409 lines
12 KiB
C++
409 lines
12 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <glib.h>
|
|
#include <glib/gstdio.h>
|
|
#include "curves.h"
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include "mytime.h"
|
|
#include <cstring>
|
|
|
|
#include <gtkmm.h>
|
|
#include <fstream>
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
FlatCurve::FlatCurve (const std::vector<double>& p, bool isPeriodic, int poly_pn) : kind(FCT_Empty), leftTangent(NULL), rightTangent(NULL), identityValue(0.5), periodic(isPeriodic)
|
|
{
|
|
|
|
ppn = poly_pn > 65500 ? 65500 : poly_pn;
|
|
poly_x.clear();
|
|
poly_y.clear();
|
|
|
|
bool identity = true;
|
|
|
|
if (p.size() > 4) {
|
|
kind = (FlatCurveType)p[0];
|
|
|
|
if (kind == FCT_MinMaxCPoints) {
|
|
int oneMorePoint = periodic ? 1 : 0;
|
|
N = (p.size() - 1) / 4;
|
|
x = new double[N + oneMorePoint];
|
|
y = new double[N + oneMorePoint];
|
|
leftTangent = new double[N + oneMorePoint];
|
|
rightTangent = new double[N + oneMorePoint];
|
|
int ix = 1;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
x[i] = p[ix++];
|
|
y[i] = p[ix++];
|
|
leftTangent[i] = p[ix++];
|
|
rightTangent[i] = p[ix++];
|
|
|
|
if (y[i] >= identityValue + 1.e-7 || y[i] <= identityValue - 1.e-7) {
|
|
identity = false;
|
|
}
|
|
}
|
|
|
|
// The first point is copied to the end of the point list, to handle the curve periodicity
|
|
if (periodic) {
|
|
x[N] = p[1] + 1.0;
|
|
y[N] = p[2];
|
|
leftTangent[N] = p[3];
|
|
rightTangent[N] = p[4];
|
|
}
|
|
|
|
if (!identity && N > (periodic ? 1 : 0) ) {
|
|
CtrlPoints_set ();
|
|
fillHash();
|
|
}
|
|
}
|
|
|
|
/*else if (kind==FCT_Parametric) {
|
|
}*/
|
|
if (identity) {
|
|
kind = FCT_Empty;
|
|
}
|
|
}
|
|
}
|
|
|
|
FlatCurve::~FlatCurve ()
|
|
{
|
|
|
|
delete [] x;
|
|
delete [] y;
|
|
delete [] leftTangent;
|
|
delete [] rightTangent;
|
|
delete [] ypp;
|
|
poly_x.clear();
|
|
poly_y.clear();
|
|
}
|
|
|
|
/*
|
|
* The nominal (identity) curve may not be 0.5, use this method to set it to whatever value in the 0.-1. range you want
|
|
* Return true if the curve is nominal
|
|
*/
|
|
bool FlatCurve::setIdentityValue (double iVal)
|
|
{
|
|
|
|
if (identityValue == iVal) {
|
|
return kind == FCT_Empty;
|
|
}
|
|
|
|
identityValue = iVal;
|
|
bool identity = true;
|
|
|
|
for (int i = 0; i < N + (periodic ? 1 : 0); i++) {
|
|
if (y[i] >= identityValue + 1.e-7 || y[i] <= identityValue - 1.e-7) {
|
|
identity = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!identity && N > (periodic ? 1 : 0) ) {
|
|
CtrlPoints_set ();
|
|
fillHash();
|
|
kind = FCT_MinMaxCPoints;
|
|
} else {
|
|
poly_x.clear();
|
|
poly_y.clear();
|
|
hash.clear();
|
|
kind = FCT_Empty;
|
|
}
|
|
|
|
return kind == FCT_Empty;
|
|
}
|
|
|
|
void FlatCurve::CtrlPoints_set ()
|
|
{
|
|
|
|
int N_ = periodic ? N : N - 1;
|
|
int nbSubCurvesPoints = N_ * 6;
|
|
|
|
std::vector<double> sc_x(nbSubCurvesPoints); // X sub-curve points ( XP0,XP1,XP2, XP2,XP3,XP4, ...)
|
|
std::vector<double> sc_y(nbSubCurvesPoints); // Y sub-curve points ( YP0,YP1,YP2, YP2,YP3,YP4, ...)
|
|
std::vector<double> sc_length(N_ * 2); // Length of the subcurves
|
|
std::vector<bool> sc_isLinear(N_ * 2); // true if the subcurve is linear
|
|
double total_length = 0.;
|
|
|
|
// Create the list of Bezier sub-curves
|
|
// CtrlPoints_set is called if N > 1
|
|
|
|
unsigned int j = 0;
|
|
unsigned int k = 0;
|
|
|
|
for (int i = 0; i < N_;) {
|
|
double length;
|
|
double dx;
|
|
double dy;
|
|
double xp1, xp2, yp2, xp3;
|
|
bool startLinear, endLinear;
|
|
|
|
startLinear = (rightTangent[i] == 0.) || (y[i] == y[i + 1]);
|
|
endLinear = (leftTangent [i + 1] == 0.) || (y[i] == y[i + 1]);
|
|
|
|
if (startLinear && endLinear) {
|
|
// line shape
|
|
sc_x[j] = x[i];
|
|
sc_y[j++] = y[i];
|
|
sc_x[j] = x[i + 1];
|
|
sc_y[j] = y[i + 1];
|
|
sc_isLinear[k] = true;
|
|
i++;
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length = sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
// Storing the length of all sub-curves and the total length (to have a better distribution
|
|
// of the points along the curve)
|
|
sc_length[k++] = length;
|
|
total_length += length;
|
|
} else {
|
|
if (startLinear) {
|
|
xp1 = x[i];
|
|
} else {
|
|
//xp1 = (xp4 - xp0) * rightTangent0 + xp0;
|
|
xp1 = (x[i + 1] - x[i]) * rightTangent[i] + x[i];
|
|
}
|
|
|
|
if (endLinear) {
|
|
xp3 = x[i + 1];
|
|
} else {
|
|
//xp3 = (xp0 - xp4]) * leftTangent4 + xp4;
|
|
xp3 = (x[i] - x[i + 1]) * leftTangent[i + 1] + x[i + 1];
|
|
}
|
|
|
|
xp2 = (xp1 + xp3) / 2.0;
|
|
yp2 = (y[i] + y[i + 1]) / 2.0;
|
|
|
|
if (rightTangent[i] + leftTangent[i + 1] > 1.0) { // also means that start and end are not linear
|
|
xp1 = xp3 = xp2;
|
|
}
|
|
|
|
if (startLinear) {
|
|
// Point 0, 2
|
|
sc_x[j] = x[i];
|
|
sc_y[j++] = y[i];
|
|
sc_x[j] = xp2;
|
|
sc_y[j] = yp2;
|
|
sc_isLinear[k] = true;
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length = sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
// Storing the length of all sub-curves and the total length (to have a better distribution
|
|
// of the points along the curve)
|
|
sc_length[k++] = length;
|
|
total_length += length;
|
|
} else {
|
|
// Point 0, 1, 2
|
|
sc_x[j] = x[i];
|
|
sc_y[j++] = y[i];
|
|
sc_x[j] = xp1;
|
|
sc_y[j] = y[i];
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length = sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
sc_x[j] = xp2;
|
|
sc_y[j] = yp2;
|
|
sc_isLinear[k] = false;
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length += sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
// Storing the length of all sub-curves and the total length (to have a better distribution
|
|
// of the points along the curve)
|
|
sc_length[k++] = length;
|
|
total_length += length;
|
|
}
|
|
|
|
if (endLinear) {
|
|
// Point 2, 4
|
|
sc_x[j] = xp2;
|
|
sc_y[j++] = yp2;
|
|
sc_x[j] = x[i + 1];
|
|
sc_y[j] = y[i + 1];
|
|
sc_isLinear[k] = true;
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length = sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
// Storing the length of all sub-curves and the total length (to have a better distribution
|
|
// of the points along the curve)
|
|
sc_length[k++] = length;
|
|
total_length += length;
|
|
} else {
|
|
// Point 2, 3, 4
|
|
sc_x[j] = xp2;
|
|
sc_y[j++] = yp2;
|
|
sc_x[j] = xp3;
|
|
sc_y[j] = y[i + 1];
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length = sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
sc_x[j] = x[i + 1];
|
|
sc_y[j] = y[i + 1];
|
|
sc_isLinear[k] = false;
|
|
|
|
dx = sc_x[j] - sc_x[j - 1];
|
|
dy = sc_y[j] - sc_y[j - 1];
|
|
length += sqrt(dx * dx + dy * dy);
|
|
j++;
|
|
|
|
// Storing the length of all sub-curves and the total length (to have a better distribution
|
|
// of the points along the curve)
|
|
sc_length[k++] = length;
|
|
total_length += length;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
}
|
|
|
|
poly_x.clear();
|
|
poly_y.clear();
|
|
j = 0;
|
|
|
|
// adding an initial horizontal line if necessary
|
|
if (!periodic && sc_x[j] != 0.) {
|
|
poly_x.push_back(0.);
|
|
poly_y.push_back(sc_y[j]);
|
|
}
|
|
|
|
// the first point of the curves
|
|
poly_x.push_back(sc_x[j]);
|
|
poly_y.push_back(sc_y[j]);
|
|
|
|
firstPointIncluded = false;
|
|
|
|
// create the polyline with the number of points adapted to the X range of the sub-curve
|
|
for (unsigned int i = 0; i < k; i++) {
|
|
if (sc_isLinear[i]) {
|
|
j++; // skip the first point
|
|
poly_x.push_back(sc_x[j]);
|
|
poly_y.push_back(sc_y[j++]);
|
|
} else {
|
|
nbr_points = (int)(((double)(ppn) * sc_length[i] ) / total_length);
|
|
|
|
if (nbr_points < 0) {
|
|
for(size_t it = 0; it < sc_x.size(); it += 3) {
|
|
printf("sc_length[%zd/3]=%f \n", it, sc_length[it / 3]);
|
|
}
|
|
|
|
printf("Flat curve: error detected!\n i=%d k=%d periodic=%d nbr_points=%d ppn=%d N=%d sc_length[i/3]=%f total_length=%f\n", i, k, periodic, nbr_points, ppn, N, sc_length[i / 3], total_length);
|
|
exit(0);
|
|
}
|
|
|
|
// increment along the curve, not along the X axis
|
|
increment = 1.0 / (double)(nbr_points - 1);
|
|
x1 = sc_x[j];
|
|
y1 = sc_y[j++];
|
|
x2 = sc_x[j];
|
|
y2 = sc_y[j++];
|
|
x3 = sc_x[j];
|
|
y3 = sc_y[j++];
|
|
AddPolygons ();
|
|
}
|
|
}
|
|
|
|
// adding the final horizontal segment, always (see under)
|
|
poly_x.push_back(3.0); // 3.0 is a hack for optimization purpose of the getVal method (the last value has to be beyond the normal range)
|
|
poly_y.push_back(sc_y[j - 1]);
|
|
|
|
/*
|
|
// Checking the values
|
|
Glib::ustring fname = "Curve.xyz"; // TopSolid'Design "plot" file format
|
|
std::ofstream f (fname.c_str());
|
|
f << "$" << std::endl;;
|
|
for (unsigned int iter = 0; iter < poly_x.size(); iter++) {
|
|
f << poly_x[iter] << ", " << poly_y[iter] << ", 0." << std::endl;;
|
|
}
|
|
f << "$" << std::endl;;
|
|
f.close ();
|
|
*/
|
|
}
|
|
|
|
double FlatCurve::getVal (double t) const
|
|
{
|
|
|
|
switch (kind) {
|
|
|
|
case FCT_MinMaxCPoints : {
|
|
|
|
// magic to handle curve periodicity : we look above the 1.0 bound for the value
|
|
if (t < poly_x[0]) {
|
|
t += 1.0;
|
|
}
|
|
|
|
// do a binary search for the right interval:
|
|
int k_lo = 0, k_hi = poly_x.size() - 1;
|
|
|
|
while (k_hi - k_lo > 1) {
|
|
int k = (k_hi + k_lo) / 2;
|
|
|
|
if (poly_x[k] > t) {
|
|
k_hi = k;
|
|
} else {
|
|
k_lo = k;
|
|
}
|
|
}
|
|
|
|
double dx = poly_x[k_hi] - poly_x[k_lo];
|
|
double dy = poly_y[k_hi] - poly_y[k_lo];
|
|
return poly_y[k_lo] + (t - poly_x[k_lo]) * dy / dx;
|
|
break;
|
|
}
|
|
|
|
/*case Parametric : {
|
|
break;
|
|
}*/
|
|
case FCT_Empty :
|
|
case FCT_Linear : // Linear doesn't exist yet and is then considered as identity
|
|
default:
|
|
return identityValue;
|
|
}
|
|
}
|
|
|
|
void FlatCurve::getVal (const std::vector<double>& t, std::vector<double>& res) const
|
|
{
|
|
|
|
res.resize (t.size());
|
|
|
|
for (unsigned int i = 0; i < t.size(); i++) {
|
|
res[i] = getVal(t[i]);
|
|
}
|
|
}
|
|
|
|
}
|