rawTherapee/rtengine/green_equil_RT.cc

199 lines
6.2 KiB
C++

// CFA pixel cleaning via directional average
// © Emil Martinec
// 2/18/2010
#define TS 256 // Tile size
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define SQR(x) ((x)*(x))
//void green_equilibrate()//for dcraw implementation
void RawImageSource::green_equilibrate(float thresh)
{
// local variables
static const int border=8;
static const int border2=16;
static const int v1=TS, v2=2*TS, v3=3*TS, /*v4=4*TS,*/ p1=-TS+1, p2=-2*TS+2, p3=-3*TS+3, m1=TS+1, m2=2*TS+2, m3=3*TS+3;
int height=H, width=W; //for RT only
int top, left;
int verbose=1;
static const float eps=1.0; //tolerance to avoid dividing by zero
//static const float thresh=0.03; //threshold for performing green equilibration; max percentage difference of G1 vs G2
// G1-G2 differences larger than this will be assumed to be Nyquist texture, and left untouched
static const float diffthresh=0.25; //threshold for texture, not to be equilibrated
/*double dt;
clock_t t1, t2;
//clock_t t1_main, t2_main = 0;
// start
if (verbose) fprintf (stderr,_("Green equilibration ...\n"));
t1 = clock();*/
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Fill G interpolated values with border interpolation and input values
// Main algorithm: Tile loop
//#pragma omp parallel for shared(image,height,width) private(top,left) schedule(dynamic)
for (top=0; top < height-border; top += TS-border2)
for (left=0; left < width-border; left += TS-border2) {
int bottom = MIN( top+TS,height);
int right = MIN(left+TS, width);
int numrows = bottom - top;
int numcols = right - left;
int row, col;
int rr, cc, c, indx;
int vote1, vote2;
float val1;
float gin, gse, gsw, gne, gnw, wtse, wtsw, wtne, wtnw;
float gu, gd, gl, gr;
float mcorr, pcorr;
float ginterp;
float diffvarh, diffvarv, hvwt;
char *buffer; // TS*TS*16
float (*cfa); // TS*TS*4
float (*checker); // TS*TS*4
float (*gvar); // TS*TS*4
float (*gdiffv); // TS*TS*4
float (*gdiffh); // TS*TS*4
/* assign working space */
buffer = (char *) malloc(5*sizeof(float)*TS*TS);
//merror(buffer,"green_equil()");
memset(buffer,0,5*sizeof(float)*TS*TS);
cfa = (float (*)) buffer;
checker = (float (*)) (buffer + sizeof(float)*TS*TS);
gvar = (float (*)) (buffer + 2*sizeof(float)*TS*TS);
gdiffv = (float (*)) (buffer + 3*sizeof(float)*TS*TS);
gdiffh = (float (*)) (buffer + 4*sizeof(float)*TS*TS);
/*float cfa[TS*TS];
float checker[TS*TS]; //this memory allocation crashes RT
float gvar[TS*TS];
memset( (void *)&cfa[0], 0 ,sizeof(cfa) );*/
// rgb from input CFA data
/* rgb values should be floating point number between 0 and 1
after white balance multipliers are applied */
for (rr=0; rr < numrows; rr++)
for (row=rr+top, cc=0; cc < numcols; cc++) {
col = cc+left;
//cfa[rr*TS+cc] = image[row*width+col][FC(row,col)];//for dcraw implementation
cfa[rr*TS+cc] = rawData[row][col];
}
//The green equilibration algorithm starts here
for (rr=2; rr < numrows-2; rr++)
//for (cc=3-(FC(rr,2)&1), indx=rr*TS+cc; cc < numcols-2; cc+=2, indx+=2) {
for (indx=rr*TS+2; indx < rr*TS+numcols-2; indx++) {
if (FC(rr,indx)&1) {
pcorr = (cfa[indx+p1]-cfa[indx])*(cfa[indx-p1]-cfa[indx]);
mcorr = (cfa[indx+m1]-cfa[indx])*(cfa[indx-m1]-cfa[indx]);
if (pcorr>0 && mcorr>0) {checker[indx]=1;} else {checker[indx]=0;}
//checker[indx]=1;//test what happens if we always interpolate
} else {
gu=cfa[indx-v1]+0.5*(cfa[indx]-cfa[indx-v2]);
gd=cfa[indx+v1]+0.5*(cfa[indx]-cfa[indx+v2]);
gl=cfa[indx-1]+0.5*(cfa[indx]-cfa[indx-2]);
gr=cfa[indx+1]+0.5*(cfa[indx]-cfa[indx+2]);
gdiffh[indx] = SQR((gl-gr)/(eps+gl+gr));
gdiffv[indx] = SQR((gu-gd)/(eps+gu+gd));
//gvar[indx] = 0.25*(gu*gu+gd*gd+gl*gl+gr*gr)-SQR(0.25*(gu+gd+gl+gr));
}
}
//now smooth the cfa data
for (rr=6; rr < numrows-6; rr++)
for (cc=7-(FC(rr,2)&1), indx=rr*TS+cc; cc < numcols-6; cc+=2, indx+=2) {
if (checker[indx]) {
diffvarh = eps+(gdiffh[indx-v1]+gdiffh[indx-1]+gdiffh[indx+1]+gdiffh[indx+v1]);
diffvarv = eps+(gdiffv[indx-v1]+gdiffv[indx-1]+gdiffv[indx+1]+gdiffv[indx+v1]);
hvwt = fabs(diffvarv-diffvarh)/(diffvarv+diffvarh);
vote1=(checker[indx-v2]+checker[indx-2]+checker[indx+2]+checker[indx+v2]);
vote2=(checker[indx-m1]+checker[indx+p1]+checker[indx-p1]+checker[indx+m1]);
if (vote1>0 && vote2>0 && hvwt<diffthresh) {
//pixel interpolation
gin=cfa[indx];
gse=(cfa[indx+m1])+0.5*(cfa[indx]-cfa[indx+m2]);
gnw=(cfa[indx-m1])+0.5*(cfa[indx]-cfa[indx-m2]);
gne=(cfa[indx+p1])+0.5*(cfa[indx]-cfa[indx+p2]);
gsw=(cfa[indx-p1])+0.5*(cfa[indx]-cfa[indx-p2]);
wtse=1/(eps+SQR(cfa[indx+m2]-cfa[indx])+SQR(cfa[indx+m3]-cfa[indx+m1]));
wtnw=1/(eps+SQR(cfa[indx-m2]-cfa[indx])+SQR(cfa[indx-m3]-cfa[indx-m1]));
wtne=1/(eps+SQR(cfa[indx+p2]-cfa[indx])+SQR(cfa[indx+p3]-cfa[indx+p1]));
wtsw=1/(eps+SQR(cfa[indx-p2]-cfa[indx])+SQR(cfa[indx-p3]-cfa[indx-p1]));
ginterp=(gse*wtse+gnw*wtnw+gne*wtne+gsw*wtsw)/(wtse+wtnw+wtne+wtsw);
if (/*(SQR(ginterp-gin) > 0.125*(gvar[indx-1]+gvar[indx+1]+gvar[indx-v1]+gvar[indx+v1])) &&*/ ((ginterp-gin) < thresh*(ginterp+gin)) ) {
cfa[indx]=0.5*(ginterp+gin);
}
}
}
}
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// copy smoothed results back to image matrix
for (rr=border; rr < numrows-border; rr++)
for (row=rr+top, cc=border+1-(FC(rr,2)&1), indx=rr*TS+cc; cc < numcols-border; cc+=2, indx+=2) {
if (cfa[indx]<1) continue;
col = cc + left;
//c = FC(row,col);
//image[row*width + col][c] = CLIP((int)(cfa[indx] + 0.5)); //for dcraw implementation
rawData[row][col] = CLIP((int)(cfa[indx] + 0.5));
}
// clean up
free(buffer);
}
// done
/*t2 = clock();
dt = ((double)(t2-t1)) / CLOCKS_PER_SEC;
if (verbose) {
fprintf(stderr,_("elapsed time = %5.3fs\n"),dt);
}*/
}
#undef TS