- Now the Preview can show free space around the image (the image's corner will coincide with the center of the preview area) - Editing objects can now be manipulated in this free space - The editing mechanism has been split : it was completely handled in rtengine before, now rtengine still handle the pipette's data provider, but rtgui now handle the objects data provider. - Bugfix: when using coarse rotate in the Editor panel, the Gradient widgets are now correctly displayed
1131 lines
32 KiB
C++
1131 lines
32 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef __CURVES_H__
|
|
#define __CURVES_H__
|
|
|
|
#include <glibmm.h>
|
|
#include <map>
|
|
#include <string>
|
|
#include "rt_math.h"
|
|
#include "../rtgui/mycurve.h"
|
|
#include "../rtgui/myflatcurve.h"
|
|
#include "../rtgui/mydiagonalcurve.h"
|
|
#include "color.h"
|
|
#include "procparams.h"
|
|
#include "pipettebuffer.h"
|
|
|
|
#include "LUT.h"
|
|
|
|
#define CURVES_MIN_POLY_POINTS 1000
|
|
|
|
#include "rt_math.h"
|
|
|
|
#define CLIPI(a) ((a)>0?((a)<65534?(a):65534):0)
|
|
|
|
using namespace std;
|
|
|
|
namespace rtengine
|
|
{
|
|
class ToneCurve;
|
|
class ColorAppearance;
|
|
|
|
class CurveFactory
|
|
{
|
|
|
|
friend class Curve;
|
|
|
|
protected:
|
|
|
|
// functions calculating the parameters of the contrast curve based on the desired slope at the center
|
|
static double solve_upper (double m, double c, double deriv);
|
|
static double solve_lower (double m, double c, double deriv);
|
|
static double dupper (const double b, const double m, const double c);
|
|
static double dlower (const double b, const double m, const double c);
|
|
|
|
// basic convex function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point
|
|
static inline double basel (double x, double m1, double m2)
|
|
{
|
|
if (x == 0.0) {
|
|
return 0.0;
|
|
}
|
|
|
|
double k = sqrt ((m1 - 1.0) * (m1 - m2) * 0.5) / (1.0 - m2);
|
|
double l = (m1 - m2) / (1.0 - m2) + k;
|
|
double lx = xlog(x);
|
|
return m2 * x + (1.0 - m2) * (2.0 - xexp(k * lx)) * xexp(l * lx);
|
|
}
|
|
// basic concave function between (0,0) and (1,1). m1 and m2 controls the slope at the start and end point
|
|
static inline double baseu (double x, double m1, double m2)
|
|
{
|
|
return 1.0 - basel(1.0 - x, m1, m2);
|
|
}
|
|
// convex curve between (0,0) and (1,1) with slope m at (0,0). hr controls the highlight recovery
|
|
static inline double cupper (double x, double m, double hr)
|
|
{
|
|
if (hr > 1.0) {
|
|
return baseu (x, m, 2.0 * (hr - 1.0) / m);
|
|
}
|
|
|
|
double x1 = (1.0 - hr) / m;
|
|
double x2 = x1 + hr;
|
|
|
|
if (x >= x2) {
|
|
return 1.0;
|
|
}
|
|
|
|
if (x < x1) {
|
|
return x * m;
|
|
}
|
|
|
|
return 1.0 - hr + hr * baseu((x - x1) / hr, m, 0);
|
|
}
|
|
// concave curve between (0,0) and (1,1) with slope m at (1,1). sr controls the shadow recovery
|
|
static inline double clower (double x, double m, double sr)
|
|
{
|
|
return 1.0 - cupper(1.0 - x, m, sr);
|
|
}
|
|
// convex curve between (0,0) and (1,1) with slope m at (0,0). hr controls the highlight recovery
|
|
static inline double cupper2 (double x, double m, double hr)
|
|
{
|
|
double x1 = (1.0 - hr) / m;
|
|
double x2 = x1 + hr;
|
|
|
|
if (x >= x2) {
|
|
return 1.0;
|
|
}
|
|
|
|
if (x < x1) {
|
|
return x * m;
|
|
}
|
|
|
|
return 1.0 - hr + hr * baseu((x - x1) / hr, m, 0.3 * hr);
|
|
}
|
|
static inline double clower2 (double x, double m, double sr)
|
|
{
|
|
//curve for b<0; starts with positive slope and then rolls over toward straight line to x=y=1
|
|
double x1 = sr / 1.5 + 0.00001;
|
|
|
|
if (x > x1 || sr < 0.001) {
|
|
return 1 - (1 - x) * m;
|
|
} else {
|
|
double y1 = 1 - (1 - x1) * m;
|
|
return y1 + m * (x - x1) - (1 - m) * SQR(SQR(1 - x / x1));
|
|
}
|
|
}
|
|
// tone curve base. a: slope (from exp.comp.), b: black point normalized by 65535,
|
|
// D: max. x value (can be>1), hr,sr: highlight,shadow recovery
|
|
static inline double basecurve (double x, double a, double b, double D, double hr, double sr)
|
|
{
|
|
if (b < 0) {
|
|
double m = 0.5;//midpoint
|
|
double slope = 1.0 + b; //slope of straight line between (0,-b) and (1,1)
|
|
double y = -b + m * slope; //value at midpoint
|
|
|
|
if (x > m) {
|
|
return y + (x - m) * slope; //value on straight line between (m,y) and (1,1)
|
|
} else {
|
|
return y * clower2(x / m, slope * m / y, 2.0 - sr);
|
|
}
|
|
} else {
|
|
double slope = a / (1.0 - b);
|
|
double m = a * D > 1.0 ? b / a + (0.25) / slope : b + (1 - b) / 4;
|
|
double y = a * D > 1.0 ? 0.25 : (m - b / a) * slope;
|
|
|
|
if (x <= m) {
|
|
return b == 0 ? x * slope : clower (x / m, slope * m / y, sr) * y;
|
|
} else if (a * D > 1.0) {
|
|
return y + (1.0 - y) * cupper2((x - m) / (D - m), slope * (D - m) / (1.0 - y), hr);
|
|
} else {
|
|
return y + (x - m) * slope;
|
|
}
|
|
}
|
|
}
|
|
static inline double simplebasecurve (double x, double b, double sr)
|
|
{
|
|
// a = 1, D = 1, hr = 0 (unused for a = D = 1)
|
|
if (b < 0) {
|
|
double m = 0.5;//midpoint
|
|
double slope = 1.0 + b; //slope of straight line between (0,-b) and (1,1)
|
|
double y = -b + m * slope; //value at midpoint
|
|
|
|
if (x > m) {
|
|
return y + (x - m) * slope; //value on straight line between (m,y) and (1,1)
|
|
} else {
|
|
return y * clower2(x / m, slope * m / y, 2.0 - sr);
|
|
}
|
|
} else {
|
|
double slope = 1.0 / (1.0 - b);
|
|
double m = b + (1 - b) * 0.25;
|
|
double y = (m - b) * slope;
|
|
|
|
if (x <= m) {
|
|
return b == 0 ? x * slope : clower (x / m, slope * m / y, sr) * y;
|
|
} else {
|
|
return y + (x - m) * slope;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
public:
|
|
const static double sRGBGamma; // standard average gamma
|
|
const static double sRGBGammaCurve; // 2.4 in the curve
|
|
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// accurately determine value from integer array with float as index
|
|
//linearly interpolate from ends of range if arg is out of bounds
|
|
static inline float interp(int *array, float f)
|
|
{
|
|
int index = CLIPI(floor(f));
|
|
float part = (float)((f) - index) * (float)(array[index + 1] - array[index]);
|
|
return (float)array[index] + part;
|
|
}
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// accurately determine value from float array with float as index
|
|
//linearly interpolate from ends of range if arg is out of bounds
|
|
static inline float flinterp(float *array, float f)
|
|
{
|
|
int index = CLIPI(floor(f));
|
|
float part = ((f) - (float)index) * (array[index + 1] - array[index]);
|
|
return array[index] + part;
|
|
}
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
static inline double centercontrast (double x, double b, double m);
|
|
|
|
// standard srgb gamma and its inverse
|
|
static inline double gamma2 (double x)
|
|
{
|
|
return x <= 0.00304 ? x * 12.92 : 1.055 * exp(log(x) / sRGBGammaCurve) - 0.055;
|
|
}
|
|
static inline double igamma2 (double x)
|
|
{
|
|
return x <= 0.03928 ? x / 12.92 : exp(log((x + 0.055) / 1.055) * sRGBGammaCurve);
|
|
}
|
|
static inline float gamma2 (float x)
|
|
{
|
|
return x <= 0.00304 ? x * 12.92 : 1.055 * expf(logf(x) / sRGBGammaCurve) - 0.055;
|
|
}
|
|
static inline float igamma2 (float x)
|
|
{
|
|
return x <= 0.03928 ? x / 12.92 : expf(logf((x + 0.055) / 1.055) * sRGBGammaCurve);
|
|
}
|
|
// gamma function with adjustable parameters
|
|
static inline double gamma (double x, double gamma, double start, double slope, double mul, double add)
|
|
{
|
|
return (x <= start ? x*slope : exp(log(x) / gamma) * mul - add);
|
|
}
|
|
static inline double igamma (double x, double gamma, double start, double slope, double mul, double add)
|
|
{
|
|
return (x <= start * slope ? x / slope : exp(log((x + add) / mul) * gamma) );
|
|
}
|
|
static inline float gamma (float x, float gamma, float start, float slope, float mul, float add)
|
|
{
|
|
return (x <= start ? x*slope : expf(logf(x) / gamma) * mul - add);
|
|
}
|
|
static inline float igamma (float x, float gamma, float start, float slope, float mul, float add)
|
|
{
|
|
return (x <= start * slope ? x / slope : expf(logf((x + add) / mul) * gamma) );
|
|
}
|
|
|
|
static inline float hlcurve (const float exp_scale, const float comp, const float hlrange, float level)
|
|
{
|
|
if (comp > 0.0) {
|
|
float val = level + (hlrange - 65536.0);
|
|
|
|
if(val == 0.0f) { // to avoid division by zero
|
|
val = 0.000001f;
|
|
}
|
|
|
|
float Y = val * exp_scale / hlrange;
|
|
Y *= comp;
|
|
|
|
if(Y <= -1.0) { // to avoid log(<=0)
|
|
Y = -.999999f;
|
|
}
|
|
|
|
float R = hlrange / (val * comp);
|
|
return log(1.0 + Y) * R;
|
|
} else {
|
|
return exp_scale;
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void complexCurve (double ecomp, double black, double hlcompr, double hlcomprthresh, double shcompr, double br, double contr,
|
|
procparams::ToneCurveParams::eTCModeId curveMode, const std::vector<double>& curvePoints, procparams::ToneCurveParams::eTCModeId curveMode2, const std::vector<double>& curvePoints2,
|
|
|
|
LUTu & histogram, LUTu & histogramCropped,
|
|
LUTf & hlCurve, LUTf & shCurve, LUTf & outCurve, LUTu & outBeforeCCurveHistogram, ToneCurve & outToneCurve, ToneCurve & outToneCurve2,
|
|
|
|
int skip = 1);
|
|
static void curveBW (const std::vector<double>& curvePointsbw, const std::vector<double>& curvePointsbw2, LUTu & histogrambw, LUTu & outBeforeCCurveHistogrambw,
|
|
ToneCurve & customToneCurvebw1, ToneCurve & customToneCurvebw2, int skip);
|
|
|
|
static void curveCL ( bool & clcutili, const std::vector<double>& clcurvePoints, LUTf & clCurve, LUTu & histogramcl, LUTu & outBeforeCLurveHistogram, int skip);
|
|
|
|
static void curveWavContL ( bool & wavcontlutili, const std::vector<double>& wavclcurvePoints, LUTf & wavclCurve,/* LUTu & histogramwavcl, LUTu & outBeforeWavCLurveHistogram,*/int skip);
|
|
static void curveDehaContL ( bool & dehacontlutili, const std::vector<double>& dehaclcurvePoints, LUTf & dehaclCurve, int skip, LUTu & histogram, LUTu & outBeforeCurveHistogram);
|
|
static void mapcurve ( bool & mapcontlutili, const std::vector<double>& mapcurvePoints, LUTf & mapcurve, int skip, LUTu & histogram, LUTu & outBeforeCurveHistogram);
|
|
|
|
static void curveToningCL ( bool & clctoningutili, const std::vector<double>& clcurvePoints, LUTf & clToningCurve, int skip);
|
|
static void curveToningLL ( bool & llctoningutili, const std::vector<double>& llcurvePoints, LUTf & llToningCurve, int skip);
|
|
static void denoiseCC ( bool & ccdenoiseutili, const std::vector<double>& cccurvePoints, LUTf & NoiseCCcurve, int skip);
|
|
|
|
static void complexsgnCurve ( float adjustr, bool & autili, bool & butili, bool & ccutili, bool & clcutili, double saturation, double rstprotection, const std::vector<double>& acurvePoints,
|
|
const std::vector<double>& bcurvePoints, const std::vector<double>& cccurvePoints, const std::vector<double>& lccurvePoints, LUTf & aoutCurve, LUTf & boutCurve, LUTf & satCurve, LUTf & lhskCurve,
|
|
LUTu & histogramC, LUTu & histogramLC, LUTu & outBeforeCCurveHistogram, LUTu & outBeforeLCurveHistogram, ///for chroma
|
|
int skip = 1);
|
|
static void complexLCurve (double br, double contr, const std::vector<double>& curvePoints, LUTu & histogram, LUTu & histogramCropped,
|
|
LUTf & outCurve, LUTu & outBeforeCCurveHistogram, int skip, bool & utili);
|
|
|
|
static void updatechroma (
|
|
const std::vector<double>& cccurvePoints,
|
|
LUTu & histogramC, LUTu & outBeforeCCurveHistogramC,//for chroma
|
|
int skip = 1);
|
|
|
|
static void curveLightBrightColor (
|
|
procparams::ColorAppearanceParams::eTCModeId curveMode, const std::vector<double>& curvePoints,
|
|
procparams::ColorAppearanceParams::eTCModeId curveMode2, const std::vector<double>& curvePoints2,
|
|
procparams::ColorAppearanceParams::eCTCModeId curveMode3, const std::vector<double>& curvePoints3,
|
|
LUTu & histogram, LUTu & histogramCropped, LUTu & outBeforeCCurveHistogram,
|
|
LUTu & histogramC, LUTu & outBeforeCCurveHistogramC,
|
|
ColorAppearance & outColCurve1,
|
|
ColorAppearance & outColCurve2,
|
|
ColorAppearance & outColCurve3,
|
|
int skip = 1);
|
|
static void RGBCurve (const std::vector<double>& curvePoints, LUTf & outCurve, int skip);
|
|
|
|
};
|
|
|
|
class Curve
|
|
{
|
|
|
|
class HashEntry
|
|
{
|
|
public:
|
|
unsigned short smallerValue;
|
|
unsigned short higherValue;
|
|
};
|
|
protected:
|
|
int N;
|
|
int ppn; // targeted polyline point number
|
|
double* x;
|
|
double* y;
|
|
// begin of variables used in Parametric curves only
|
|
double mc;
|
|
double mfc;
|
|
double msc;
|
|
double mhc;
|
|
// end of variables used in Parametric curves only
|
|
std::vector<double> poly_x; // X points of the faceted curve
|
|
std::vector<double> poly_y; // Y points of the faceted curve
|
|
std::vector<HashEntry> hash;
|
|
unsigned short hashSize; // hash table's size, between [10, 100, 1000]
|
|
|
|
double* ypp;
|
|
|
|
// Fields for the elementary curve polygonisation
|
|
double x1, y1, x2, y2, x3, y3;
|
|
bool firstPointIncluded;
|
|
double increment;
|
|
int nbr_points;
|
|
|
|
static inline double p00 (double x, double prot)
|
|
{
|
|
return CurveFactory::clower (x, 2.0, prot);
|
|
}
|
|
static inline double p11 (double x, double prot)
|
|
{
|
|
return CurveFactory::cupper (x, 2.0, prot);
|
|
}
|
|
static inline double p01 (double x, double prot)
|
|
{
|
|
return x <= 0.5 ? CurveFactory::clower (x * 2, 2.0, prot) / 2.0 : 0.5 + CurveFactory::cupper ((x - 0.5) * 2, 2.0, prot) / 2.0;
|
|
}
|
|
static inline double p10 (double x, double prot)
|
|
{
|
|
return x <= 0.5 ? CurveFactory::cupper (x * 2, 2.0, prot) / 2.0 : 0.5 + CurveFactory::clower ((x - 0.5) * 2, 2.0, prot) / 2.0;
|
|
}
|
|
static inline double pfull (double x, double prot, double sh, double hl)
|
|
{
|
|
return (1 - sh) * (1 - hl) * p00(x, prot) + sh * hl * p11(x, prot) + (1 - sh) * hl * p01(x, prot) + sh * (1 - hl) * p10(x, prot);
|
|
}
|
|
|
|
void fillHash();
|
|
|
|
public:
|
|
Curve ();
|
|
virtual ~Curve () {};
|
|
void AddPolygons ();
|
|
int getSize () const; // return the number of control points
|
|
void getControlPoint(int cpNum, double &x, double &y) const;
|
|
virtual double getVal (double t) const = 0;
|
|
virtual void getVal (const std::vector<double>& t, std::vector<double>& res) const = 0;
|
|
|
|
virtual bool isIdentity () const = 0;
|
|
};
|
|
|
|
class DiagonalCurve : public Curve
|
|
{
|
|
|
|
protected:
|
|
DiagonalCurveType kind;
|
|
|
|
void spline_cubic_set ();
|
|
void NURBS_set ();
|
|
|
|
public:
|
|
DiagonalCurve (const std::vector<double>& points, int ppn = CURVES_MIN_POLY_POINTS);
|
|
virtual ~DiagonalCurve ();
|
|
|
|
double getVal (double t) const;
|
|
void getVal (const std::vector<double>& t, std::vector<double>& res) const;
|
|
bool isIdentity () const
|
|
{
|
|
return kind == DCT_Empty;
|
|
};
|
|
};
|
|
|
|
class FlatCurve : public Curve
|
|
{
|
|
|
|
protected:
|
|
FlatCurveType kind;
|
|
double* leftTangent;
|
|
double* rightTangent;
|
|
double identityValue;
|
|
bool periodic;
|
|
|
|
void CtrlPoints_set ();
|
|
|
|
public:
|
|
|
|
FlatCurve (const std::vector<double>& points, bool isPeriodic = true, int ppn = CURVES_MIN_POLY_POINTS);
|
|
virtual ~FlatCurve ();
|
|
|
|
double getVal (double t) const;
|
|
void getVal (const std::vector<double>& t, std::vector<double>& res) const;
|
|
bool setIdentityValue (double iVal);
|
|
bool isIdentity () const
|
|
{
|
|
return kind == FCT_Empty;
|
|
};
|
|
};
|
|
|
|
class RetinextransmissionCurve
|
|
{
|
|
private:
|
|
LUTf luttransmission; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
virtual ~RetinextransmissionCurve() {};
|
|
RetinextransmissionCurve();
|
|
|
|
void Reset();
|
|
void Set(const Curve *pCurve);
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float operator[](float index) const
|
|
{
|
|
return luttransmission[index];
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return luttransmission;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
class ToneCurve
|
|
{
|
|
public:
|
|
LUTf lutToneCurve; // 0xffff range
|
|
|
|
virtual ~ToneCurve() {};
|
|
|
|
void Reset();
|
|
void Set(Curve *pCurve, float gamma = 0, float start = 0, float slope = 0, float mul = 0, float add = 0);
|
|
operator bool (void) const
|
|
{
|
|
return lutToneCurve;
|
|
}
|
|
};
|
|
|
|
class OpacityCurve
|
|
{
|
|
public:
|
|
LUTf lutOpacityCurve; // 0xffff range
|
|
|
|
virtual ~OpacityCurve() {};
|
|
|
|
void Reset();
|
|
void Set(const Curve *pCurve);
|
|
void Set(const std::vector<double> &curvePoints, bool &opautili);
|
|
|
|
// TODO: transfer this method to the Color class...
|
|
float blend (float x, float lower, float upper) const
|
|
{
|
|
return (upper - lower) * lutOpacityCurve[x * 500.f] + lower;
|
|
}
|
|
void blend3f (float x, float lower1, float upper1, float &result1, float lower2, float upper2, float &result2, float lower3, float upper3, float &result3) const
|
|
{
|
|
float opacity = lutOpacityCurve[x * 500.f];
|
|
result1 = (upper1 - lower1) * opacity + lower1;
|
|
result2 = (upper2 - lower2) * opacity + lower2;
|
|
result3 = (upper3 - lower3) * opacity + lower3;
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return lutOpacityCurve;
|
|
}
|
|
};
|
|
|
|
class WavCurve
|
|
{
|
|
private:
|
|
LUTf lutWavCurve; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
float sum;
|
|
|
|
virtual ~WavCurve() {};
|
|
WavCurve();
|
|
void Reset();
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float getSum() const
|
|
{
|
|
return sum;
|
|
}
|
|
|
|
float operator[](float index) const
|
|
{
|
|
return lutWavCurve[index];
|
|
}
|
|
operator bool (void) const
|
|
{
|
|
return lutWavCurve;
|
|
}
|
|
};
|
|
|
|
class WavOpacityCurveRG
|
|
{
|
|
private:
|
|
LUTf lutOpacityCurveRG; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
public:
|
|
virtual ~WavOpacityCurveRG() {};
|
|
WavOpacityCurveRG();
|
|
|
|
void Reset();
|
|
// void Set(const std::vector<double> &curvePoints, bool &opautili);
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float operator[](float index) const
|
|
{
|
|
return lutOpacityCurveRG[index];
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return lutOpacityCurveRG;
|
|
}
|
|
};
|
|
class WavOpacityCurveBY
|
|
{
|
|
private:
|
|
LUTf lutOpacityCurveBY; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
virtual ~WavOpacityCurveBY() {};
|
|
WavOpacityCurveBY();
|
|
|
|
void Reset();
|
|
void Set(const Curve *pCurve);
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float operator[](float index) const
|
|
{
|
|
return lutOpacityCurveBY[index];
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return lutOpacityCurveBY;
|
|
}
|
|
};
|
|
class WavOpacityCurveW
|
|
{
|
|
private:
|
|
LUTf lutOpacityCurveW; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
virtual ~WavOpacityCurveW() {};
|
|
WavOpacityCurveW();
|
|
|
|
void Reset();
|
|
void Set(const Curve *pCurve);
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float operator[](float index) const
|
|
{
|
|
return lutOpacityCurveW[index];
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return lutOpacityCurveW;
|
|
}
|
|
};
|
|
|
|
class WavOpacityCurveWL
|
|
{
|
|
private:
|
|
LUTf lutOpacityCurveWL; // 0xffff range
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
virtual ~WavOpacityCurveWL() {};
|
|
WavOpacityCurveWL();
|
|
|
|
void Reset();
|
|
void Set(const Curve *pCurve);
|
|
void Set(const std::vector<double> &curvePoints);
|
|
float operator[](float index) const
|
|
{
|
|
return lutOpacityCurveWL[index];
|
|
}
|
|
|
|
operator bool (void) const
|
|
{
|
|
return lutOpacityCurveWL;
|
|
}
|
|
};
|
|
|
|
class NoiseCurve
|
|
{
|
|
private:
|
|
LUTf lutNoiseCurve; // 0xffff range
|
|
float sum;
|
|
void Set(const Curve &pCurve);
|
|
|
|
public:
|
|
virtual ~NoiseCurve() {};
|
|
NoiseCurve();
|
|
void Reset();
|
|
void Set(const std::vector<double> &curvePoints);
|
|
|
|
float getSum() const
|
|
{
|
|
return sum;
|
|
}
|
|
float operator[](float index) const
|
|
{
|
|
return lutNoiseCurve[index];
|
|
}
|
|
operator bool (void) const
|
|
{
|
|
return lutNoiseCurve;
|
|
}
|
|
};
|
|
|
|
class ColorGradientCurve
|
|
{
|
|
public:
|
|
LUTf lut1; // [0.;1.] range (float values)
|
|
LUTf lut2; // [0.;1.] range (float values)
|
|
LUTf lut3; // [0.;1.] range (float values)
|
|
double low;
|
|
double high;
|
|
|
|
virtual ~ColorGradientCurve() {};
|
|
|
|
void Reset();
|
|
void SetXYZ(const Curve *pCurve, const double xyz_rgb[3][3], const double rgb_xyz[3][3], float satur, float lumin);
|
|
void SetXYZ(const std::vector<double> &curvePoints, const double xyz_rgb[3][3], const double rgb_xyz[3][3], float satur, float lumin);
|
|
void SetRGB(const Curve *pCurve, const double xyz_rgb[3][3], const double rgb_xyz[3][3]);
|
|
void SetRGB(const std::vector<double> &curvePoints, const double xyz_rgb[3][3], const double rgb_xyz[3][3]);
|
|
|
|
/**
|
|
* @brief Get the value of Red, Green and Blue corresponding to the requested index
|
|
* @param index value in the [0 ; 1] range
|
|
* @param r corresponding red value [0 ; 65535] (return value)
|
|
* @param g corresponding green value [0 ; 65535] (return value)
|
|
* @param b corresponding blue value [0 ; 65535] (return value)
|
|
*/
|
|
void getVal(float index, float &r, float &g, float &b) const;
|
|
operator bool (void) const
|
|
{
|
|
return lut1 && lut2 && lut3;
|
|
}
|
|
};
|
|
|
|
class ColorAppearance
|
|
{
|
|
public:
|
|
LUTf lutColCurve; // 0xffff range
|
|
|
|
virtual ~ColorAppearance() {};
|
|
|
|
void Reset();
|
|
void Set(Curve *pCurve);
|
|
operator bool (void) const
|
|
{
|
|
return lutColCurve;
|
|
}
|
|
};
|
|
|
|
class Lightcurve : public ColorAppearance
|
|
{
|
|
public:
|
|
void Apply(float& Li) const;
|
|
};
|
|
|
|
//lightness curve
|
|
inline void Lightcurve::Apply (float& Li) const
|
|
{
|
|
|
|
assert (lutColCurve);
|
|
|
|
Li = lutColCurve[Li];
|
|
}
|
|
|
|
class Brightcurve : public ColorAppearance
|
|
{
|
|
public:
|
|
void Apply(float& Br) const;
|
|
};
|
|
|
|
//brightness curve
|
|
inline void Brightcurve::Apply (float& Br) const
|
|
{
|
|
|
|
assert (lutColCurve);
|
|
|
|
Br = lutColCurve[Br];
|
|
}
|
|
|
|
class Chromacurve : public ColorAppearance
|
|
{
|
|
public:
|
|
void Apply(float& Cr) const;
|
|
};
|
|
|
|
//Chroma curve
|
|
inline void Chromacurve::Apply (float& Cr) const
|
|
{
|
|
|
|
assert (lutColCurve);
|
|
|
|
Cr = lutColCurve[Cr];
|
|
}
|
|
class Saturcurve : public ColorAppearance
|
|
{
|
|
public:
|
|
void Apply(float& Sa) const;
|
|
};
|
|
|
|
//Saturation curve
|
|
inline void Saturcurve::Apply (float& Sa) const
|
|
{
|
|
|
|
assert (lutColCurve);
|
|
|
|
Sa = lutColCurve[Sa];
|
|
}
|
|
|
|
class Colorfcurve : public ColorAppearance
|
|
{
|
|
public:
|
|
void Apply(float& Cf) const;
|
|
};
|
|
|
|
//Colorfullness curve
|
|
inline void Colorfcurve::Apply (float& Cf) const
|
|
{
|
|
|
|
assert (lutColCurve);
|
|
|
|
Cf = lutColCurve[Cf];
|
|
}
|
|
|
|
|
|
class StandardToneCurve : public ToneCurve
|
|
{
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
class StandardToneCurvebw : public ToneCurve
|
|
{
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class AdobeToneCurve : public ToneCurve
|
|
{
|
|
private:
|
|
void RGBTone(float& r, float& g, float& b) const; // helper for tone curve
|
|
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class AdobeToneCurvebw : public ToneCurve
|
|
{
|
|
private:
|
|
void RGBTone(float& r, float& g, float& b) const; // helper for tone curve
|
|
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class SatAndValueBlendingToneCurve : public ToneCurve
|
|
{
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class SatAndValueBlendingToneCurvebw : public ToneCurve
|
|
{
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class WeightedStdToneCurve : public ToneCurve
|
|
{
|
|
private:
|
|
float Triangle(float refX, float refY, float X2) const;
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class LuminanceToneCurve : public ToneCurve
|
|
{
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
class PerceptualToneCurveState
|
|
{
|
|
public:
|
|
float Working2Prophoto[3][3];
|
|
float Prophoto2Working[3][3];
|
|
float cmul_contrast;
|
|
bool isProphoto;
|
|
};
|
|
|
|
// Tone curve whose purpose is to keep the color appearance constant, that is the curve changes contrast
|
|
// but colors appears to have the same hue and saturation as before. As contrast and saturation is tightly
|
|
// coupled in human vision saturation is modulated based on the curve's contrast, and that way the appearance
|
|
// can be kept perceptually constant (within limits).
|
|
class PerceptualToneCurve : public ToneCurve
|
|
{
|
|
private:
|
|
static float cf_range[2];
|
|
static float cf[1000];
|
|
static LUTf gamma2curve;
|
|
// for ciecam02
|
|
static float f, c, nc, yb, la, xw, yw, zw, gamut;
|
|
static float n, d, nbb, ncb, cz, aw, wh, pfl, fl, pow1;
|
|
|
|
static void cubic_spline(const float x[], const float y[], const int len, const float out_x[], float out_y[], const int out_len);
|
|
static float find_minimum_interval_halving(float (*func)(float x, void *arg), void *arg, float a, float b, float tol, int nmax);
|
|
static float find_tc_slope_fun(float k, void *arg);
|
|
static float get_curve_val(float x, float range[2], float lut[], size_t lut_size);
|
|
float calculateToneCurveContrastValue() const;
|
|
public:
|
|
static void init();
|
|
void initApplyState(PerceptualToneCurveState & state, Glib::ustring workingSpace) const;
|
|
void Apply(float& r, float& g, float& b, PerceptualToneCurveState & state) const;
|
|
};
|
|
|
|
class WeightedStdToneCurvebw : public ToneCurve
|
|
{
|
|
private:
|
|
float Triangle(float refX, float refY, float X2) const;
|
|
public:
|
|
void Apply(float& r, float& g, float& b) const;
|
|
};
|
|
|
|
// Standard tone curve
|
|
inline void StandardToneCurve::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
r = lutToneCurve[r];
|
|
g = lutToneCurve[g];
|
|
b = lutToneCurve[b];
|
|
}
|
|
// Standard tone curve
|
|
inline void StandardToneCurvebw::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
r = lutToneCurve[r];
|
|
g = lutToneCurve[g];
|
|
b = lutToneCurve[b];
|
|
}
|
|
|
|
// Tone curve according to Adobe's reference implementation
|
|
// values in 0xffff space
|
|
// inlined to make sure there will be no cache flush when used
|
|
inline void AdobeToneCurve::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
if (r >= g) {
|
|
if (g > b) {
|
|
RGBTone (r, g, b); // Case 1: r >= g > b
|
|
} else if (b > r) {
|
|
RGBTone (b, r, g); // Case 2: b > r >= g
|
|
} else if (b > g) {
|
|
RGBTone (r, b, g); // Case 3: r >= b > g
|
|
} else { // Case 4: r >= g == b
|
|
r = lutToneCurve[r];
|
|
g = lutToneCurve[g];
|
|
b = g;
|
|
}
|
|
} else {
|
|
if (r >= b) {
|
|
RGBTone (g, r, b); // Case 5: g > r >= b
|
|
} else if (b > g) {
|
|
RGBTone (b, g, r); // Case 6: b > g > r
|
|
} else {
|
|
RGBTone (g, b, r); // Case 7: g >= b > r
|
|
}
|
|
}
|
|
}
|
|
inline void AdobeToneCurvebw::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
if (r >= g) {
|
|
if (g > b) {
|
|
RGBTone (r, g, b); // Case 1: r >= g > b
|
|
} else if (b > r) {
|
|
RGBTone (b, r, g); // Case 2: b > r >= g
|
|
} else if (b > g) {
|
|
RGBTone (r, b, g); // Case 3: r >= b > g
|
|
} else { // Case 4: r >= g == b
|
|
r = lutToneCurve[r];
|
|
g = lutToneCurve[g];
|
|
b = g;
|
|
}
|
|
} else {
|
|
if (r >= b) {
|
|
RGBTone (g, r, b); // Case 5: g > r >= b
|
|
} else if (b > g) {
|
|
RGBTone (b, g, r); // Case 6: b > g > r
|
|
} else {
|
|
RGBTone (g, b, r); // Case 7: g >= b > r
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void AdobeToneCurve::RGBTone (float& r, float& g, float& b) const
|
|
{
|
|
float rold = r, gold = g, bold = b;
|
|
|
|
r = lutToneCurve[rold];
|
|
b = lutToneCurve[bold];
|
|
g = b + ((r - b) * (gold - bold) / (rold - bold));
|
|
}
|
|
inline void AdobeToneCurvebw::RGBTone (float& r, float& g, float& b) const
|
|
{
|
|
float rold = r, gold = g, bold = b;
|
|
|
|
r = lutToneCurve[rold];
|
|
b = lutToneCurve[bold];
|
|
g = b + ((r - b) * (gold - bold) / (rold - bold));
|
|
}
|
|
|
|
// Modifying the Luminance channel only
|
|
inline void LuminanceToneCurve::Apply(float &r, float &g, float &b) const
|
|
{
|
|
assert (lutToneCurve);
|
|
|
|
float currLuminance = r * 0.2126729f + g * 0.7151521f + b * 0.0721750f;
|
|
float newLuminance = lutToneCurve[currLuminance];
|
|
float coef = newLuminance / currLuminance;
|
|
r = LIM<float>(r * coef, 0.f, 65535.f);
|
|
g = LIM<float>(g * coef, 0.f, 65535.f);
|
|
b = LIM<float>(b * coef, 0.f, 65535.f);
|
|
}
|
|
|
|
inline float WeightedStdToneCurve::Triangle(float a, float a1, float b) const
|
|
{
|
|
if (a != b) {
|
|
float b1;
|
|
float a2 = a1 - a;
|
|
|
|
if (b < a) {
|
|
b1 = b + a2 * b / a ;
|
|
} else {
|
|
b1 = b + a2 * (65535.f - b) / (65535.f - a);
|
|
}
|
|
|
|
return b1;
|
|
}
|
|
|
|
return a1;
|
|
}
|
|
inline float WeightedStdToneCurvebw::Triangle(float a, float a1, float b) const
|
|
{
|
|
if (a != b) {
|
|
float b1;
|
|
float a2 = a1 - a;
|
|
|
|
if (b < a) {
|
|
b1 = b + a2 * b / a ;
|
|
} else {
|
|
b1 = b + a2 * (65535.f - b) / (65535.f - a);
|
|
}
|
|
|
|
return b1;
|
|
}
|
|
|
|
return a1;
|
|
}
|
|
|
|
// Tone curve modifying the value channel only, preserving hue and saturation
|
|
// values in 0xffff space
|
|
inline void WeightedStdToneCurve::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
float r1 = lutToneCurve[r];
|
|
float g1 = Triangle(r, r1, g);
|
|
float b1 = Triangle(r, r1, b);
|
|
|
|
float g2 = lutToneCurve[g];
|
|
float r2 = Triangle(g, g2, r);
|
|
float b2 = Triangle(g, g2, b);
|
|
|
|
float b3 = lutToneCurve[b];
|
|
float r3 = Triangle(b, b3, r);
|
|
float g3 = Triangle(b, b3, g);
|
|
|
|
r = CLIP<float>( r1 * 0.50f + r2 * 0.25f + r3 * 0.25f);
|
|
g = CLIP<float>(g1 * 0.25f + g2 * 0.50f + g3 * 0.25f);
|
|
b = CLIP<float>(b1 * 0.25f + b2 * 0.25f + b3 * 0.50f);
|
|
}
|
|
|
|
inline void WeightedStdToneCurvebw::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
float r1 = lutToneCurve[r];
|
|
float g1 = Triangle(r, r1, g);
|
|
float b1 = Triangle(r, r1, b);
|
|
|
|
float g2 = lutToneCurve[g];
|
|
float r2 = Triangle(g, g2, r);
|
|
float b2 = Triangle(g, g2, b);
|
|
|
|
float b3 = lutToneCurve[b];
|
|
float r3 = Triangle(b, b3, r);
|
|
float g3 = Triangle(b, b3, g);
|
|
|
|
r = CLIP<float>( r1 * 0.50f + r2 * 0.25f + r3 * 0.25f);
|
|
g = CLIP<float>(g1 * 0.25f + g2 * 0.50f + g3 * 0.25f);
|
|
b = CLIP<float>(b1 * 0.25f + b2 * 0.25f + b3 * 0.50f);
|
|
}
|
|
|
|
// Tone curve modifying the value channel only, preserving hue and saturation
|
|
// values in 0xffff space
|
|
inline void SatAndValueBlendingToneCurve::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
float h, s, v;
|
|
float lum = (r + g + b) / 3.f;
|
|
//float lum = Color::rgbLuminance(r, g, b);
|
|
float newLum = lutToneCurve[lum];
|
|
|
|
if (newLum == lum) {
|
|
return;
|
|
}
|
|
|
|
bool increase = newLum > lum;
|
|
|
|
Color::rgb2hsv(r, g, b, h, s, v);
|
|
|
|
if (increase) {
|
|
// Linearly targeting Value = 1 and Saturation = 0
|
|
float coef = (newLum - lum) / (65535.f - lum);
|
|
float dV = (1.f - v) * coef;
|
|
s *= 1.f - coef;
|
|
Color::hsv2rgb(h, s, v + dV, r, g, b);
|
|
} else {
|
|
// Linearly targeting Value = 0
|
|
float coef = (lum - newLum) / lum ;
|
|
float dV = v * coef;
|
|
Color::hsv2rgb(h, s, v - dV, r, g, b);
|
|
}
|
|
}
|
|
|
|
inline void SatAndValueBlendingToneCurvebw::Apply (float& r, float& g, float& b) const
|
|
{
|
|
|
|
assert (lutToneCurve);
|
|
|
|
float h, s, v;
|
|
float lum = (r + g + b) / 3.f;
|
|
//float lum = Color::rgbLuminance(r, g, b);
|
|
float newLum = lutToneCurve[lum];
|
|
|
|
if (newLum == lum) {
|
|
return;
|
|
}
|
|
|
|
bool increase = newLum > lum;
|
|
|
|
Color::rgb2hsv(r, g, b, h, s, v);
|
|
|
|
if (increase) {
|
|
// Linearly targeting Value = 1 and Saturation = 0
|
|
float coef = (newLum - lum) / (65535.f - lum);
|
|
float dV = (1.f - v) * coef;
|
|
s *= 1.f - coef;
|
|
Color::hsv2rgb(h, s, v + dV, r, g, b);
|
|
} else {
|
|
// Linearly targeting Value = 0
|
|
float coef = (lum - newLum) / lum ;
|
|
float dV = v * coef;
|
|
Color::hsv2rgb(h, s, v - dV, r, g, b);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#undef CLIPI
|
|
|
|
#endif
|