Files
rawTherapee/samples/raw-identify.cpp
Lawrence Lee 4c61b7d3c3 Squashed 'rtengine/libraw/' changes from 1ef70158d..12b0e5d60
12b0e5d60 Snapshot 202403
a4c9b1981 loop parameters in remove_trailing_spaces
e231b01a4 CR3-Qstep table: avoid wrong 64-bit code generation
21368133a 0.21.2 release
a6f212a4a tag type => tag size mapping fixed
41506ef73 cubic_spline: better handling of non-integer data
17294b5fd extra metadata check in arq_load_raw
47d9dd8e2 Better incorrect data handling in cubic_spline
3baa51068 skip invalid pattern in xtrans_interpolate
eaf63bf5f Check HL recovery coeffs before processing
a14574080 limit wavelet denoise minimum size
4e597e4e9 Merge pull request #594 from pinotree/path_max
086dcb9a6 raw-identify: use fallback if PATH_MAX not available
0e105f9f8 additional check against corrupted ljpeg layout
0c8b68e9f Disable color conversion for Canon 16-bit thumbnails
cd1abd695 docs/changelog: explained the case when no thumbnail is found in specific file
6fffd414b rename swapXX to libraw_swapXX to avoid name conflict
af78ae48a Check against corrupted LJPEG header in Canon sRAW decoder
ba780e600 Limit embedded color profile allocation/read size
122bf7c5b Wrong alloc result check for 16-bit bitmap thumbnail
e6dd2709e check pana_data/buffer offset before use
ae2dc5884 Check P1 quadrant linearization coeff[15] against zero
f2998bacc avoid integer overflow in buffer space check
443b7fb51 prevent buffer overrun in buffer_datastream::scanf_one
35a6d3615 ensure correct T.tlength for 16b bitmap thumbnails(2)
b69ea8be5 ensure correct T.tlength for 16b bitmap thumbnails
2b6eca897 Do not run sraw decoder on (crafted) bayer files
68808b57f better striped thumbnails handling
9ab70f6dc do not set shrink flag for 3/4 component images
32425dd96 allow more decoders for fuji-rotated RAWs
REVERT: 1ef70158d 0.21.2 release
REVERT: 62f042366 tag type => tag size mapping fixed
REVERT: ee087e3fe cubic_spline: better handling of non-integer data
REVERT: af755b991 extra metadata check in arq_load_raw
REVERT: 0fadd8819 Better incorrect data handling in cubic_spline
REVERT: d7fb66053 skip invalid pattern in xtrans_interpolate
REVERT: d059ed280 Check HL recovery coeffs before processing
REVERT: 104730519 limit wavelet denoise minimum size
REVERT: cae09838e raw-identify: use fallback if PATH_MAX not available
REVERT: d6c677608 additional check against corrupted ljpeg layout
REVERT: 1001a6ac1 Disable color conversion for Canon 16-bit thumbnails
REVERT: a5130b01b docs/changelog: explained the case when no thumbnail is found in specific file
REVERT: 600c0c63d rename swapXX to libraw_swapXX to avoid name conflict
REVERT: 299c8a11b Check against corrupted LJPEG header in Canon sRAW decoder
REVERT: ec8671ad9 Limit embedded color profile allocation/read size
REVERT: 5229d5942 Wrong alloc result check for 16-bit bitmap thumbnail
REVERT: b278b775f check pana_data/buffer offset before use
REVERT: 7f4b8d3af Check P1 quadrant linearization coeff[15] against zero
REVERT: e942a7db6 avoid integer overflow in buffer space check
REVERT: f6a57cfb8 prevent buffer overrun in buffer_datastream::scanf_one
REVERT: 3e62ed304 ensure correct T.tlength for 16b bitmap thumbnails(2)
REVERT: 8e52d81cd ensure correct T.tlength for 16b bitmap thumbnails
REVERT: 8e1af15e2 Do not run sraw decoder on (crafted) bayer files
REVERT: 0ace959c2 better striped thumbnails handling
REVERT: 477e0719f do not set shrink flag for 3/4 component images
REVERT: c8efae6c5 allow more decoders for fuji-rotated RAWs

git-subtree-dir: rtengine/libraw
git-subtree-split: 12b0e5d60c57bb795382fda8494fc45f683550b8
2024-04-13 22:44:59 -07:00

744 lines
26 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- C++ -*-
* File: identify.cpp
* Copyright 2008-2024 LibRaw LLC (info@libraw.org)
* Created: Sat Mar 8, 2008
*
* LibRaw C++ demo: emulates dcraw -i [-v]
*
LibRaw is free software; you can redistribute it and/or modify
it under the terms of the one of two licenses as you choose:
1. GNU LESSER GENERAL PUBLIC LICENSE version 2.1
(See file LICENSE.LGPL provided in LibRaw distribution archive for details).
2. COMMON DEVELOPMENT AND DISTRIBUTION LICENSE (CDDL) Version 1.0
(See file LICENSE.CDDL provided in LibRaw distribution archive for details).
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <string>
#include <list>
#include "libraw/libraw.h"
#ifdef LIBRAW_WIN32_CALLS
#define snprintf _snprintf
#define strcasecmp stricmp
#define strncasecmp strnicmp
#endif
#ifndef LIBRAW_WIN32_CALLS
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/time.h>
#ifndef MAX_PATH
#ifdef PATH_MAX
#define MAX_PATH PATH_MAX
#else
#define MAX_PATH 4096
#endif
#endif
#endif
#ifdef _MSC_VER
#if _MSC_VER < 1800 /* below MSVC 2013 */
float roundf(float f) { return floorf(f + 0.5); }
#endif
#endif
#define P1 MyCoolRawProcessor.imgdata.idata
#define P2 MyCoolRawProcessor.imgdata.other
#define P3 MyCoolRawProcessor.imgdata.makernotes.common
#define mnLens MyCoolRawProcessor.imgdata.lens.makernotes
#define exifLens MyCoolRawProcessor.imgdata.lens
#define ShootingInfo MyCoolRawProcessor.imgdata.shootinginfo
#define S MyCoolRawProcessor.imgdata.sizes
#define O MyCoolRawProcessor.imgdata.params
#define C MyCoolRawProcessor.imgdata.color
#define T MyCoolRawProcessor.imgdata.thumbnail
void print_verbose(FILE *, LibRaw &MyCoolRawProcessor, std::string &fn);
void print_wbfun(FILE *, LibRaw &MyCoolRawProcessor, std::string &fn);
void print_szfun(FILE *, LibRaw &MyCoolRawProcessor, std::string &fn);
void print_unpackfun(FILE *, LibRaw &MyCoolRawProcessor, int print_frame, std::string &fn);
/*
table of fluorescents:
12 = FL-D; Daylight fluorescent (D 5700K 7100K) (F1,F5)
13 = FL-N; Day white fluorescent (N 4600K 5400K) (F7,F8)
14 = FL-W; Cool white fluorescent (W 3900K 4500K) (F2,F6, office,
store,warehouse) 15 = FL-WW; White fluorescent (WW 3200K 3700K) (F3,
residential) 16 = FL-L; Soft/Warm white fluorescent (L 2600K - 3250K) (F4,
kitchen, bath)
*/
static const struct
{
const int NumId;
const char *StrId;
const char *hrStrId; // human-readable
const int aux_setting;
} WBToStr[] = {
{LIBRAW_WBI_Unknown, "WBI_Unknown", "Unknown", 0},
{LIBRAW_WBI_Daylight, "WBI_Daylight", "Daylight", 0},
{LIBRAW_WBI_Fluorescent, "WBI_Fluorescent", "Fluorescent", 0},
{LIBRAW_WBI_Tungsten, "WBI_Tungsten", "Tungsten (Incandescent)", 0},
{LIBRAW_WBI_Flash, "WBI_Flash", "Flash", 0},
{LIBRAW_WBI_FineWeather, "WBI_FineWeather", "Fine Weather", 0},
{LIBRAW_WBI_Cloudy, "WBI_Cloudy", "Cloudy", 0},
{LIBRAW_WBI_Shade, "WBI_Shade", "Shade", 0},
{LIBRAW_WBI_FL_D, "WBI_FL_D", "Daylight Fluorescent", 0},
{LIBRAW_WBI_FL_N, "WBI_FL_N", "Day White Fluorescent", 0},
{LIBRAW_WBI_FL_W, "WBI_FL_W", "Cool White Fluorescent", 0},
{LIBRAW_WBI_FL_WW, "WBI_FL_WW", "White Fluorescent", 0},
{LIBRAW_WBI_FL_L, "WBI_FL_L", "Warm White Fluorescent", 0},
{LIBRAW_WBI_Ill_A, "WBI_Ill_A", "Illuminant A", 0},
{LIBRAW_WBI_Ill_B, "WBI_Ill_B", "Illuminant B", 0},
{LIBRAW_WBI_Ill_C, "WBI_Ill_C", "Illuminant C", 0},
{LIBRAW_WBI_D55, "WBI_D55", "D55", 0},
{LIBRAW_WBI_D65, "WBI_D65", "D65", 0},
{LIBRAW_WBI_D75, "WBI_D75", "D75", 0},
{LIBRAW_WBI_D50, "WBI_D50", "D50", 0},
{LIBRAW_WBI_StudioTungsten, "WBI_StudioTungsten", "ISO Studio Tungsten", 0},
{LIBRAW_WBI_BW, "WBI_BW", "BW", 0},
{LIBRAW_WBI_Other, "WBI_Other", "Other", 0},
{LIBRAW_WBI_Sunset, "WBI_Sunset", "Sunset", 1},
{LIBRAW_WBI_Underwater, "WBI_Underwater", "Underwater", 1},
{LIBRAW_WBI_FluorescentHigh, "WBI_FluorescentHigh", "Fluorescent High", 1},
{LIBRAW_WBI_HT_Mercury, "WBI_HT_Mercury", "HT Mercury", 1},
{LIBRAW_WBI_AsShot, "WBI_AsShot", "As Shot", 1},
{LIBRAW_WBI_Measured, "WBI_Measured", "Camera Measured", 1},
{LIBRAW_WBI_Auto, "WBI_Auto", "Camera Auto", 1},
{LIBRAW_WBI_Auto1, "WBI_Auto1", "Camera Auto 1", 1},
{LIBRAW_WBI_Auto2, "WBI_Auto2", "Camera Auto 2", 1},
{LIBRAW_WBI_Auto3, "WBI_Auto3", "Camera Auto 3", 1},
{LIBRAW_WBI_Auto4, "WBI_Auto4", "Camera Auto 4", 1},
{LIBRAW_WBI_Custom, "WBI_Custom", "Custom", 1},
{LIBRAW_WBI_Custom1, "WBI_Custom1", "Custom 1", 1},
{LIBRAW_WBI_Custom2, "WBI_Custom2", "Custom 2", 1},
{LIBRAW_WBI_Custom3, "WBI_Custom3", "Custom 3", 1},
{LIBRAW_WBI_Custom4, "WBI_Custom4", "Custom 4", 1},
{LIBRAW_WBI_Custom5, "WBI_Custom5", "Custom 5", 1},
{LIBRAW_WBI_Custom6, "WBI_Custom6", "Custom 6", 1},
{LIBRAW_WBI_PC_Set1, "WBI_PC_Set1", "PC Set 1", 1},
{LIBRAW_WBI_PC_Set2, "WBI_PC_Set2", "PC Set 2", 1},
{LIBRAW_WBI_PC_Set3, "WBI_PC_Set3", "PC Set 3", 1},
{LIBRAW_WBI_PC_Set4, "WBI_PC_Set4", "PC Set 4", 1},
{LIBRAW_WBI_PC_Set5, "WBI_PC_Set5", "PC Set 5", 1},
{LIBRAW_WBI_Kelvin, "WBI_Kelvin", "Kelvin", 1},
};
const char *WB_idx2str(unsigned WBi)
{
for (int i = 0; i < int(sizeof WBToStr / sizeof *WBToStr); i++)
if (WBToStr[i].NumId == (int)WBi)
return WBToStr[i].StrId;
return 0;
}
const char *WB_idx2hrstr(unsigned WBi)
{
for (int i = 0; i < int(sizeof WBToStr / sizeof *WBToStr); i++)
if (WBToStr[i].NumId == (int)WBi)
return WBToStr[i].hrStrId;
return 0;
}
double _log2(double a)
{
if(a > 0.00000000001) return log(a)/log(2.0);
return -1000;
}
void trimSpaces(char *s)
{
char *p = s;
if (!strncasecmp(p, "NO=", 3))
p = p + 3; /* fix for Nikon D70, D70s */
int l = strlen(p);
if (!l)
return;
while (isspace(p[l - 1]))
p[--l] = 0; /* trim trailing spaces */
while (*p && isspace(*p))
++p, --l; /* trim leading spaces */
memmove(s, p, l + 1);
}
void print_usage(const char *pname)
{
printf("Usage: %s [options] inputfiles\n", pname);
printf("Options:\n"
"\t-v\tverbose output\n"
"\t-w\tprint white balance\n"
"\t-u\tprint unpack function\n"
"\t-f\tprint frame size (only w/ -u)\n"
"\t-s\tprint output image size\n"
"\t-h\tforce half-size mode (only for -s)\n"
"\t-M\tdisable use of raw-embedded color data\n"
"\t+M\tforce use of raw-embedded color data\n"
"\t-L filename\tread input files list from filename\n"
"\t-o filename\toutput to filename\n");
}
int main(int ac, char *av[])
{
int ret;
int verbose = 0, print_sz = 0, print_unpack = 0, print_frame = 0, print_wb = 0;
LibRaw MyCoolRawProcessor;
char *filelistfile = NULL;
char *outputfilename = NULL;
FILE *outfile = stdout;
std::vector<std::string> filelist;
filelist.reserve(ac - 1);
for (int i = 1; i < ac; i++)
{
if (av[i][0] == '-')
{
if (!strcmp(av[i], "-v"))
verbose++;
if (!strcmp(av[i], "-w"))
print_wb++;
if (!strcmp(av[i], "-u"))
print_unpack++;
if (!strcmp(av[i], "-s"))
print_sz++;
if (!strcmp(av[i], "-h"))
O.half_size = 1;
if (!strcmp(av[i], "-f"))
print_frame++;
if (!strcmp(av[i], "-M"))
MyCoolRawProcessor.imgdata.params.use_camera_matrix = 0;
if (!strcmp(av[i], "-L") && i < ac - 1)
{
filelistfile = av[i + 1];
i++;
}
if (!strcmp(av[i], "-o") && i < ac - 1)
{
outputfilename = av[i + 1];
i++;
}
continue;
}
else if (!strcmp(av[i], "+M"))
{
MyCoolRawProcessor.imgdata.params.use_camera_matrix = 3;
continue;
}
filelist.push_back(av[i]);
}
if (filelistfile)
{
char *p;
char path[MAX_PATH + 1];
FILE *f = fopen(filelistfile, "r");
if (f)
{
while (fgets(path, MAX_PATH, f))
{
if ((p = strchr(path, '\n')))
*p = 0;
if ((p = strchr(path, '\r')))
*p = 0;
filelist.push_back(path);
}
fclose(f);
}
}
if (filelist.size() < 1)
{
print_usage(av[0]);
return 1;
}
if (outputfilename)
outfile = fopen(outputfilename, "wt");
for (int i = 0; i < (int)filelist.size(); i++)
{
if ((ret = MyCoolRawProcessor.open_file(filelist[i].c_str())) != LIBRAW_SUCCESS)
{
fprintf(stderr, "Cannot decode %s: %s\n", filelist[i].c_str(), libraw_strerror(ret));
continue; // no recycle, open_file will recycle
}
if (print_sz)
print_szfun(outfile, MyCoolRawProcessor, filelist[i]);
else if (verbose)
print_verbose(outfile, MyCoolRawProcessor, filelist[i]);
else if (print_unpack)
print_unpackfun(outfile, MyCoolRawProcessor, print_frame, filelist[i]);
else if (print_wb)
print_wbfun(outfile, MyCoolRawProcessor, filelist[i]);
else
fprintf(outfile, "%s is a %s %s image.\n", filelist[i].c_str(), P1.make, P1.model);
MyCoolRawProcessor.recycle();
} // endfor
return 0;
}
#define PRINTMATRIX3x4(of, mat, clrs) \
do \
{ \
for (int r = 0; r < 3; r++) \
if (clrs == 4) \
fprintf(of, "%6.4f\t%6.4f\t%6.4f\t%6.4f\n", mat[r][0], mat[r][1], mat[r][2], mat[r][3]); \
else \
fprintf(of, "%6.4f\t%6.4f\t%6.4f\n", mat[r][0], mat[r][1], mat[r][2]); \
} while (0)
#define PRINTMATRIX4x3(of, mat, clrs) \
do \
{ \
for (int r = 0; r < clrs && r < 4; r++) \
fprintf(of, "%6.4f\t%6.4f\t%6.4f\n", mat[r][0], mat[r][1], mat[r][2]); \
} while (0)
void print_verbose(FILE *outfile, LibRaw &MyCoolRawProcessor, std::string &fn)
{
int WBi;
float denom;
int ret;
if ((ret = MyCoolRawProcessor.adjust_sizes_info_only()))
{
fprintf(outfile, "Cannot decode %s: %s\n", fn.c_str(), libraw_strerror(ret));
return; // no recycle, open_file will recycle
}
fprintf(outfile, "\nFilename: %s\n", fn.c_str());
if (C.OriginalRawFileName[0])
fprintf(outfile, "OriginalRawFileName: =%s=\n", C.OriginalRawFileName);
fprintf(outfile, "Timestamp: %s", ctime(&(P2.timestamp)));
fprintf(outfile, "Camera: %s %s ID: 0x%llx\n", P1.make, P1.model, mnLens.CamID);
fprintf(outfile, "Normalized Make/Model: =%s/%s= ", P1.normalized_make, P1.normalized_model);
fprintf(outfile, "CamMaker ID: %d\n", P1.maker_index);
{
int i = 0;
char sep[] = ", ";
if (C.UniqueCameraModel[0])
{
i++;
fprintf(outfile, "UniqueCameraModel: =%s=", C.UniqueCameraModel);
}
if (C.LocalizedCameraModel[0])
{
if (i)
{
fprintf(outfile, "%s", sep);
i++;
}
fprintf(outfile, "LocalizedCameraModel: =%s=", C.LocalizedCameraModel);
}
if (i)
{
fprintf(outfile, "\n");
i = 0;
}
if (C.ImageUniqueID[0])
{
if (i)
fprintf(outfile, "%s", sep);
i++;
fprintf(outfile, "ImageUniqueID: =%s=", C.ImageUniqueID);
}
if (C.RawDataUniqueID[0])
{
if (i)
fprintf(outfile, "%s", sep);
i++;
fprintf(outfile, "RawDataUniqueID: =%s=", C.RawDataUniqueID);
}
if (i)
fprintf(outfile, "\n");
}
if (ShootingInfo.BodySerial[0] && strcmp(ShootingInfo.BodySerial, "0"))
{
trimSpaces(ShootingInfo.BodySerial);
fprintf(outfile, "Body#: %s", ShootingInfo.BodySerial);
}
else if (C.model2[0] && (!strncasecmp(P1.normalized_make, "Kodak", 5)))
{
trimSpaces(C.model2);
fprintf(outfile, "Body#: %s", C.model2);
}
if (ShootingInfo.InternalBodySerial[0])
{
trimSpaces(ShootingInfo.InternalBodySerial);
fprintf(outfile, " BodyAssy#: %s", ShootingInfo.InternalBodySerial);
}
if (exifLens.LensSerial[0])
{
trimSpaces(exifLens.LensSerial);
fprintf(outfile, " Lens#: %s", exifLens.LensSerial);
}
if (exifLens.InternalLensSerial[0])
{
trimSpaces(exifLens.InternalLensSerial);
fprintf(outfile, " LensAssy#: %s", exifLens.InternalLensSerial);
}
if (P2.artist[0])
fprintf(outfile, " Owner: %s\n", P2.artist);
if (P1.dng_version)
{
fprintf(outfile, " DNG Version: ");
for (int i = 24; i >= 0; i -= 8)
fprintf(outfile, "%d%c", P1.dng_version >> i & 255, i ? '.' : '\n');
}
fprintf(outfile, "\nEXIF:\n");
fprintf(outfile, "\tMinFocal: %0.1f mm\n", exifLens.MinFocal);
fprintf(outfile, "\tMaxFocal: %0.1f mm\n", exifLens.MaxFocal);
fprintf(outfile, "\tMaxAp @MinFocal: f/%0.1f\n", exifLens.MaxAp4MinFocal);
fprintf(outfile, "\tMaxAp @MaxFocal: f/%0.1f\n", exifLens.MaxAp4MaxFocal);
fprintf(outfile, "\tCurFocal: %0.1f mm\n", P2.focal_len);
fprintf(outfile, "\tMaxAperture @CurFocal: f/%0.1f\n", exifLens.EXIF_MaxAp);
fprintf(outfile, "\tFocalLengthIn35mmFormat: %d mm\n", exifLens.FocalLengthIn35mmFormat);
fprintf(outfile, "\tLensMake: %s\n", exifLens.LensMake);
fprintf(outfile, "\tLens: %s\n", exifLens.Lens);
fprintf(outfile, "\n");
fprintf(outfile, "\nMakernotes:\n");
fprintf(outfile, "\tDriveMode: %d\n", ShootingInfo.DriveMode);
fprintf(outfile, "\tFocusMode: %d\n", ShootingInfo.FocusMode);
fprintf(outfile, "\tMeteringMode: %d\n", ShootingInfo.MeteringMode);
fprintf(outfile, "\tAFPoint: %d\n", ShootingInfo.AFPoint);
fprintf(outfile, "\tExposureMode: %d\n", ShootingInfo.ExposureMode);
fprintf(outfile, "\tExposureProgram: %d\n", ShootingInfo.ExposureProgram);
fprintf(outfile, "\tImageStabilization: %d\n", ShootingInfo.ImageStabilization);
fprintf(outfile, "\tLens: %s\n", mnLens.Lens);
fprintf(outfile, "\tLensFormat: %d, ", mnLens.LensFormat);
fprintf(outfile, "\tLensMount: %d, ", mnLens.LensMount);
fprintf(outfile, "\tFocalType: %d, ", mnLens.FocalType);
switch (mnLens.FocalType)
{
case LIBRAW_FT_UNDEFINED:
fprintf(outfile, "Undefined\n");
break;
case LIBRAW_FT_PRIME_LENS:
fprintf(outfile, "Prime lens\n");
break;
case LIBRAW_FT_ZOOM_LENS:
fprintf(outfile, "Zoom lens\n");
break;
default:
fprintf(outfile, "Unknown\n");
break;
}
fprintf(outfile, "\tLensFeatures_pre: %s\n", mnLens.LensFeatures_pre);
fprintf(outfile, "\tLensFeatures_suf: %s\n", mnLens.LensFeatures_suf);
fprintf(outfile, "\tMinFocal: %0.1f mm\n", mnLens.MinFocal);
fprintf(outfile, "\tMaxFocal: %0.1f mm\n", mnLens.MaxFocal);
fprintf(outfile, "\tMaxAp @MinFocal: f/%0.1f\n", mnLens.MaxAp4MinFocal);
fprintf(outfile, "\tMaxAp @MaxFocal: f/%0.1f\n", mnLens.MaxAp4MaxFocal);
fprintf(outfile, "\tMinAp @MinFocal: f/%0.1f\n", mnLens.MinAp4MinFocal);
fprintf(outfile, "\tMinAp @MaxFocal: f/%0.1f\n", mnLens.MinAp4MaxFocal);
fprintf(outfile, "\tMaxAp: f/%0.1f\n", mnLens.MaxAp);
fprintf(outfile, "\tMinAp: f/%0.1f\n", mnLens.MinAp);
fprintf(outfile, "\tCurFocal: %0.1f mm\n", mnLens.CurFocal);
fprintf(outfile, "\tCurAp: f/%0.1f\n", mnLens.CurAp);
fprintf(outfile, "\tMaxAp @CurFocal: f/%0.1f\n", mnLens.MaxAp4CurFocal);
fprintf(outfile, "\tMinAp @CurFocal: f/%0.1f\n", mnLens.MinAp4CurFocal);
if (exifLens.makernotes.FocalLengthIn35mmFormat > 1.0f)
fprintf(outfile, "\tFocalLengthIn35mmFormat: %0.1f mm\n", exifLens.makernotes.FocalLengthIn35mmFormat);
if (exifLens.nikon.EffectiveMaxAp > 0.1f)
fprintf(outfile, "\tEffectiveMaxAp: f/%0.1f\n", exifLens.nikon.EffectiveMaxAp);
if (exifLens.makernotes.LensFStops > 0.1f)
fprintf(outfile, "\tLensFStops @CurFocal: %0.2f\n", exifLens.makernotes.LensFStops);
fprintf(outfile, "\tTeleconverterID: %lld\n", mnLens.TeleconverterID);
fprintf(outfile, "\tTeleconverter: %s\n", mnLens.Teleconverter);
fprintf(outfile, "\tAdapterID: %lld\n", mnLens.AdapterID);
fprintf(outfile, "\tAdapter: %s\n", mnLens.Adapter);
fprintf(outfile, "\tAttachmentID: %lld\n", mnLens.AttachmentID);
fprintf(outfile, "\tAttachment: %s\n", mnLens.Attachment);
fprintf(outfile, "\n");
fprintf(outfile, "ISO speed: %d\n", (int)P2.iso_speed);
if (P3.real_ISO > 0.1f)
fprintf(outfile, "real ISO speed: %d\n", (int)P3.real_ISO);
fprintf(outfile, "Shutter: ");
if (P2.shutter > 0 && P2.shutter < 1)
P2.shutter = fprintf(outfile, "1/%0.1f\n", 1.0f / P2.shutter);
else if (P2.shutter >= 1)
fprintf(outfile, "%0.1f sec\n", P2.shutter);
else /* negative*/
fprintf(outfile, " negative value\n");
fprintf(outfile, "Aperture: f/%0.1f\n", P2.aperture);
fprintf(outfile, "Focal length: %0.1f mm\n", P2.focal_len);
if (P3.exifAmbientTemperature > -273.15f)
fprintf(outfile, "Ambient temperature (exif data): %6.2f° C\n", P3.exifAmbientTemperature);
if (P3.CameraTemperature > -273.15f)
fprintf(outfile, "Camera temperature: %6.2f° C\n", P3.CameraTemperature);
if (P3.SensorTemperature > -273.15f)
fprintf(outfile, "Sensor temperature: %6.2f° C\n", P3.SensorTemperature);
if (P3.SensorTemperature2 > -273.15f)
fprintf(outfile, "Sensor temperature2: %6.2f° C\n", P3.SensorTemperature2);
if (P3.LensTemperature > -273.15f)
fprintf(outfile, "Lens temperature: %6.2f° C\n", P3.LensTemperature);
if (P3.AmbientTemperature > -273.15f)
fprintf(outfile, "Ambient temperature: %6.2f° C\n", P3.AmbientTemperature);
if (P3.BatteryTemperature > -273.15f)
fprintf(outfile, "Battery temperature: %6.2f° C\n", P3.BatteryTemperature);
if (P3.FlashGN > 1.0f)
fprintf(outfile, "Flash Guide Number: %6.2f\n", P3.FlashGN);
fprintf(outfile, "Flash exposure compensation: %0.2f EV\n", P3.FlashEC);
if (C.profile)
fprintf(outfile, "Embedded ICC profile: yes, %d bytes\n", C.profile_length);
else
fprintf(outfile, "Embedded ICC profile: no\n");
if (C.dng_levels.baseline_exposure > -999.f)
fprintf(outfile, "Baseline exposure: %04.3f\n", C.dng_levels.baseline_exposure);
fprintf(outfile, "Number of raw images: %d\n", P1.raw_count);
if (S.pixel_aspect != 1)
fprintf(outfile, "Pixel Aspect Ratio: %0.6f\n", S.pixel_aspect);
if (T.tlength)
fprintf(outfile, "Thumb size: %4d x %d\n", T.twidth, T.theight);
fprintf(outfile, "Full size: %4d x %d\n", S.raw_width, S.raw_height);
if (S.raw_inset_crops[0].cwidth)
{
fprintf(outfile, "Raw inset, width x height: %4d x %d ", S.raw_inset_crops[0].cwidth, S.raw_inset_crops[0].cheight);
if (S.raw_inset_crops[0].cleft != 0xffff)
fprintf(outfile, "left: %d ", S.raw_inset_crops[0].cleft);
if (S.raw_inset_crops[0].ctop != 0xffff)
fprintf(outfile, "top: %d", S.raw_inset_crops[0].ctop);
fprintf(outfile, "\n");
}
fprintf(outfile, "Image size: %4d x %d\n", S.width, S.height);
fprintf(outfile, "Output size: %4d x %d\n", S.iwidth, S.iheight);
fprintf(outfile, "Image flip: %d\n", S.flip);
fprintf(outfile, "Raw colors: %d", P1.colors);
if (P1.filters)
{
fprintf(outfile, "\nFilter pattern: ");
if (!P1.cdesc[3])
P1.cdesc[3] = 'G';
for (int i = 0; i < 16; i++)
putchar(P1.cdesc[MyCoolRawProcessor.fcol(i >> 1, i & 1)]);
}
if (C.black)
{
fprintf(outfile, "\nblack: %d", C.black);
}
if (C.cblack[0] != 0)
{
fprintf(outfile, "\ncblack[0 .. 3]:");
for (int c = 0; c < 4; c++)
fprintf(outfile, " %d", C.cblack[c]);
}
if ((C.cblack[4] * C.cblack[5]) > 0)
{
fprintf(outfile, "\nBlackLevelRepeatDim: %d x %d\n", C.cblack[4], C.cblack[5]);
int n = C.cblack[4] * C.cblack[5];
fprintf(outfile, "cblack[6 .. %d]:", 6 + n - 1);
for (int c = 6; c < 6 + n; c++)
fprintf(outfile, " %d", C.cblack[c]);
}
if (C.linear_max[0] != 0)
{
fprintf(outfile, "\nHighlight linearity limits:");
for (int c = 0; c < 4; c++)
fprintf(outfile, " %ld", C.linear_max[c]);
}
if (P1.colors > 1)
{
fprintf(outfile, "\nMakernotes WB data: coeffs EVs");
if ((C.cam_mul[0] > 0) && (C.cam_mul[1] > 0))
{
fprintf(outfile, "\n %-23s %g %g %g %g %5.2f %5.2f %5.2f %5.2f", "As shot", C.cam_mul[0], C.cam_mul[1],
C.cam_mul[2], C.cam_mul[3], roundf(_log2(C.cam_mul[0] / C.cam_mul[1]) * 100.0f) / 100.0f, 0.0f,
roundf(_log2(C.cam_mul[2] / C.cam_mul[1]) * 100.0f) / 100.0f,
C.cam_mul[3] ? roundf(_log2(C.cam_mul[3] / C.cam_mul[1]) * 100.0f) / 100.0f : 0.0f);
}
for (int cnt = 0; cnt < int(sizeof WBToStr / sizeof *WBToStr); cnt++)
{
WBi = WBToStr[cnt].NumId;
if ((C.WB_Coeffs[WBi][0] > 0) && (C.WB_Coeffs[WBi][1] > 0))
{
denom = (float)C.WB_Coeffs[WBi][1];
fprintf(outfile, "\n %-23s %4d %4d %4d %4d %5.2f %5.2f %5.2f %5.2f", WBToStr[cnt].hrStrId,
C.WB_Coeffs[WBi][0], C.WB_Coeffs[WBi][1], C.WB_Coeffs[WBi][2], C.WB_Coeffs[WBi][3],
roundf(_log2((float)C.WB_Coeffs[WBi][0] / denom) * 100.0f) / 100.0f, 0.0f,
roundf(_log2((float)C.WB_Coeffs[WBi][2] / denom) * 100.0f) / 100.0f,
C.WB_Coeffs[3] ? roundf(_log2((float)C.WB_Coeffs[WBi][3] / denom) * 100.0f) / 100.0f : 0.0f);
}
}
if (C.rgb_cam[0][0] > 0.0001)
{
fprintf(outfile, "\n\nCamera2RGB matrix (mode: %d):\n", MyCoolRawProcessor.imgdata.params.use_camera_matrix);
PRINTMATRIX3x4(outfile, C.rgb_cam, P1.colors);
}
fprintf(outfile, "\nXYZ->CamRGB matrix:\n");
PRINTMATRIX4x3(outfile, C.cam_xyz, P1.colors);
for (int cnt = 0; cnt < 2; cnt++)
{
if (fabsf(C.P1_color[cnt].romm_cam[0]) > 0)
{
fprintf(outfile, "\nPhaseOne Matrix %d:\n", cnt + 1);
for (int i = 0; i < 3; i++)
fprintf(outfile, "%6.4f\t%6.4f\t%6.4f\n", C.P1_color[cnt].romm_cam[i * 3],
C.P1_color[cnt].romm_cam[i * 3 + 1], C.P1_color[cnt].romm_cam[i * 3 + 2]);
}
}
if (fabsf(C.cmatrix[0][0]) > 0)
{
fprintf(outfile, "\ncamRGB -> sRGB Matrix:\n");
PRINTMATRIX3x4(outfile, C.cmatrix, P1.colors);
}
if (fabsf(C.ccm[0][0]) > 0)
{
fprintf(outfile, "\nColor Correction Matrix:\n");
PRINTMATRIX3x4(outfile, C.ccm, P1.colors);
}
for (int cnt = 0; cnt < 2; cnt++)
{
if (C.dng_color[cnt].illuminant != LIBRAW_WBI_None)
{
if (C.dng_color[cnt].illuminant <= LIBRAW_WBI_StudioTungsten)
{
fprintf(outfile, "\nDNG Illuminant %d: %s", cnt + 1, WB_idx2hrstr(C.dng_color[cnt].illuminant));
}
else if (C.dng_color[cnt].illuminant == LIBRAW_WBI_Other)
{
fprintf(outfile, "\nDNG Illuminant %d: Other", cnt + 1);
}
else
{
fprintf(outfile,
"\nDNG Illuminant %d is out of EXIF LightSources range "
"[0:24, 255]: %d",
cnt + 1, C.dng_color[cnt].illuminant);
}
}
}
for (int n = 0; n < 2; n++)
{
if (fabsf(C.dng_color[n].colormatrix[0][0]) > 0)
{
fprintf(outfile, "\nDNG color matrix %d:\n", n + 1);
PRINTMATRIX4x3(outfile, C.dng_color[n].colormatrix, P1.colors);
}
}
for (int n = 0; n < 2; n++)
{
if (fabsf(C.dng_color[n].calibration[0][0]) > 0)
{
fprintf(outfile, "\nDNG calibration matrix %d:\n", n + 1);
for (int i = 0; i < P1.colors && i < 4; i++)
{
for (int j = 0; j < P1.colors && j < 4; j++)
fprintf(outfile, "%6.4f\t", C.dng_color[n].calibration[j][i]);
fprintf(outfile, "\n");
}
}
}
for (int n = 0; n < 2; n++)
{
if (fabsf(C.dng_color[n].forwardmatrix[0][0]) > 0)
{
fprintf(outfile, "\nDNG forward matrix %d:\n", n + 1);
PRINTMATRIX3x4(outfile, C.dng_color[n].forwardmatrix, P1.colors);
}
}
fprintf(outfile, "\nDerived D65 multipliers:");
for (int c = 0; c < P1.colors; c++)
fprintf(outfile, " %f", C.pre_mul[c]);
fprintf(outfile, "\n");
}
}
void print_wbfun(FILE *outfile, LibRaw &MyCoolRawProcessor, std::string &fn)
{
int WBi;
float denom;
fprintf(outfile, "// %s %s\n", P1.make, P1.model);
for (int cnt = 0; cnt < int(sizeof WBToStr / sizeof *WBToStr); cnt++)
{
WBi = WBToStr[cnt].NumId;
if (C.WB_Coeffs[WBi][0] && C.WB_Coeffs[WBi][1] && !WBToStr[cnt].aux_setting)
{
denom = (float)C.WB_Coeffs[WBi][1];
fprintf(outfile, "{\"%s\", \"%s\", %s, {%6.5ff, 1.0f, %6.5ff, ", P1.normalized_make, P1.normalized_model,
WBToStr[cnt].StrId, C.WB_Coeffs[WBi][0] / denom, C.WB_Coeffs[WBi][2] / denom);
if (C.WB_Coeffs[WBi][1] == C.WB_Coeffs[WBi][3])
fprintf(outfile, "1.0f}},\n");
else
fprintf(outfile, "%6.5ff}},\n", C.WB_Coeffs[WBi][3] / denom);
}
}
for (int cnt = 0; cnt < 64; cnt++)
if (C.WBCT_Coeffs[cnt][0])
{
fprintf(outfile, "{\"%s\", \"%s\", %d, {%6.5ff, 1.0f, %6.5ff, ", P1.normalized_make, P1.normalized_model,
(int)C.WBCT_Coeffs[cnt][0], C.WBCT_Coeffs[cnt][1] / C.WBCT_Coeffs[cnt][2],
C.WBCT_Coeffs[cnt][3] / C.WBCT_Coeffs[cnt][2]);
if (C.WBCT_Coeffs[cnt][2] == C.WBCT_Coeffs[cnt][4])
fprintf(outfile, "1.0f}},\n");
else
fprintf(outfile, "%6.5ff}},\n", C.WBCT_Coeffs[cnt][4] / C.WBCT_Coeffs[cnt][2]);
}
else
break;
fprintf(outfile, "\n");
}
void print_szfun(FILE *outfile, LibRaw &MyCoolRawProcessor, std::string &fn)
{
fprintf(outfile, "%s\t%s\t%s\t%d\t%d\n", fn.c_str(), P1.make, P1.model, S.width, S.height);
}
void print_unpackfun(FILE *outfile, LibRaw &MyCoolRawProcessor, int print_frame, std::string &fn)
{
char frame[48] = "";
if (print_frame)
{
ushort right_margin = S.raw_width - S.width - S.left_margin;
ushort bottom_margin = S.raw_height - S.height - S.top_margin;
snprintf(frame, 48, "F=%dx%dx%dx%d RS=%dx%d", S.left_margin, S.top_margin, right_margin, bottom_margin, S.raw_width,
S.raw_height);
}
fprintf(outfile, "%s\t%s\t%s\t%s/%s\n", fn.c_str(), MyCoolRawProcessor.unpack_function_name(), frame, P1.make,
P1.model);
}