rawTherapee/rtengine/improcfun.cc

502 lines
18 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
*/
#include <rtengine.h>
#include <improcfun.h>
#include <curves.h>
#include <math.h>
#include <colorclip.h>
#include <gauss.h>
#include <bilateral2.h>
#include <minmax.h>
#include <mytime.h>
#include <glibmm.h>
#include <iccstore.h>
#ifdef _OPENMP
#include <omp.h>
#endif
namespace rtengine {
using namespace procparams;
#undef MAXVAL
#undef CMAXVAL
#undef MAXL
#undef MAX
#undef MIN
#undef ABS
#undef CLIP
#undef CLIPS
#undef CLIPC
#undef CLIPTO
#define MAXVAL 0xffff
#define CMAXVAL 0xffff
#define MAXL 0xffff
#define MAX(a,b) ((a)<(b)?(b):(a))
#define MIN(a,b) ((a)>(b)?(b):(a))
#define ABS(a) ((a)<0?-(a):(a))
#define CLIP(a) ((a)>0?((a)<CMAXVAL?(a):CMAXVAL):0)
#define CLIPS(a) ((a)>-32768?((a)<32767?(a):32767):-32768)
#define CLIPC(a) ((a)>-32000?((a)<32000?(a):32000):-32000)
#define CLIPTO(a,b,c) ((a)>(b)?((a)<(c)?(a):(c)):(b))
extern const Settings* settings;
int* ImProcFunctions::cacheL;
int* ImProcFunctions::cachea;
int* ImProcFunctions::cacheb;
int* ImProcFunctions::xcache;
int* ImProcFunctions::ycache;
int* ImProcFunctions::zcache;
unsigned short ImProcFunctions::gamma2curve[65536];
void ImProcFunctions::initCache () {
int maxindex = 2*65536;
cacheL = new int[maxindex];
cachea = new int[maxindex];
cacheb = new int[maxindex];
int threshold = (int)(0.008856*CMAXVAL);
for (int i=0; i<maxindex; i++)
if (i>threshold) {
cacheL[i] = (int)round(655.35 * (116.0 * exp(1.0/3.0 * log((double)i / CMAXVAL)) - 16.0));
cachea[i] = (int)round(32768.0 * 500.0 * exp(1.0/3.0 * log((double)i / CMAXVAL)));
cacheb[i] = (int)round(32768.0 * 200.0 * exp(1.0/3.0 * log((double)i / CMAXVAL)));
}
else {
cacheL[i] = (int)round(9033.0 * (double)i / 1000.0); // assuming CMAXVAL = 65535
cachea[i] = (int)round(32768.0 * 500.0 * (7.787*i/CMAXVAL+16.0/116.0));
cacheb[i] = (int)round(32768.0 * 200.0 * (7.787*i/CMAXVAL+16.0/116.0));
}
double fY;
ycache = new int[0x10000];
for (int i=0; i<0x10000; i++)
ycache[i] = (int)round(65536.0 * ((fY=((double)i/655.35+16)/116) > 2.0689655172413793e-1 ? fY*fY*fY : 1.107056459879453852e-3*(double)i/655.35));
for (int i=0; i<0x10000; i++)
ycache[i] = CLIP(ycache[i]);
xcache = new int[369621];
for (int i=-141556; i<228064; i++)
xcache[i+141556] = (int)round(65536.0 * (i > 15728 ? ((double)i/76021)*((double)i/76021)*((double)i/76021)*0.96422 : (1.2841854934601665e-1*(double)i/76021-1.7712903358071262e-2)*0.96422));
for (int i=0; i<369620; i++)
xcache[i] = CLIP(xcache[i]);
zcache = new int[825747];
for (int i=-369619; i<456128; i++)
zcache[i+369619] = (int)round(65536.0 * (i > 15728 ? ((double)i/76021)*((double)i/76021)*((double)i/76021)*0.82521 : (1.2841854934601665e-1*(double)i/76021-1.7712903358071262e-2)*0.82521));
for (int i=0; i<825747; i++)
zcache[i] = CLIP(zcache[i]);
for (int i=0; i<65536; i++) {
int g = (int)(CurveFactory::gamma2(i/65535.0) * 65535.0);
gamma2curve[i] = CLIP(g);
}
}
ImProcFunctions::~ImProcFunctions () {
if (monitorTransform!=NULL)
cmsDeleteTransform (monitorTransform);
}
void ImProcFunctions::setScale (double iscale) {
scale = iscale;
}
void ImProcFunctions::firstAnalysis_ (Image16* original, Glib::ustring wprofile, unsigned int* histogram, int* chroma_radius, int row_from, int row_to) {
TMatrix wprof = iccStore.workingSpaceMatrix (wprofile);
int toxyz[3][3];
toxyz[0][0] = round(32768.0 * wprof[0][0] / 0.96422);
toxyz[1][0] = round(32768.0 * wprof[1][0] / 0.96422);
toxyz[2][0] = round(32768.0 * wprof[2][0] / 0.96422);
toxyz[0][1] = round(32768.0 * wprof[0][1]);
toxyz[1][1] = round(32768.0 * wprof[1][1]);
toxyz[2][1] = round(32768.0 * wprof[2][1]);
toxyz[0][2] = round(32768.0 * wprof[0][2] / 0.82521);
toxyz[1][2] = round(32768.0 * wprof[1][2] / 0.82521);
toxyz[2][2] = round(32768.0 * wprof[2][2] / 0.82521);
lumimul[0] = wprof[0][1];
lumimul[1] = wprof[1][1];
lumimul[2] = wprof[2][1];
int W = original->width;
int cradius = 1;
for (int i=row_from; i<row_to; i++) {
for (int j=0; j<W; j++) {
int r = original->r[i][j];
int g = original->g[i][j];
int b = original->b[i][j];
int x = (toxyz[0][0] * r + toxyz[1][0] * g + toxyz[2][0] * b) >> 15;
int y = (toxyz[0][1] * r + toxyz[1][1] * g + toxyz[2][1] * b) >> 15;
int z = (toxyz[0][2] * r + toxyz[1][2] * g + toxyz[2][2] * b) >> 15;
x = CLIPTO(x,0,2*65536-1);
y = CLIPTO(y,0,2*65536-1);
z = CLIPTO(z,0,2*65536-1);
int oa = cachea[x] - cachea[y];
int ob = cacheb[y] - cacheb[z];
if (oa<0) oa = -oa;
if (ob<0) ob = -ob;
if (oa > cradius)
cradius = oa;
if (ob > cradius)
cradius = ob;
if (histogram) {
int hval = CLIP(y); //(306 * original->r[i][j] + 601 * original->g[i][j] + 117 * original->b[i][j]) >> 10;
histogram[hval]++;
}
}
}
*chroma_radius = cradius;
}
void ImProcFunctions::firstAnalysis (Image16* original, const ProcParams* params, unsigned int* histogram, double gamma) {
// set up monitor transform
Glib::ustring wprofile = params->icm.working;
if (monitorTransform)
cmsDeleteTransform (monitorTransform);
monitorTransform = NULL;
cmsHPROFILE monitor = iccStore.getProfile ("file:"+settings->monitorProfile);
if (monitor) {
cmsHPROFILE iprof = iccStore.getXYZProfile ();
cmsHPROFILE oprof = iccStore.getProfile (params->icm.output);
if (!oprof)
oprof = iccStore.getsRGBProfile ();
lcmsMutex->lock ();
monitorTransform = cmsCreateTransform (iprof, TYPE_RGB_16, monitor, TYPE_RGB_8, settings->colorimetricIntent, 0);
lcmsMutex->unlock ();
}
// calculate chroma radius and histogram of the y channel needed for exposure curve calculation
#ifdef _OPENMP
int T = omp_get_max_threads();
#else
int T = 1;
#endif
int* cr = new int [T];
unsigned int** hist = new unsigned int* [T];
for (int i=0; i<T; i++) {
cr[i] = 0;
hist[i] = new unsigned int[65536];
memset (hist[i], 0, 65536*sizeof(int));
}
int H = original->height;
#ifdef _OPENMP
#pragma omp parallel if (multiThread)
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
int blk = H/nthreads;
if (tid<nthreads-1)
firstAnalysis_ (original, wprofile, hist[tid], &cr[tid], tid*blk, (tid+1)*blk);
else
firstAnalysis_ (original, wprofile, hist[tid], &cr[tid], tid*blk, H);
}
#else
firstAnalysis_ (original, wprofile, hist[0], &cr[0], 0, original->height);
#endif
chroma_radius = cr[0];
for (int i=0; i<T; i++)
if (cr[i]>chroma_radius)
chroma_radius = cr[i];
memset (histogram, 0, 65536*sizeof(int));
for (int i=0; i<65536; i++)
for (int j=0; j<T; j++)
histogram[i] += hist[j][i];
chroma_scale = 32768*32768 / (3*chroma_radius);
delete [] cr;
for (int i=0; i<T; i++)
delete [] hist[i];
delete [] hist;
}
void ImProcFunctions::rgbProc (Image16* working, LabImage* lab, int* tonecurve, SHMap* shmap) {
int h_th, s_th;
if (shmap) {
h_th = shmap->max - params->sh.htonalwidth * (shmap->max - shmap->avg) / 100;
s_th = params->sh.stonalwidth * (shmap->avg - shmap->min) / 100;
}
bool processSH = params->sh.enabled && shmap!=NULL && (params->sh.highlights>0 || params->sh.shadows>0);
bool processLCE = params->sh.enabled && shmap!=NULL && params->sh.localcontrast>0;
double lceamount = params->sh.localcontrast / 200.0;
TMatrix wprof = iccStore.workingSpaceMatrix (params->icm.working);
int toxyz[3][3] = {
floor(32768.0 * wprof[0][0] / 0.96422),
floor(32768.0 * wprof[0][1]),
floor(32768.0 * wprof[0][2] / 0.82521),
floor(32768.0 * wprof[1][0] / 0.96422),
floor(32768.0 * wprof[1][1]),
floor(32768.0 * wprof[1][2] / 0.82521),
floor(32768.0 * wprof[2][0] / 0.96422),
floor(32768.0 * wprof[2][1]),
floor(32768.0 * wprof[2][2] / 0.82521)};
bool mixchannels = params->chmixer.red[0]!=100 || params->chmixer.red[1]!=0 || params->chmixer.red[2]!=0 || params->chmixer.green[0]!=0 || params->chmixer.green[1]!=100 || params->chmixer.green[2]!=0 || params->chmixer.blue[0]!=0 || params->chmixer.blue[1]!=0 || params->chmixer.blue[2]!=100;
int mapval;
double factor;
int tW = working->width;
int tH = working->height;
int r, g, b;
#pragma omp parallel for private(r, g, b,factor,mapval) if (multiThread)
for (int i=0; i<tH; i++) {
for (int j=0; j<tW; j++) {
r = working->r[i][j];
g = working->g[i][j];
b = working->b[i][j];
if (mixchannels) {
int newr = (r*params->chmixer.red[0] + g*params->chmixer.red[1] + b*params->chmixer.red[2]) / 100;
int newg = (r*params->chmixer.green[0] + g*params->chmixer.green[1] + b*params->chmixer.green[2]) / 100;
int newb = (r*params->chmixer.blue[0] + g*params->chmixer.blue[1] + b*params->chmixer.blue[2]) / 100;
r = CLIP(newr);
g = CLIP(newg);
b = CLIP(newb);
}
if (processSH || processLCE) {
mapval = shmap->map[i][j];
factor = 1.0;
if (processSH) {
if (mapval > h_th)
factor = (h_th + (100.0 - params->sh.highlights) * (mapval - h_th) / 100.0) / mapval;
else if (mapval < s_th)
factor = (s_th - (100.0 - params->sh.shadows) * (s_th - mapval) / 100.0) / mapval;
}
if (processLCE) {
double sub = lceamount*(mapval-factor*(r*lumimul[0] + g*lumimul[1] + b*lumimul[2]));
r = CLIP((int)(factor*r-sub));
g = CLIP((int)(factor*g-sub));
b = CLIP((int)(factor*b-sub));
}
else {
r = CLIP((int)(factor*r));
g = CLIP((int)(factor*g));
b = CLIP((int)(factor*b));
}
}
r = tonecurve[r];
g = tonecurve[g];
b = tonecurve[b];
int x = (toxyz[0][0] * r + toxyz[1][0] * g + toxyz[2][0] * b) >> 15;
int y = (toxyz[0][1] * r + toxyz[1][1] * g + toxyz[2][1] * b) >> 15;
int z = (toxyz[0][2] * r + toxyz[1][2] * g + toxyz[2][2] * b) >> 15;
x = CLIPTO(x,0,2*65536-1);
y = CLIPTO(y,0,2*65536-1);
z = CLIPTO(z,0,2*65536-1);
int L = cacheL[y];
lab->L[i][j] = L;
lab->a[i][j] = CLIPC(((cachea[x] - cachea[y]) * chroma_scale) >> 15);
lab->b[i][j] = CLIPC(((cacheb[y] - cacheb[z]) * chroma_scale) >> 15);
}
}
}
void ImProcFunctions::luminanceCurve (LabImage* lold, LabImage* lnew, int* curve, int row_from, int row_to) {
int W = lold->W;
int H = lold->H;
for (int i=row_from; i<row_to; i++)
for (int j=0; j<W; j++)
lnew->L[i][j] = curve[lold->L[i][j]];
}
#include "cubic.cc"
void ImProcFunctions::colorCurve (LabImage* lold, LabImage* lnew) {
double* cmultiplier = new double [181021];
double boost_a = (params->colorBoost.amount + 100.0) / 100.0;
double boost_b = (params->colorBoost.amount + 100.0) / 100.0;
double c, amul = 1.0, bmul = 1.0;
if (boost_a > boost_b) {
c = boost_a;
if (boost_a > 0)
bmul = boost_b / boost_a;
}
else {
c = boost_b;
if (boost_b > 0)
amul = boost_a / boost_b;
}
if (params->colorBoost.enable_saturationlimiter && c>1) {
// re-generate color multiplier lookup table
double d = params->colorBoost.saturationlimit * chroma_scale / 3.0;
double alpha = 0.5;
double threshold1 = alpha * d;
double threshold2 = c*d*(alpha+1.0) - d;
for (int i=0; i<=181020; i++) { // lookup table stores multipliers with a 0.25 chrominance resolution
double chrominance = (double)i/4;
if (chrominance < threshold1)
cmultiplier[i] = c;
else if (chrominance < d)
cmultiplier[i] = (c / (2.0*d*(alpha-1.0)) * (chrominance-d)*(chrominance-d) + c*d/2.0 * (alpha+1.0) ) / chrominance;
else if (chrominance < threshold2)
cmultiplier[i] = (1.0 / (2.0*d*(c*(alpha+1.0)-2.0)) * (chrominance-d)*(chrominance-d) + c*d/2.0 * (alpha+1.0) ) / chrominance;
else
cmultiplier[i] = 1.0;
}
}
double shift_a = params->colorShift.a * chroma_scale, shift_b = params->colorShift.b * chroma_scale;
short** oa = lold->a;
short** ob = lold->b;
#pragma omp parallel for if (multiThread)
for (int i=0; i<lold->H; i++)
for (int j=0; j<lold->W; j++) {
double wanted_c = c;
if (params->colorBoost.enable_saturationlimiter && c>1) {
int chroma = (int)(4.0 * sqrt((oa[i][j]+shift_a)*(oa[i][j]+shift_a) + (ob[i][j]+shift_b)*(ob[i][j]+shift_b)));
wanted_c = cmultiplier [MIN(chroma,181020)];
}
double real_c = wanted_c;
if (wanted_c >= 1.0 && params->colorBoost.avoidclip) {
double cclip = 100000;
double cr = tightestroot ((double)lnew->L[i][j]/655.35, (double)(oa[i][j]+shift_a)/chroma_scale*amul, (double)(ob[i][j]+shift_b)/chroma_scale*bmul, 3.079935, -1.5371515, -0.54278342);
double cg = tightestroot ((double)lnew->L[i][j]/655.35, (double)(oa[i][j]+shift_a)/chroma_scale*amul, (double)(ob[i][j]+shift_b)/chroma_scale*bmul, -0.92123418, 1.87599, 0.04524418);
double cb = tightestroot ((double)lnew->L[i][j]/655.35, (double)(oa[i][j]+shift_a)/chroma_scale*amul, (double)(ob[i][j]+shift_b)/chroma_scale*bmul, 0.052889682, -0.20404134, 1.15115166);
if (cr>1.0 && cr<cclip) cclip = cr;
if (cg>1.0 && cg<cclip) cclip = cg;
if (cb>1.0 && cb<cclip) cclip = cb;
if (cclip<100000) {
real_c = -cclip + 2.0*cclip / (1.0+exp(-2.0*wanted_c/cclip));
if (real_c<1.0)
real_c = 1.0;
}
}
int nna = (int)((oa[i][j]+shift_a) * real_c * amul);
int nnb = (int)((ob[i][j]+shift_b) * real_c * bmul);
lnew->a[i][j] = CLIPTO(nna,-32000,32000);
lnew->b[i][j] = CLIPTO(nnb,-32000,32000);
}
delete [] cmultiplier;
}
void ImProcFunctions::lumadenoise (LabImage* lab, int** b2) {
if (params->lumaDenoise.enabled && lab->W>=8 && lab->H>=8)
bilateral<unsigned short, unsigned int> (lab->L, lab->L, (unsigned short**)b2, lab->W, lab->H, params->lumaDenoise.radius / scale, params->lumaDenoise.edgetolerance, multiThread);
}
void ImProcFunctions::colordenoise (LabImage* lab, int** b2) {
if (params->colorDenoise.enabled && lab->W>=8 && lab->H>=8) {
#ifdef _OPENMP
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(lab->W,lab->H)*omp_get_max_threads());
#else
AlignedBuffer<double>* buffer = new AlignedBuffer<double> (MAX(lab->W,lab->H));
#endif
gaussHorizontal<short> (lab->a, lab->a, buffer, lab->W, lab->H, params->colorDenoise.amount / 10.0 / scale, multiThread);
gaussHorizontal<short> (lab->b, lab->b, buffer, lab->W, lab->H, params->colorDenoise.amount / 10.0 / scale, multiThread);
gaussVertical<short> (lab->a, lab->a, buffer, lab->W, lab->H, params->colorDenoise.amount / 10.0 / scale, multiThread);
gaussVertical<short> (lab->b, lab->b, buffer, lab->W, lab->H, params->colorDenoise.amount / 10.0 / scale, multiThread);
delete buffer;
}
}
void ImProcFunctions::getAutoExp (unsigned int* histogram, int histcompr, double expcomp, double clip, double& br, int& bl) {
double sum = 0;
for (int i=0; i<65536>>histcompr; i++)
sum += histogram[i];
// compute clipping points based on the original histograms (linear, without exp comp.)
int clippable = (int)(sum * clip);
int clipped = 0;
int aw = (65536>>histcompr) - 1;
while (aw>1 && histogram[aw]+clipped <= clippable) {
clipped += histogram[aw];
aw--;
}
clipped = 0;
int shc = 0;
while (shc<aw-1 && histogram[shc]+clipped <= clippable) {
clipped += histogram[shc];
shc++;
}
aw <<= histcompr;
shc <<= histcompr;
double corr = pow(2.0, expcomp);
// black point selection is based on the linear result (yielding better visual results)
bl = (int)(shc * corr);
// compute the white point of the exp. compensated gamma corrected image
double awg = (int)(CurveFactory::gamma2 (aw * corr / 65536.0) * 65536.0);
// compute average intensity of the exp compensated, gamma corrected image
double gavg = 0;
for (int i=0; i<65536>>histcompr; i++)
gavg += histogram[i] * CurveFactory::gamma2((int)(corr*(i<<histcompr)<65535 ? corr*(i<<histcompr) : 65535)) / sum;
if (bl < gavg) {
int maxaw = (gavg - bl) * 4 / 3 + bl; // dont let aw be such large that the histogram average goes above 3/4
double mavg = 65536.0 / (awg-bl) * (gavg - bl);
if (awg < maxaw)
awg = maxaw;
}
awg = CurveFactory::igamma2 ((float)(awg/65535.0)) * 65535.0; //need to inverse gamma transform to get correct exposure compensation parameter
br = log(65535.0 / (awg-bl)) / log(2.0);
if (br<0)
br = 0;
}
}