1039 lines
35 KiB
C++
1039 lines
35 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* (C) 2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
*
|
|
*/
|
|
|
|
#include <cstddef>
|
|
#include <cmath>
|
|
#include "improcfun.h"
|
|
#include "array2D.h"
|
|
#include "rt_math.h"
|
|
#include "opthelper.h"
|
|
|
|
#define RANGEFN(i) ((1000.0f / (i + 1000.0f)))
|
|
#define DIRWT(i1,j1,i,j) ( domker[(i1-i)/scale+halfwin][(j1-j)/scale+halfwin] * RANGEFN(fabsf((data_fine[i1][j1]-data_fine[i][j]))) )
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
constexpr int maxlevel = 6;
|
|
constexpr int maxlevelloc = 5;
|
|
constexpr float noise = 2000;
|
|
|
|
//sequence of scales
|
|
constexpr int scales[maxlevel] = {1, 2, 4, 8, 16, 32};
|
|
constexpr int scalesloc[5] = {1, 2, 4, 8, 16};
|
|
extern const Settings* settings;
|
|
|
|
//sequence of scales
|
|
|
|
void ImProcFunctions :: dirpyr_equalizer(float ** src, float ** dst, int srcwidth, int srcheight, float ** l_a, float ** l_b, const double * mult, const double dirpyrThreshold, const double skinprot, float b_l, float t_l, float t_r, int scaleprev)
|
|
{
|
|
int lastlevel = maxlevel;
|
|
|
|
if (settings->verbose) {
|
|
printf("Dirpyr scaleprev=%i\n", scaleprev);
|
|
}
|
|
|
|
float atten123 = (float) settings->level123_cbdl;
|
|
|
|
if (atten123 > 50.f) {
|
|
atten123 = 50.f;
|
|
}
|
|
|
|
if (atten123 < 0.f) {
|
|
atten123 = 0.f;
|
|
}
|
|
|
|
float atten0 = (float) settings->level0_cbdl;
|
|
|
|
if (atten0 > 40.f) {
|
|
atten123 = 40.f;
|
|
}
|
|
|
|
if (atten0 < 0.f) {
|
|
atten0 = 0.f;
|
|
}
|
|
|
|
if ((t_r - t_l) < 0.55f) {
|
|
t_l = t_r + 0.55f; //avoid too small range
|
|
}
|
|
|
|
|
|
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
int level;
|
|
float multi[maxlevel] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
|
|
float scalefl[maxlevel];
|
|
|
|
for (int lv = 0; lv < maxlevel; lv++) {
|
|
scalefl[lv] = ((float) scales[lv]) / (float) scaleprev;
|
|
|
|
if (lv >= 1) {
|
|
if (scalefl[lv] < 1.f) {
|
|
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
} else {
|
|
if (scalefl[lv] < 1.f) {
|
|
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (settings->verbose) {
|
|
printf("CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]);
|
|
}
|
|
|
|
multi_array2D<float, maxlevel> dirpyrlo(srcwidth, srcheight);
|
|
|
|
level = 0;
|
|
|
|
//int thresh = 100 * mult[5];
|
|
int scale = (int)(scales[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
|
|
|
|
level = 1;
|
|
|
|
while (level < lastlevel) {
|
|
|
|
scale = (int)(scales[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
|
|
|
|
level ++;
|
|
}
|
|
|
|
float **tmpHue = nullptr, **tmpChr = nullptr;
|
|
|
|
if (skinprot != 0.f) {
|
|
// precalculate hue and chroma, use SSE, if available
|
|
// by precalculating these values we can greatly reduce the number of calculations in idirpyr_eq_channel()
|
|
// but we need two additional buffers for this preprocessing
|
|
tmpHue = new float*[srcheight];
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
tmpHue[i] = new float[srcwidth];
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
#pragma omp parallel for
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < srcwidth - 3; j += 4) {
|
|
_mm_storeu_ps(&tmpHue[i][j], xatan2f(LVFU(l_b[i][j]), LVFU(l_a[i][j])));
|
|
}
|
|
|
|
for (; j < srcwidth; j++) {
|
|
tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]);
|
|
}
|
|
}
|
|
|
|
#else
|
|
#pragma omp parallel for
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
tmpHue[i][j] = xatan2f(l_b[i][j], l_a[i][j]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
tmpChr = new float*[srcheight];
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
tmpChr[i] = new float[srcwidth];
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
#pragma omp parallel
|
|
{
|
|
__m128 div = _mm_set1_ps(327.68f);
|
|
#pragma omp for
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < srcwidth - 3; j += 4) {
|
|
_mm_storeu_ps(&tmpChr[i][j], _mm_sqrt_ps(SQRV(LVFU(l_b[i][j])) + SQRV(LVFU(l_a[i][j]))) / div);
|
|
}
|
|
|
|
for (; j < srcwidth; j++) {
|
|
tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#pragma omp parallel for
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
tmpChr[i][j] = sqrtf(SQR((l_b[i][j])) + SQR((l_a[i][j]))) / 327.68f;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel - 1];
|
|
|
|
for (int level = lastlevel - 1; level > 0; level--) {
|
|
idirpyr_eq_channel(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, b_l, t_l, t_r);
|
|
}
|
|
|
|
scale = scales[0];
|
|
|
|
idirpyr_eq_channel(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, b_l, t_l, t_r);
|
|
|
|
if (skinprot != 0.f) {
|
|
for (int i = 0; i < srcheight; i++) {
|
|
delete [] tmpChr[i];
|
|
}
|
|
|
|
delete [] tmpChr;
|
|
|
|
for (int i = 0; i < srcheight; i++) {
|
|
delete [] tmpHue[i];
|
|
}
|
|
|
|
delete [] tmpHue;
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
|
|
}
|
|
|
|
}
|
|
|
|
void ImProcFunctions::cbdl_local_temp(float ** src, float ** dst, float ** loctemp, int srcwidth, int srcheight, const float * mult, float kchro, const double dirpyrThreshold, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice, int scaleprev)
|
|
{
|
|
int lastlevel = maxlevelloc;
|
|
|
|
if (settings->verbose) {
|
|
printf("Dirpyr scaleprev=%i\n", scaleprev);
|
|
}
|
|
|
|
float atten123 = (float) settings->level123_cbdl;
|
|
|
|
if (atten123 > 50.f) {
|
|
atten123 = 50.f;
|
|
}
|
|
|
|
if (atten123 < 0.f) {
|
|
atten123 = 0.f;
|
|
}
|
|
|
|
float atten0 = (float) settings->level0_cbdl;
|
|
|
|
if (atten0 > 40.f) {
|
|
atten123 = 40.f;
|
|
}
|
|
|
|
if (atten0 < 0.f) {
|
|
atten0 = 0.f;
|
|
}
|
|
|
|
if ((t_r - t_l) < 0.55f) {
|
|
t_l = t_r + 0.55f; //avoid too small range
|
|
}
|
|
|
|
while (lastlevel > 0 && fabs(mult[lastlevel - 1] - 1) < 0.001) {
|
|
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
int level;
|
|
float multi[5] = {1.f, 1.f, 1.f, 1.f, 1.f};
|
|
float scalefl[5];
|
|
|
|
for (int lv = 0; lv < 5; lv++) {
|
|
scalefl[lv] = ((float) scalesloc[lv]) / (float) scaleprev;
|
|
|
|
if (lv >= 1) {
|
|
if (scalefl[lv] < 1.f) {
|
|
if (mult[lv] > 1.f) {
|
|
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
}
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
} else {
|
|
if (scalefl[lv] < 1.f) {
|
|
if (mult[lv] > 1.f) {
|
|
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f; //modulate action if zoom < 100%
|
|
}
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (settings->verbose) {
|
|
printf("CbDL local mult0=%f 1=%f 2=%f 3=%f 4=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4]);
|
|
}
|
|
|
|
multi_array2D<float, maxlevelloc> dirpyrlo(srcwidth, srcheight);
|
|
|
|
level = 0;
|
|
|
|
//int thresh = 100 * mult[5];
|
|
int scale = (int)(scalesloc[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
|
|
|
|
level = 1;
|
|
|
|
while (level < lastlevel) {
|
|
|
|
scale = (int)(scalesloc[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
|
|
|
|
level ++;
|
|
}
|
|
|
|
float **tmpHue = nullptr;
|
|
float **tmpChr = nullptr;
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel - 1];
|
|
|
|
for (int level = lastlevel - 1; level > 0; level--) {
|
|
idirpyr_eq_channel_loc(dirpyrlo[level], dirpyrlo[level - 1], loctemp, buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice);
|
|
}
|
|
|
|
scale = scalesloc[0];
|
|
|
|
idirpyr_eq_channel_loc(dirpyrlo[0], dst, loctemp, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, tmpHue, tmpChr, skinprot, gamutlab, b_l, t_l, t_r, b_r, choice);
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
#pragma omp parallel for
|
|
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
dst[i][j] = src[i][j];
|
|
loctemp[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
|
|
// dst[i][j] = CLIP (buffer[i][j]); // TODO: Really a clip necessary?
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void ImProcFunctions :: dirpyr_equalizercam(CieImage *ncie, float ** src, float ** dst, int srcwidth, int srcheight, float ** h_p, float ** C_p, const double * mult, const double dirpyrThreshold, const double skinprot, bool execdir, float b_l, float t_l, float t_r, int scaleprev)
|
|
{
|
|
int lastlevel = maxlevel;
|
|
|
|
if (settings->verbose) {
|
|
printf("CAM dirpyr scaleprev=%i\n", scaleprev);
|
|
}
|
|
|
|
float atten123 = (float) settings->level123_cbdl;
|
|
|
|
if (atten123 > 50.f) {
|
|
atten123 = 50.f;
|
|
}
|
|
|
|
if (atten123 < 0.f) {
|
|
atten123 = 0.f;
|
|
}
|
|
|
|
// printf("atten=%f\n",atten);
|
|
float atten0 = (float) settings->level0_cbdl;
|
|
|
|
if (atten0 > 40.f) {
|
|
atten123 = 40.f;
|
|
}
|
|
|
|
if (atten0 < 0.f) {
|
|
atten0 = 0.f;
|
|
}
|
|
|
|
if ((t_r - t_l) < 0.55f) {
|
|
t_l = t_r + 0.55f; //avoid too small range
|
|
}
|
|
|
|
while (fabs(mult[lastlevel - 1] - 1) < 0.001 && lastlevel > 0) {
|
|
lastlevel--;
|
|
//printf("last level to process %d \n",lastlevel);
|
|
}
|
|
|
|
if (lastlevel == 0) {
|
|
return;
|
|
}
|
|
|
|
int level;
|
|
|
|
float multi[maxlevel] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
|
|
float scalefl[maxlevel];
|
|
|
|
for (int lv = 0; lv < maxlevel; lv++) {
|
|
scalefl[lv] = ((float) scales[lv]) / (float) scaleprev;
|
|
|
|
// if(scalefl[lv] < 1.f) multi[lv] = 1.f; else multi[lv]=(float) mult[lv];
|
|
if (lv >= 1) {
|
|
if (scalefl[lv] < 1.f) {
|
|
multi[lv] = (atten123 * ((float) mult[lv] - 1.f) / 100.f) + 1.f;
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
} else {
|
|
if (scalefl[lv] < 1.f) {
|
|
multi[lv] = (atten0 * ((float) mult[lv] - 1.f) / 100.f) + 1.f;
|
|
} else {
|
|
multi[lv] = (float) mult[lv];
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
if (settings->verbose) {
|
|
printf("CAM CbDL mult0=%f 1=%f 2=%f 3=%f 4=%f 5=%f\n", multi[0], multi[1], multi[2], multi[3], multi[4], multi[5]);
|
|
}
|
|
|
|
|
|
|
|
|
|
multi_array2D<float, maxlevel> dirpyrlo(srcwidth, srcheight);
|
|
|
|
level = 0;
|
|
|
|
int scale = (int)(scales[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
dirpyr_channel(src, dirpyrlo[0], srcwidth, srcheight, 0, scale);
|
|
|
|
level = 1;
|
|
|
|
while (level < lastlevel) {
|
|
scale = (int)(scales[level]) / scaleprev;
|
|
|
|
if (scale < 1) {
|
|
scale = 1;
|
|
}
|
|
|
|
dirpyr_channel(dirpyrlo[level - 1], dirpyrlo[level], srcwidth, srcheight, level, scale);
|
|
|
|
level ++;
|
|
}
|
|
|
|
|
|
// with the current implementation of idirpyr_eq_channel we can safely use the buffer from last level as buffer, saves some memory
|
|
float ** buffer = dirpyrlo[lastlevel - 1];
|
|
|
|
for (int level = lastlevel - 1; level > 0; level--) {
|
|
idirpyr_eq_channelcam(dirpyrlo[level], dirpyrlo[level - 1], buffer, srcwidth, srcheight, level, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l, t_l, t_r);
|
|
}
|
|
|
|
idirpyr_eq_channelcam(dirpyrlo[0], dst, buffer, srcwidth, srcheight, 0, multi, dirpyrThreshold, h_p, C_p, skinprot, b_l, t_l, t_r);
|
|
|
|
|
|
if (execdir) {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
if (ncie->J_p[i][j] > 8.f && ncie->J_p[i][j] < 92.f) {
|
|
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
|
|
} else {
|
|
dst[i][j] = src[i][j];
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 0; i < srcheight; i++)
|
|
for (int j = 0; j < srcwidth; j++) {
|
|
dst[i][j] = CLIP(buffer[i][j]); // TODO: Really a clip necessary?
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImProcFunctions::dirpyr_channel(float ** data_fine, float ** data_coarse, int width, int height, int level, int scale)
|
|
{
|
|
// scale is spacing of directional averaging weights
|
|
// calculate weights, compute directionally weighted average
|
|
|
|
if (level > 1) {
|
|
//generate domain kernel
|
|
int domker[5][5] = {{1, 1, 1, 1, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 2, 2, 2, 1}, {1, 1, 1, 1, 1}};
|
|
// int domker[5][5] = {{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1},{1,1,1,1,1}};
|
|
static const int halfwin = 2;
|
|
const int scalewin = halfwin * scale;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
__m128 thousandv = _mm_set1_ps(1000.0f);
|
|
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
|
// multiplied each value of domkerv by 1000 to avoid multiplication by 1000 inside the loop
|
|
float domkerv[5][5][4] ALIGNED16 = {{{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {2000, 2000, 2000, 2000}, {1000, 1000, 1000, 1000}}, {{1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}, {1000, 1000, 1000, 1000}}};
|
|
#endif // __SSE2__
|
|
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for //schedule (dynamic,8)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
float dirwt;
|
|
|
|
for (j = 0; j < scalewin; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
|
|
for (int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = max(0, j - scalewin); jnbr <= j + scalewin; jnbr += scale) {
|
|
//printf("i=%d ",(inbr-i)/scale+halfwin);
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - scalewin - 3; j += 4) {
|
|
valv = _mm_setzero_ps();
|
|
normv = _mm_setzero_ps();
|
|
dftemp1v = LVFU(data_fine[i][j]);
|
|
|
|
for (int inbr = MAX(0, i - scalewin); inbr <= MIN(height - 1, i + scalewin); inbr += scale) {
|
|
int indexihlp = (inbr - i) / scale + halfwin;
|
|
|
|
for (int jnbr = j - scalewin, indexjhlp = 0; jnbr <= j + scalewin; jnbr += scale, indexjhlp++) {
|
|
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
dirwtv = LVF(domkerv[indexihlp][indexjhlp]) / (vabsf(dftemp1v - dftemp2v) + thousandv);
|
|
valv += dirwtv * dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
|
|
_mm_storeu_ps(&data_coarse[i][j], valv / normv); //low pass filter
|
|
}
|
|
|
|
for (; j < width - scalewin; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#else
|
|
|
|
for (; j < width - scalewin; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = j - scalewin; jnbr <= j + scalewin; jnbr += scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#endif
|
|
|
|
for (; j < width; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scalewin); inbr <= min(height - 1, i + scalewin); inbr += scale) {
|
|
for (int jnbr = j - scalewin; jnbr <= min(width - 1, j + scalewin); jnbr += scale) {
|
|
dirwt = DIRWT(inbr, jnbr, i, j);
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
}
|
|
}
|
|
} else { // level <=1 means that all values of domker would be 1.0f, so no need for multiplication
|
|
// const int scalewin = scale;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
__m128 thousandv = _mm_set1_ps(1000.0f);
|
|
__m128 dirwtv, valv, normv, dftemp1v, dftemp2v;
|
|
#endif // __SSE2__
|
|
int j;
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++)
|
|
{
|
|
float dirwt;
|
|
|
|
for (j = 0; j < scale; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = max(0, j - scale); jnbr <= j + scale; jnbr += scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - scale - 3; j += 4) {
|
|
valv = _mm_setzero_ps();
|
|
normv = _mm_setzero_ps();
|
|
dftemp1v = LVFU(data_fine[i][j]);
|
|
|
|
for (int inbr = MAX(0, i - scale); inbr <= MIN(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
|
|
dftemp2v = LVFU(data_fine[inbr][jnbr]);
|
|
dirwtv = thousandv / (vabsf(dftemp2v - dftemp1v) + thousandv);
|
|
valv += dirwtv * dftemp2v;
|
|
normv += dirwtv;
|
|
}
|
|
}
|
|
|
|
_mm_storeu_ps(&data_coarse[i][j], valv / normv); //low pass filter
|
|
}
|
|
|
|
for (; j < width - scale; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#else
|
|
|
|
for (; j < width - scale; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= j + scale; jnbr += scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
|
|
#endif
|
|
|
|
for (; j < width; j++) {
|
|
float val = 0.f;
|
|
float norm = 0.f;
|
|
|
|
for (int inbr = max(0, i - scale); inbr <= min(height - 1, i + scale); inbr += scale) {
|
|
for (int jnbr = j - scale; jnbr <= min(width - 1, j + scale); jnbr += scale) {
|
|
dirwt = RANGEFN(fabsf(data_fine[inbr][jnbr] - data_fine[i][j]));
|
|
val += dirwt * data_fine[inbr][jnbr];
|
|
norm += dirwt;
|
|
}
|
|
}
|
|
|
|
data_coarse[i][j] = val / norm; //low pass filter
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
void ImProcFunctions::idirpyr_eq_channel_loc(float ** data_coarse, float ** data_fine, float ** loctemp, float ** buffer, int width, int height, int level, float mult[5], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, const bool gamutlab, float b_l, float t_l, float t_r, float b_r, int choice)
|
|
{
|
|
// const float skinprotneg = -skinprot;
|
|
// const float factorHard = (1.f - skinprotneg / 100.f);
|
|
|
|
float offs;
|
|
|
|
if (skinprot == 0.f) {
|
|
offs = 0.f;
|
|
} else {
|
|
offs = -1.f;
|
|
}
|
|
|
|
float multbis[5];
|
|
|
|
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
|
|
|
|
if (level == 4 && mult[level] > 1.f) {
|
|
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
|
|
}
|
|
|
|
// if(level == 5 && mult[level] > 1.f) {
|
|
// multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
|
|
// }
|
|
|
|
LUTf irangefn(0x20000);
|
|
{
|
|
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
|
|
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
|
|
|
|
for (int i = 0; i < 0x20000; i++) {
|
|
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
|
|
irangefn[i] = multbis[level] + offs;
|
|
} else {
|
|
if (abs(i - 0x10000) < noiselo) {
|
|
irangefn[i] = 1.f + offs ;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (skinprot == 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
|
|
}
|
|
}
|
|
|
|
/*
|
|
else if(skinprot > 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
|
|
}
|
|
}
|
|
else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
for(int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl ((data_fine[i][j]) / 327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
|
|
float correct = irangefn[hipass + 0x10000];
|
|
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f + (correct) * (factorHard)) * hipass ;
|
|
} else { //image soft with scale < 1 ==> skin
|
|
buffer[i][j] += (1.f + (correct)) * hipass ;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
void ImProcFunctions::idirpyr_eq_channel(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[maxlevel], const double dirpyrThreshold, float ** hue, float ** chrom, const double skinprot, float b_l, float t_l, float t_r)
|
|
{
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = (1.f - skinprotneg / 100.f);
|
|
|
|
float offs;
|
|
|
|
if (skinprot == 0.f) {
|
|
offs = 0.f;
|
|
} else {
|
|
offs = -1.f;
|
|
}
|
|
|
|
float multbis[maxlevel];
|
|
|
|
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
|
|
|
|
if (level == 4 && mult[level] > 1.f) {
|
|
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
|
|
}
|
|
|
|
if (level == 5 && mult[level] > 1.f) {
|
|
multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
|
|
}
|
|
|
|
LUTf irangefn(0x20000);
|
|
{
|
|
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
|
|
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
|
|
|
|
for (int i = 0; i < 0x20000; i++) {
|
|
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
|
|
irangefn[i] = multbis[level] + offs;
|
|
} else {
|
|
if (abs(i - 0x10000) < noiselo) {
|
|
irangefn[i] = 1.f + offs ;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (skinprot == 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass;
|
|
}
|
|
} else if (skinprot > 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl((data_fine[i][j]) / 327.68f, modhue, modchro, skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
|
|
}
|
|
} else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float scale = 1.f;
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
// These values are precalculated now
|
|
float modhue = hue[i][j];
|
|
float modchro = chrom[i][j];
|
|
Color::SkinSatCbdl((data_fine[i][j]) / 327.68f, modhue, modchro, skinprotneg, scale, false, b_l, t_l, t_r);
|
|
float correct = irangefn[hipass + 0x10000];
|
|
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f + (correct) * (factorHard)) * hipass ;
|
|
} else { //image soft with scale < 1 ==> skin
|
|
buffer[i][j] += (1.f + (correct)) * hipass ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ImProcFunctions::idirpyr_eq_channelcam(float ** data_coarse, float ** data_fine, float ** buffer, int width, int height, int level, float mult[maxlevel], const double dirpyrThreshold, float ** l_a_h, float ** l_b_c, const double skinprot, float b_l, float t_l, float t_r)
|
|
{
|
|
|
|
const float skinprotneg = -skinprot;
|
|
const float factorHard = (1.f - skinprotneg / 100.f);
|
|
|
|
float offs;
|
|
|
|
if (skinprot == 0.f) {
|
|
offs = 0.f;
|
|
} else {
|
|
offs = -1.f;
|
|
}
|
|
|
|
float multbis[maxlevel];
|
|
|
|
multbis[level] = mult[level]; //multbis to reduce artifacts for high values mult
|
|
|
|
if (level == 4 && mult[level] > 1.f) {
|
|
multbis[level] = 1.f + 0.65f * (mult[level] - 1.f);
|
|
}
|
|
|
|
if (level == 5 && mult[level] > 1.f) {
|
|
multbis[level] = 1.f + 0.45f * (mult[level] - 1.f);
|
|
}
|
|
|
|
LUTf irangefn(0x20000);
|
|
{
|
|
const float noisehi = 1.33f * noise * dirpyrThreshold / expf(level * log(3.0)), noiselo = 0.66f * noise * dirpyrThreshold / expf(level * log(3.0));
|
|
|
|
//printf("level=%i multlev=%f noisehi=%f noiselo=%f skinprot=%f\n",level,mult[level], noisehi, noiselo, skinprot);
|
|
for (int i = 0; i < 0x20000; i++) {
|
|
if (abs(i - 0x10000) > noisehi || multbis[level] < 1.0) {
|
|
irangefn[i] = multbis[level] + offs;
|
|
} else {
|
|
if (abs(i - 0x10000) < noiselo) {
|
|
irangefn[i] = 1.f + offs ;
|
|
} else {
|
|
irangefn[i] = 1.f + offs + (multbis[level] - 1.f) * (noisehi - abs(i - 0x10000)) / (noisehi - noiselo + 0.01f) ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (skinprot == 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
buffer[i][j] += irangefn[hipass + 0x10000] * hipass ;
|
|
}
|
|
} else if (skinprot > 0.f)
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
float scale = 1.f;
|
|
Color::SkinSatCbdlCam((data_fine[i][j]) / 327.68f, l_a_h[i][j], l_b_c[i][j], skinprot, scale, true, b_l, t_l, t_r);
|
|
buffer[i][j] += (1.f + (irangefn[hipass + 0x10000]) * scale) * hipass ;
|
|
}
|
|
} else
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
float hipass = (data_fine[i][j] - data_coarse[i][j]);
|
|
float scale = 1.f;
|
|
float correct;
|
|
correct = irangefn[hipass + 0x10000];
|
|
Color::SkinSatCbdlCam((data_fine[i][j]) / 327.68f, l_a_h[i][j], l_b_c[i][j], skinprotneg, scale, false, b_l, t_l, t_r);
|
|
|
|
if (scale == 1.f) {//image hard
|
|
buffer[i][j] += (1.f + (correct) * factorHard) * hipass ;
|
|
|
|
} else { //image soft
|
|
buffer[i][j] += (1.f + (correct)) * hipass ;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if(gamutlab) {
|
|
// ImProcFunctions::badpixcam (buffer[i][j], 6.0, 10, 2);//for bad pixels
|
|
// }
|
|
|
|
/* if(gamutlab) {//disabled
|
|
float Lprov1=(buffer[i][j])/327.68f;
|
|
float R,G,B;
|
|
#ifdef _DEBUG
|
|
bool neg=false;
|
|
bool more_rgb=false;
|
|
//gamut control : Lab values are in gamut
|
|
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f, neg, more_rgb);
|
|
#else
|
|
//gamut control : Lab values are in gamut
|
|
Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);
|
|
#endif
|
|
// Color::gamutLchonly(modhue,Lprov1,modchro, R, G, B, wip, highlight, 0.15f, 0.96f);//gamut control in Lab mode ..not in CIECAM
|
|
buffer[i][j]=Lprov1*327.68f;
|
|
float2 sincosval = xsincosf(modhue);
|
|
l_a_h[i][j]=327.68f*modchro*sincosval.y;
|
|
l_b_c[i][j]=327.68f*modchro*sincosval.x;
|
|
}
|
|
*/
|
|
}
|
|
|
|
// float hipass = (data_fine[i][j]-data_coarse[i][j]);
|
|
// buffer[i][j] += irangefn[hipass+0x10000] * hipass ;
|
|
|
|
#undef DIRWT_L
|
|
#undef DIRWT_AB
|
|
|
|
#undef NRWT_L
|
|
#undef NRWT_AB
|
|
|
|
}
|
|
|