rawTherapee/rtengine/ipresize.cc

1172 lines
38 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#include "improcfun.h"
#include "alignedbuffer.h"
#include "color.h"
#include "imagefloat.h"
#include "labimage.h"
#include "opthelper.h"
#include "rt_math.h"
#include "procparams.h"
#include "sleef.h"
//#define PROFILE
#ifdef PROFILE
# include <iostream>
#endif
namespace
{
using ProcParams = rtengine::procparams::ProcParams;
using FramingParams = rtengine::procparams::FramingParams;
using Basis = FramingParams::Basis;
using BorderSizing = FramingParams::BorderSizing;
using FramingMethod = FramingParams::FramingMethod;
enum class Orientation { LANDSCAPE, PORTRAIT };
enum class Side { WIDTH, HEIGHT };
struct Dimensions {
double width;
double height;
Dimensions() : width(0), height(0) {}
Dimensions(double w, double h) : width(w), height(h) {}
bool isDegenerate() const { return width <= 0.0 || height <= 0.0; }
double aspectRatio() const {
if (isDegenerate()) return 1.0;
else return static_cast<double>(width) / static_cast<double>(height);
}
Orientation orient() const {
return width >= height ? Orientation::LANDSCAPE : Orientation::PORTRAIT;
}
bool inside(const Dimensions& other) const {
return width <= other.width && height <= other.height;
}
void rotate(Orientation newOrient) {
if (newOrient != orient()) {
std::swap(width, height);
}
}
bool operator==(const Dimensions& other) const {
return width == other.width && height == other.height;
}
bool operator!=(const Dimensions& other) const { return !(*this == other); }
Dimensions intersect(const Dimensions& other) const {
return Dimensions(std::min(width, other.width), std::min(height, other.height));
}
void debug(const char* prefix) const {
printf("%s w=%f h=%f ar=%f\n", prefix, width, height, aspectRatio());
}
};
struct ResizeArgs {
Dimensions size;
double scale = 1.0;
ResizeArgs(const Dimensions& aSize, double aScale) : size(aSize), scale(aScale) {}
};
class Framing {
public:
Framing(const ProcParams& params, int fullWidth, int fullHeight);
ResizeArgs adjustResizeForFraming(const ResizeArgs& resize) const;
Dimensions computeFramedSize(const Dimensions& imgSize) const;
private:
Dimensions clampResize(const Dimensions& imgSize, const Dimensions& bounds) const;
ResizeArgs adjustResize(const ResizeArgs& resize, const Dimensions& newSize) const;
Dimensions computeRelativeImageBBoxInFrame(const Dimensions& imgSize,
const Dimensions& framedSize) const;
Dimensions computeUniformRelativeImageBBox(const Dimensions& imgSize,
const Dimensions& framedSize) const;
ResizeArgs resizeForFixedFrame(const ResizeArgs& resize) const;
ResizeArgs resizeForBBox(const ResizeArgs& resize) const;
Dimensions computeSizeWithBorders(const Dimensions& imgSize) const;
const ProcParams& allParams;
const FramingParams framing; // Make a copy to sanitize inputs
const Dimensions postCropImageSize;
const Dimensions maxUpscalingBBox;
};
// Downscaling limit is 32x32px
constexpr double MIN_DOWNSCALE_PX = 32.0;
// Upscaling limit is 16x image size
constexpr double MAX_UPSCALE_FACTOR = 16.0;
int computeSize(int dim, double scale)
{
return static_cast<int>(static_cast<double>(dim) * scale + 0.5);
}
Orientation orient(const FramingParams& params, const Dimensions& imgSize) {
switch (params.orientation) {
case FramingParams::Orientation::LANDSCAPE:
return Orientation::LANDSCAPE;
case FramingParams::Orientation::PORTRAIT:
return Orientation::PORTRAIT;
case FramingParams::Orientation::AS_IMAGE:
default:
return imgSize.orient();
}
}
double flipAspectRatioByOrientation(double aspectRatio, Orientation orient)
{
switch (orient) {
case Orientation::LANDSCAPE:
return aspectRatio >= 1.0 ? aspectRatio : 1.0 / aspectRatio;
case Orientation::PORTRAIT:
return aspectRatio <= 1.0 ? aspectRatio : 1.0 / aspectRatio;
default:
return aspectRatio;
}
}
Side autoPickBasis(const FramingParams& params, const Dimensions& imgSize)
{
if (imgSize.isDegenerate()) {
if (imgSize.width <= 0) return Side::HEIGHT;
else return Side::WIDTH;
}
Orientation imgOrient = imgSize.orient();
double imgAspectRatio = imgSize.aspectRatio();
Orientation frameOrient = orient(params, imgSize);
double frameAspectRatio = flipAspectRatioByOrientation(params.aspectRatio, frameOrient);
if (frameOrient == imgOrient) {
// Pick the more constrained side (i.e. hits 0 border width first)
return imgAspectRatio >= frameAspectRatio ? Side::WIDTH : Side::HEIGHT;
} else if (imgOrient == Orientation::LANDSCAPE) {
// Image in landscape, frame in portrait
return Side::WIDTH;
} else {
// Image in portrait, frame in landscape
return Side::HEIGHT;
}
}
Side pickReferenceSide(const FramingParams& params, const Dimensions& imgSize)
{
switch (params.basis) {
case Basis::WIDTH:
return Side::WIDTH;
case Basis::HEIGHT:
return Side::HEIGHT;
case Basis::LONG:
return imgSize.width >= imgSize.height ? Side::WIDTH : Side::HEIGHT;
case Basis::SHORT:
return imgSize.width <= imgSize.height ? Side::WIDTH : Side::HEIGHT;
case Basis::AUTO:
default:
return autoPickBasis(params, imgSize);
}
}
constexpr bool INSIDE_BBOX = true;
constexpr bool OUTSIDE_BBOX = false;
Dimensions clampToBBox(const Dimensions& img, const Dimensions& bbox, bool clampInside) {
double widthScale = 1.0;
double heightScale = 1.0;
if (bbox.width > 0) {
widthScale = img.width / bbox.width;
}
if (bbox.height > 0) {
heightScale = img.height / bbox.height;
}
Dimensions newSize = img;
if (clampInside) {
// If a side exceeds the bbox, scale down to bbox
double scale = std::max(widthScale, heightScale);
if (scale > 1.0) {
if (widthScale >= heightScale) {
newSize.width = bbox.width;
newSize.height = img.height / widthScale;
} else {
newSize.width = img.width / heightScale;
newSize.height = bbox.height;
}
}
} else {
// If a side is within the bbox, scale up to bbox
double scale = std::min(widthScale, heightScale);
if (scale < 1.0) {
if (widthScale <= heightScale) {
newSize.width = bbox.width;
newSize.height = img.height / widthScale;
} else {
newSize.width = img.width / heightScale;
newSize.height = bbox.height;
}
}
}
return newSize;
}
Dimensions downscaleToTouchBBox(const Dimensions& img, const Dimensions& bbox) {
if (bbox.isDegenerate()) return Dimensions(0, 0);
if (!bbox.inside(img)) return img;
double widthScale = img.width / bbox.width;
double heightScale = img.height / bbox.height;
Dimensions downscaled;
if (widthScale <= heightScale) {
downscaled.width = bbox.width;
downscaled.height = img.height / widthScale;
} else {
downscaled.height = bbox.height;
downscaled.width = img.width / heightScale;
}
return downscaled;
}
Dimensions upscaleToBBox(const Dimensions& img, const Dimensions& bbox) {
if (bbox.isDegenerate()) return Dimensions(0, 0);
if (!img.inside(bbox)) return img;
double widthScale = img.width / bbox.width;
double heightScale = img.height / bbox.height;
Dimensions upscaled;
if (widthScale >= heightScale) {
upscaled.width = bbox.width;
upscaled.height = img.height / widthScale;
} else {
upscaled.height = bbox.height;
upscaled.width = img.width / heightScale;
}
return upscaled;
}
double orientAspectRatio(const FramingParams& framing, const Dimensions& imgSize)
{
double aspectRatio = framing.aspectRatio;
if (aspectRatio == FramingParams::AS_IMAGE_ASPECT_RATIO) {
aspectRatio = imgSize.aspectRatio();
}
Orientation borderOrient = orient(framing, imgSize);
if ((borderOrient == Orientation::PORTRAIT && aspectRatio > 1.0) ||
(borderOrient == Orientation::LANDSCAPE && aspectRatio < 1.0)) {
aspectRatio = 1.0 / aspectRatio;
}
return aspectRatio;
}
Dimensions fromAspectRatio(const Dimensions& size, double aspectRatio)
{
Dimensions result;
if (aspectRatio >= 1.0) {
result.height = size.height;
result.width = result.height * aspectRatio;
} else {
result.width = size.width;
result.height = result.width / aspectRatio;
}
return result;
}
FramingParams sanitize(const FramingParams& dirty)
{
FramingParams framing = dirty;
framing.framedWidth = std::max(static_cast<int>(MIN_DOWNSCALE_PX), framing.framedWidth);
framing.framedHeight = std::max(static_cast<int>(MIN_DOWNSCALE_PX), framing.framedHeight);
framing.relativeBorderSize = std::max(0.0, std::min(1.0, framing.relativeBorderSize));
framing.minWidth = std::max(0, framing.minWidth);
framing.minHeight = std::max(0, framing.minHeight);
framing.absWidth = std::max(0, framing.absWidth);
framing.absHeight = std::max(0, framing.absHeight);
return framing;
}
Framing::Framing(const ProcParams& params, int fullWidth, int fullHeight) :
allParams(params),
framing(sanitize(params.framing)),
postCropImageSize(params.crop.enabled ?
Dimensions(params.crop.w, params.crop.h) :
Dimensions(fullWidth, fullHeight)),
maxUpscalingBBox(Dimensions(
computeSize(postCropImageSize.width, MAX_UPSCALE_FACTOR),
computeSize(postCropImageSize.height, MAX_UPSCALE_FACTOR)))
{
}
Dimensions Framing::clampResize(const Dimensions& imgSize, const Dimensions& bounds) const
{
// Don't adjust above upscaling limit.
//
// If the upscaling limit is contained inside the target bounds, scale
// down the bounds to outside the upscaling limit. This is needed since
// scaling the bounds to fit inside the upscaling bbox may artificially
// reduce the upscaling limit due to aspect ratio differences.
Dimensions clampedBounds = maxUpscalingBBox.inside(bounds) ?
downscaleToTouchBBox(bounds, maxUpscalingBBox) :
clampToBBox(bounds, maxUpscalingBBox, INSIDE_BBOX);
if (!imgSize.inside(clampedBounds)) {
// Downscale large images to fit inside bounds (only if above limit)
Dimensions minSize(MIN_DOWNSCALE_PX, MIN_DOWNSCALE_PX);
if (!minSize.inside(imgSize)) {
// Skip images below downscaling limit
return imgSize;
} else if (!minSize.inside(clampedBounds)) {
// Go as small as possible without exceeding downscaling limit
return downscaleToTouchBBox(imgSize, minSize);
} else {
// Downscale large images to fit inside bounds
return clampToBBox(imgSize, clampedBounds, INSIDE_BBOX);
}
} else {
// Consider upscaling...
if (!framing.allowUpscaling ||
imgSize.width == clampedBounds.width ||
imgSize.height == clampedBounds.height) {
return imgSize;
} else {
return upscaleToBBox(imgSize, clampedBounds);
}
}
}
ResizeArgs Framing::adjustResize(const ResizeArgs& resize, const Dimensions& bbox) const
{
Dimensions newSize = clampResize(resize.size, bbox);
double newScale = newSize.width / postCropImageSize.width;
return ResizeArgs(newSize, newScale);
}
Dimensions Framing::computeRelativeImageBBoxInFrame(const Dimensions& imgSize,
const Dimensions& framedSize) const
{
if (imgSize.isDegenerate() || framedSize.isDegenerate()) {
return Dimensions(0, 0);
}
double imgAspectRatio = imgSize.aspectRatio();
// Compute the width:height ratio of the border size for the requested
// image size and framed size.
//
// We do this by creating a dummy image. Then, scale the framed size to be
// larger than the dummy image such that there is a non-zero difference for
// widths and heights.
double borderAspectRatio = [&]()
{
Dimensions fakeImage = fromAspectRatio(framedSize, imgAspectRatio);
Dimensions bigFrame = clampToBBox(framedSize, fakeImage, OUTSIDE_BBOX);
bigFrame.width *= 2.0;
bigFrame.height *= 2.0;
Dimensions diff(bigFrame.width - fakeImage.width, bigFrame.height - fakeImage.height);
return diff.aspectRatio();
}();
Side side = pickReferenceSide(framing, imgSize);
double scale = framing.relativeBorderSize;
// Compute image and border lengths on basis side
double frameBasis = side == Side::WIDTH ? framedSize.width : framedSize.height;
double frameOther = side == Side::WIDTH ? framedSize.height : framedSize.width;
// frame_len = img_len + 2 * scale * img_len = (1 + 2 * scale) * img_len
double imgFrameScale = (1.0 + 2.0 * scale);
double imgBasis = frameBasis / imgFrameScale;
// border_len = (scale * img_len)
// = frame_len / (1 / scale + 2)
// = frame_len * scale / (1 + 2 * scale)
double borderBasis = frameBasis * scale / imgFrameScale;
// Compute image and border lengths for the non-basis side
double imgBasisToOther = side == Side::WIDTH ? 1.0 / imgAspectRatio : imgAspectRatio;
double borderBasisToOther = side == Side::WIDTH ? 1.0 / borderAspectRatio : borderAspectRatio;
double imgOther = imgBasis * imgBasisToOther;
double borderOther = borderBasis * borderBasisToOther;
// Find the maximum allowed image size considering min size limits
double maxImageBasis = frameBasis;
double maxImageOther = frameOther;
if (framing.minSizeEnabled) {
double minBorderBasis = static_cast<double>(
side == Side::WIDTH ? framing.minWidth : framing.minHeight);
double minBorderOther = static_cast<double>(
side == Side::WIDTH ? framing.minHeight : framing.minWidth);
if (borderOther < minBorderOther) {
maxImageOther = std::floor(frameOther - 2.0 * minBorderOther);
}
if (borderBasis < minBorderBasis) {
maxImageBasis = std::floor(frameBasis - 2.0 * minBorderBasis);
}
}
// Image is too large to satisfy requirements:
// a. Min border size limit not satisfied
// b. Basis size is too small for the requested aspect ratio
// (i.e. original image clipped)
//
// Resize the image so that it fits in bounds
if (imgOther > maxImageOther) {
imgOther = maxImageOther;
imgBasis = imgOther / imgBasisToOther;
}
if (imgBasis > maxImageBasis) {
imgBasis = maxImageBasis;
imgOther = imgBasis * imgBasisToOther;
}
if (side == Side::WIDTH) {
return Dimensions(imgBasis, imgOther);
} else {
return Dimensions(imgOther, imgBasis);
}
}
Dimensions Framing::computeUniformRelativeImageBBox(const Dimensions& imgSize,
const Dimensions& framedSize) const
{
auto length = [](double frame, double border) {
return std::max(0.0, frame - 2.0 * border);
};
Side side = pickReferenceSide(framing, imgSize);
double scale = framing.relativeBorderSize;
double minBorderWidth = 0;
double minBorderHeight = 0;
if (side == Side::WIDTH) {
minBorderWidth = scale * framedSize.width;
if (framing.minSizeEnabled && minBorderWidth < framing.minWidth) {
minBorderWidth = framing.minWidth;
}
} else {
minBorderHeight = scale * framedSize.height;
if (framing.minSizeEnabled && minBorderHeight < framing.minHeight) {
minBorderHeight = framing.minHeight;
}
}
Dimensions bbox = {
length(framedSize.width, minBorderWidth),
length(framedSize.height, minBorderHeight)
};
return bbox;
}
ResizeArgs Framing::adjustResizeForFraming(const ResizeArgs& resize) const
{
if (!framing.enabled) return resize;
switch (framing.framingMethod) {
case FramingMethod::BBOX:
return resizeForBBox(resize);
case FramingMethod::FIXED_SIZE:
return resizeForFixedFrame(resize);
case FramingMethod::STANDARD:
default:
// No limits on framed size so do nothing
return resize;
}
}
ResizeArgs Framing::resizeForFixedFrame(const ResizeArgs& args) const
{
double framedWidth = framing.framedWidth;
double framedHeight = framing.framedHeight;
Dimensions frameSize(framedWidth, framedHeight);
Dimensions bbox;
if (framing.borderSizingMethod == BorderSizing::FIXED_SIZE) {
auto length = [](double frame, double border) {
return std::max(0.0, frame - 2.0 * border);
};
bbox = {
length(framedWidth, framing.absWidth),
length(framedHeight, framing.absHeight)
};
} else if (framing.borderSizingMethod == BorderSizing::UNIFORM_PERCENTAGE) {
bbox = computeUniformRelativeImageBBox(args.size, frameSize);
} else {
bbox = computeRelativeImageBBoxInFrame(args.size, frameSize);
}
return adjustResize(args, bbox);
}
ResizeArgs Framing::resizeForBBox(const ResizeArgs& args) const
{
Dimensions boundary(framing.framedWidth, framing.framedHeight);
Dimensions bbox;
if (framing.borderSizingMethod == BorderSizing::FIXED_SIZE) {
auto length = [](double frame, double border) {
return std::max(0.0, frame - 2.0 * border);
};
bbox = {
length(boundary.width, framing.absWidth),
length(boundary.height, framing.absHeight)
};
} else if (framing.borderSizingMethod == BorderSizing::UNIFORM_PERCENTAGE) {
bbox = computeUniformRelativeImageBBox(args.size, boundary);
} else {
// For the requested aspect ratio, it must fit inside the requested
// bounding box
double aspectRatio = orientAspectRatio(framing, args.size);
Dimensions ratioBBox = fromAspectRatio(boundary, aspectRatio);
ratioBBox = clampToBBox(ratioBBox, boundary, INSIDE_BBOX);
// Now we have the true max bounds for the framed image. Determine how the
// original image fits inside these bounds. This process is the same as
// in the fixed frame mode.
bbox = computeRelativeImageBBoxInFrame(args.size, ratioBBox);
}
return adjustResize(args, bbox);
}
Dimensions Framing::computeFramedSize(const Dimensions& imgSize) const
{
if (!framing.enabled) return imgSize;
// For constrained frame sizes, check if the image size (without frame)
// exceeds the constrained size. This indicates that a combination of
// parameters caused the downscaling limit to be hit. In which case,
// just return the original image size (i.e. don't insert border).
//
// If the image fits the constrained size, assume that previous resize
// calculations were correct and trim off any excess borders. The excess
// may be from rounding errors or hitting some downscaling limit.
switch (framing.framingMethod) {
case FramingMethod::BBOX:
{
Dimensions fixed(framing.framedWidth, framing.framedHeight);
if (imgSize.inside(fixed)) {
Dimensions framedSize = computeSizeWithBorders(imgSize);
return clampToBBox(framedSize, fixed, INSIDE_BBOX);
} else {
return imgSize;
}
}
case FramingMethod::FIXED_SIZE:
{
Dimensions fixed(framing.framedWidth, framing.framedHeight);
return imgSize.inside(fixed) ? fixed : imgSize;
}
case FramingMethod::STANDARD:
default:
return computeSizeWithBorders(imgSize);
}
}
Dimensions Framing::computeSizeWithBorders(const Dimensions& imgSize) const
{
if (framing.borderSizingMethod == BorderSizing::FIXED_SIZE) {
return Dimensions(imgSize.width + 2.0 * framing.absWidth,
imgSize.height + 2.0 * framing.absHeight);
}
Side side = pickReferenceSide(framing, imgSize);
double scale = framing.relativeBorderSize;
if (framing.borderSizingMethod == BorderSizing::UNIFORM_PERCENTAGE) {
double borderSize = 0;
if (side == Side::WIDTH) {
borderSize = scale * imgSize.width;
if (framing.minSizeEnabled && borderSize < framing.minWidth) {
borderSize = framing.minWidth;
}
} else {
borderSize = scale * imgSize.width;
if (framing.minSizeEnabled && borderSize < framing.minHeight) {
borderSize = framing.minHeight;
}
}
return Dimensions(imgSize.width + 2.0 * borderSize,
imgSize.height + 2.0 * borderSize);
}
double aspectRatio = orientAspectRatio(framing, imgSize);
Dimensions framedSize;
if (side == Side::WIDTH) {
framedSize.width = (1.0 + 2.0 * scale) * imgSize.width;
framedSize.height = framedSize.width / aspectRatio;
} else {
framedSize.height = (1.0 + 2.0 * scale) * imgSize.height;
framedSize.width = framedSize.height * aspectRatio;
}
// Check if the computed frame size satsifies the requested aspect ratio
// without cutting off the original image. If the image is cut off, use
// the smallest frame that preserves the original image and still
// satisfies the requested aspect ratio.
Dimensions minFramedSize = fromAspectRatio(imgSize, aspectRatio);
if (framing.minSizeEnabled) {
Dimensions limit = imgSize;
limit.width += 2.0 * framing.minWidth;
limit.height += 2.0 * framing.minHeight;
minFramedSize = clampToBBox(minFramedSize, limit, OUTSIDE_BBOX);
}
if (minFramedSize.inside(framedSize)) {
return framedSize;
} else {
return minFramedSize;
}
}
} // namespace
namespace rtengine
{
static inline float Lanc (float x, float a)
{
if (x * x < 1e-6f) {
return 1.0f;
} else if (x * x > a * a) {
return 0.0f;
} else {
x = static_cast<float> (rtengine::RT_PI) * x;
return a * xsinf (x) * xsinf (x / a) / (x * x);
}
}
void ImProcFunctions::Lanczos (const Imagefloat* src, Imagefloat* dst, float scale)
{
const float delta = 1.0f / scale;
const float a = 3.0f;
const float sc = min (scale, 1.0f);
const int support = static_cast<int> (2.0f * a / sc) + 1;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// storage for precomputed parameters for horisontal interpolation
float * wwh = new float[support * dst->getWidth()];
int * jj0 = new int[dst->getWidth()];
int * jj1 = new int[dst->getWidth()];
// temporal storage for vertically-interpolated row of pixels
float * lr = new float[src->getWidth()];
float * lg = new float[src->getWidth()];
float * lb = new float[src->getWidth()];
// Phase 1: precompute coefficients for horisontal interpolation
for (int j = 0; j < dst->getWidth(); j++) {
// x coord of the center of pixel on src image
float x0 = (static_cast<float> (j) + 0.5f) * delta - 0.5f;
// weights for interpolation in horisontal direction
float * w = wwh + j * support;
// sum of weights used for normalization
float ws = 0.0f;
jj0[j] = max (0, static_cast<int> (floorf (x0 - a / sc)) + 1);
jj1[j] = min (src->getWidth(), static_cast<int> (floorf (x0 + a / sc)) + 1);
// calculate weights
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
float z = sc * (x0 - static_cast<float> (jj));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
}
// Phase 2: do actual interpolation
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < dst->getHeight(); i++) {
// y coord of the center of pixel on src image
float y0 = (static_cast<float> (i) + 0.5f) * delta - 0.5f;
// weights for interpolation in y direction
float w[support];
for (auto& f : w) {
f = 0.f;
}
// sum of weights used for normalization
float ws = 0.0f;
int ii0 = max (0, static_cast<int> (floorf (y0 - a / sc)) + 1);
int ii1 = min (src->getHeight(), static_cast<int> (floorf (y0 + a / sc)) + 1);
// calculate weights for vertical interpolation
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
float z = sc * (y0 - static_cast<float> (ii));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
// Do vertical interpolation. Store results.
for (int j = 0; j < src->getWidth(); j++) {
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
r += w[k] * src->r (ii, j);
g += w[k] * src->g (ii, j);
b += w[k] * src->b (ii, j);
}
lr[j] = r;
lg[j] = g;
lb[j] = b;
}
// Do horizontal interpolation
for (int j = 0; j < dst->getWidth(); j++) {
float * wh = wwh + support * j;
float r = 0.0f, g = 0.0f, b = 0.0f;
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
r += wh[k] * lr[jj];
g += wh[k] * lg[jj];
b += wh[k] * lb[jj];
}
dst->r (i, j) = /*CLIP*/ (r);//static_cast<int> (r));
dst->g (i, j) = /*CLIP*/ (g);//static_cast<int> (g));
dst->b (i, j) = /*CLIP*/ (b);//static_cast<int> (b));
}
}
delete[] wwh;
delete[] jj0;
delete[] jj1;
delete[] lr;
delete[] lg;
delete[] lb;
}
}
void ImProcFunctions::Lanczos (const LabImage* src, LabImage* dst, float scale)
{
const float delta = 1.0f / scale;
constexpr float a = 3.0f;
const float sc = min(scale, 1.0f);
const int support = static_cast<int> (2.0f * a / sc) + 1;
// storage for precomputed parameters for horizontal interpolation
float* const wwh = new float[support * dst->W];
int* const jj0 = new int[dst->W];
int* const jj1 = new int[dst->W];
// Phase 1: precompute coefficients for horizontal interpolation
for (int j = 0; j < dst->W; j++) {
// x coord of the center of pixel on src image
float x0 = (static_cast<float> (j) + 0.5f) * delta - 0.5f;
// weights for interpolation in horizontal direction
float * w = wwh + j * support;
// sum of weights used for normalization
float ws = 0.0f;
jj0[j] = max (0, static_cast<int> (floorf (x0 - a / sc)) + 1);
jj1[j] = min (src->W, static_cast<int> (floorf (x0 + a / sc)) + 1);
// calculate weights
for (int jj = jj0[j]; jj < jj1[j]; jj++) {
int k = jj - jj0[j];
float z = sc * (x0 - static_cast<float> (jj));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// temporal storage for vertically-interpolated row of pixels
AlignedBuffer<float> aligned_buffer_ll(src->W);
AlignedBuffer<float> aligned_buffer_la(src->W);
AlignedBuffer<float> aligned_buffer_lb(src->W);
float* const lL = aligned_buffer_ll.data;
float* const la = aligned_buffer_la.data;
float* const lb = aligned_buffer_lb.data;
// weights for interpolation in y direction
float w[support] ALIGNED64;
memset(w, 0, sizeof(w));
// Phase 2: do actual interpolation
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < dst->H; i++) {
// y coord of the center of pixel on src image
float y0 = (static_cast<float> (i) + 0.5f) * delta - 0.5f;
// sum of weights used for normalization
float ws = 0.0f;
int ii0 = max (0, static_cast<int> (floorf (y0 - a / sc)) + 1);
int ii1 = min (src->H, static_cast<int> (floorf (y0 + a / sc)) + 1);
// calculate weights for vertical interpolation
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
float z = sc * (y0 - static_cast<float> (ii));
w[k] = Lanc (z, a);
ws += w[k];
}
// normalize weights
for (int k = 0; k < support; k++) {
w[k] /= ws;
}
// Do vertical interpolation. Store results.
int j = 0;
#ifdef __SSE2__
__m128 Lv, av, bv, wkv;
for (j = 0; j < src->W - 3; j += 4) {
Lv = ZEROV;
av = ZEROV;
bv = ZEROV;
for (int ii = ii0; ii < ii1; ii++) {
int k = ii - ii0;
wkv = F2V(w[k]);
Lv += wkv * LVFU(src->L[ii][j]);
av += wkv * LVFU(src->a[ii][j]);
bv += wkv * LVFU(src->b[ii][j]);
}
STVF(lL[j], Lv);
STVF(la[j], av);
STVF(lb[j], bv);
}
#endif
for (; j < src->W; ++j) {
float Ll = 0.0f, La = 0.0f, Lb = 0.0f;
for (int ii = ii0; ii < ii1; ++ii) {
int k = ii - ii0;
Ll += w[k] * src->L[ii][j];
La += w[k] * src->a[ii][j];
Lb += w[k] * src->b[ii][j];
}
lL[j] = Ll;
la[j] = La;
lb[j] = Lb;
}
// Do horizontal interpolation
for (int x = 0; x < dst->W; ++x) {
float * wh = wwh + support * x;
float Ll = 0.0f, La = 0.0f, Lb = 0.0f;
for (int jj = jj0[x]; jj < jj1[x]; ++jj) {
int k = jj - jj0[x];
Ll += wh[k] * lL[jj];
La += wh[k] * la[jj];
Lb += wh[k] * lb[jj];
}
dst->L[i][x] = Ll;
dst->a[i][x] = La;
dst->b[i][x] = Lb;
}
}
}
delete[] jj0;
delete[] jj1;
delete[] wwh;
}
double ImProcFunctions::resizeScale (const ProcParams* params, int fw, int fh, int &imw, int &imh)
{
imw = fw;
imh = fh;
if (!params || !params->resize.enabled) {
return 1.0;
}
// get the resize parameters
int refw, refh;
double dScale;
if (params->crop.enabled && params->resize.appliesTo == "Cropped area") {
// the resize values applies to the crop dimensions
refw = params->crop.w;
refh = params->crop.h;
} else {
// the resize values applies to the image dimensions
// if a crop exists, it will be resized to the calculated scale
refw = fw;
refh = fh;
}
switch (params->resize.dataspec) {
case (1):
// Width
dScale = (double)params->resize.width / (double)refw;
break;
case (2):
// Height
dScale = (double)params->resize.height / (double)refh;
break;
case (3):
// FitBox
if ((double)refw / (double)refh > (double)params->resize.width / (double)params->resize.height) {
dScale = (double)params->resize.width / (double)refw;
} else {
dScale = (double)params->resize.height / (double)refh;
}
dScale = (dScale > 1.0 && !params->resize.allowUpscaling) ? 1.0 : dScale;
break;
case (4):
// Long Edge
if (refw > refh) {
dScale = (double)params->resize.longedge / (double)refw;
} else {
dScale = (double)params->resize.longedge / (double)refh;
}
break;
case (5):
// Short Edge
if (refw > refh) {
dScale = (double)params->resize.shortedge / (double)refh;
} else {
dScale = (double)params->resize.shortedge / (double)refw;
}
break;
default:
// Scale
dScale = params->resize.scale;
break;
}
if (params->crop.enabled && params->resize.appliesTo == "Full image") {
imw = params->crop.w;
imh = params->crop.h;
} else {
imw = refw;
imh = refh;
}
if (fabs (dScale - 1.0) <= 1e-5) {
return 1.0;
} else {
imw = computeSize(imw, dScale);
imh = computeSize(imh, dScale);
return dScale;
}
}
void ImProcFunctions::resize (Imagefloat* src, Imagefloat* dst, float dScale)
{
#ifdef PROFILE
time_t t1 = clock();
#endif
if (params->resize.method != "Nearest" ) {
Lanczos (src, dst, dScale);
} else {
// Nearest neighbour algorithm
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < dst->getHeight(); i++) {
int sy = i / dScale;
sy = LIM (sy, 0, src->getHeight() - 1);
for (int j = 0; j < dst->getWidth(); j++) {
int sx = j / dScale;
sx = LIM (sx, 0, src->getWidth() - 1);
dst->r (i, j) = src->r (sy, sx);
dst->g (i, j) = src->g (sy, sx);
dst->b (i, j) = src->b (sy, sx);
}
}
}
#ifdef PROFILE
time_t t2 = clock();
std::cout << "Resize: " << params->resize.method << ": "
<< (float) (t2 - t1) / CLOCKS_PER_SEC << std::endl;
#endif
}
ImProcFunctions::FramingData ImProcFunctions::framing(const FramingArgs& args) const
{
FramingData result;
result.enabled = false;
result.imgWidth = args.resizeWidth;
result.imgHeight = args.resizeHeight;
result.scale = args.resizeScale;
result.framedWidth = args.resizeWidth;
result.framedHeight = args.resizeHeight;
if (!args.params || !args.params->resize.enabled) return result;
if (!args.params->framing.enabled) return result;
// For these calculations, try to keep everything as doubles to minimize
// rounding errors from intermediate steps!
Framing util(*params, args.cropWidth, args.cropHeight);
ResizeArgs resize(Dimensions(args.resizeWidth, args.resizeHeight), args.resizeScale);
ResizeArgs adjusted = util.adjustResizeForFraming(resize);
Dimensions framedSize = util.computeFramedSize(adjusted.size);
result.enabled = true;
result.imgWidth = std::round(adjusted.size.width);
result.imgHeight = std::round(adjusted.size.height);
result.scale = adjusted.scale;
result.framedWidth = std::round(framedSize.width);
result.framedHeight = std::round(framedSize.height);
return result;
}
// Draws the border around the input image.
// It should be called after gamma correction.
Imagefloat* ImProcFunctions::drawFrame(Imagefloat* rgb, const FramingParams& params,
const FramingData& dims) const
{
if (rgb->getWidth() > dims.framedWidth || rgb->getHeight() > dims.framedHeight) {
return rgb;
}
if (rgb->getWidth() == dims.framedWidth && rgb->getHeight() == dims.framedHeight) {
return rgb;
}
Imagefloat* framed = new Imagefloat(dims.framedWidth, dims.framedHeight);
// Color::gamma2curve expects a 16-bit value, but the GUI sliders are
// using 8-bit values. Step up the user value to 16-bits.
auto clip = [](int v) { return std::max(0, std::min(v, 255)) * 256; };
float r = Color::gamma2curve[clip(params.borderRed)];
float g = Color::gamma2curve[clip(params.borderGreen)];
float b = Color::gamma2curve[clip(params.borderBlue)];
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < framed->getHeight(); i++) {
for (int j = 0; j < framed->getWidth(); j++) {
framed->r(i, j) = r;
framed->g(i, j) = g;
framed->b(i, j) = b;
}
}
auto offset = [](int inner, int outer) {
double u = inner;
double v = outer;
return static_cast<int>(std::round((v - u) / 2.0));
};
int rowOffset = offset(rgb->getHeight(), framed->getHeight());
int colOffset = offset(rgb->getWidth(), framed->getWidth());
#ifdef _OPENMP
#pragma omp parallel for if (multiThread)
#endif
for (int i = 0; i < rgb->getHeight(); i++) {
for (int j = 0; j < rgb->getWidth(); j++) {
int row = i + rowOffset;
int col = j + colOffset;
framed->r(row, col) = rgb->r(i, j);
framed->g(row, col) = rgb->g(i, j);
framed->b(row, col) = rgb->b(i, j);
}
}
return framed;
}
} // namespace rtengine