp.t_rsat)) kClev=beta;
else if((modchro > cp.b_lsat && modchro <= cp.t_lsat)) kClev=aaal*modchro+bbal;
else if((modchro > cp.t_rsat && modchro <= cp.b_rsat)) kClev=aaar*modchro+bbbr;
else kClev=1.f;
}
if(level >= cp.chrom) {
if((modchro > cp.t_lpast && modchro < cp.t_rpast)) kClev=beta;
else if((modchro > cp.b_lpast && modchro <= cp.t_lpast)) kClev=aaalS*modchro+bbalS;
else if((modchro > cp.t_rpast && modchro <= cp.b_rpast)) kClev=aaarS*modchro+bbbrS;
else kClev=1.f;
}
}
else if(cp.CHmet==0)kClev=beta;
WavCoeffs_ab[dir][i]*=kClev;
}
}
if(useOpacity && level < 9) { //toning
float betaRG = (1024.f + 20.f *(float) mulOpacity)/1024.f ;
for (int i=0; i<W_ab*H_ab; i++)
WavCoeffs_ab[dir][i]*=betaRG;
}
// to see each level of wavelet ...level from 0 to 7
int choicelevel=0;
if(params->wavelet.Lmethod=="0_") choicelevel=0;
else if(params->wavelet.Lmethod=="1_") choicelevel=1;
else if(params->wavelet.Lmethod=="2_") choicelevel=2;
else if(params->wavelet.Lmethod=="3_") choicelevel=3;
else if(params->wavelet.Lmethod=="4_") choicelevel=4;
else if(params->wavelet.Lmethod=="5_") choicelevel=5;
else if(params->wavelet.Lmethod=="6_") choicelevel=6;
else if(params->wavelet.Lmethod=="7_") choicelevel=7;
else if(params->wavelet.Lmethod=="8_") choicelevel=8;
int choiceClevel=0;
if(params->wavelet.CLmethod=="one") choiceClevel=0;
else if(params->wavelet.CLmethod=="inf") choiceClevel=1;
else if(params->wavelet.CLmethod=="sup") choiceClevel=2;
else if(params->wavelet.CLmethod=="all") choiceClevel=3;
int choiceDir=0;
if(params->wavelet.Dirmethod=="one") choiceDir=1;
else if(params->wavelet.Dirmethod=="two") choiceDir=2;
else if(params->wavelet.Dirmethod=="thr") choiceDir=3;
else if(params->wavelet.Dirmethod=="all") choiceDir=0;
// printf("CHRO lev=%d clev=%d dir=%d\n",choicelevel,choiceClevel,choiceDir);
if(choiceClevel==0){
if(choiceDir==0){
if(level != choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_ab*H_ab; i++) {
WavCoeffs_ab0[i] =0.f;
}
}
}
}
else {
if(level != choicelevel){
for (int i=0; i<W_ab*H_ab; i++) {
WavCoeffs_ab0[i] =0.f;
}
}
}
}
else if (choiceClevel==1){
if(choiceDir==0){
if(level >= choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_ab*H_ab; i++) {
WavCoeffs_ab0[i] =0.f;
}
}
}
}
else {
if(level >= choicelevel){
for (int i=0; i<W_ab*H_ab; i++) {
WavCoeffs_ab0[i] =0.f;
}
}
}
}
else if (choiceClevel==2){
if(choiceDir==0){
if(level <= choicelevel){
for (int dir=1; dir<4; dir++) {
for (int i=0; i<W_ab*H_ab; i++) {
WavCoeffs_ab[dir][i] =0.f;
}
}
}
}
else {
if(level <= choicelevel){
for (int i=0; i<W_ab*H_ab; i++) {
if(choiceDir==1) {WavCoeffs_ab[2][i] =0.f;WavCoeffs_ab[3][i] =0.f;}
else if(choiceDir==2) {WavCoeffs_ab[1][i] =0.f;WavCoeffs_ab[3][i] =0.f;}
else if(choiceDir==3) {WavCoeffs_ab[2][i] =0.f;WavCoeffs_ab[1][i] =0.f;}
}
}
}
}
}
}