145 lines
5.9 KiB
C++
145 lines
5.9 KiB
C++
////////////////////////////////////////////////////////////////
|
|
//
|
|
// combine demosaic algorithms
|
|
//
|
|
//
|
|
// copyright (c) 2018 Ingo Weyrich <heckflosse67@gmx.de>
|
|
//
|
|
// blends output of two demosaicers based on contrast
|
|
//
|
|
//
|
|
// dual_demosaic_RT.cc is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
#include "jaggedarray.h"
|
|
#include "rtengine.h"
|
|
#include "rawimagesource.h"
|
|
#include "rt_math.h"
|
|
//#define BENCHMARK
|
|
#include "StopWatch.h"
|
|
#include "rt_algo.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
void RawImageSource::dual_demosaic_RT(bool isBayer, const RAWParams &raw, int winw, int winh, const array2D<float> &rawData, array2D<float> &red, array2D<float> &green, array2D<float> &blue, double &contrast, bool autoContrast, int autoX, int autoY)
|
|
{
|
|
BENCHFUN
|
|
|
|
if (contrast == 0.0 && !autoContrast) {
|
|
// contrast == 0.0 means only first demosaicer will be used
|
|
if(isBayer) {
|
|
if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AMAZEVNG4) ) {
|
|
amaze_demosaic_RT(0, 0, winw, winh, rawData, red, green, blue);
|
|
} else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::DCBVNG4) ) {
|
|
dcb_demosaic(raw.bayersensor.dcb_iterations, raw.bayersensor.dcb_enhance);
|
|
} else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::RCDVNG4) ) {
|
|
rcd_demosaic();
|
|
}
|
|
} else {
|
|
if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FOUR_PASS) ) {
|
|
xtrans_interpolate (3, true);
|
|
} else {
|
|
xtrans_interpolate (1, false);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
array2D<float> redTmp(winw, winh);
|
|
array2D<float> greenTmp(winw, winh);
|
|
array2D<float> blueTmp(winw, winh);
|
|
array2D<float> L(winw, winh);
|
|
|
|
if (isBayer) {
|
|
vng4_demosaic(rawData, redTmp, greenTmp, blueTmp);
|
|
|
|
if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::AMAZEVNG4) || raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::PIXELSHIFT)) {
|
|
amaze_demosaic_RT(0, 0, winw, winh, rawData, red, green, blue);
|
|
} else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::DCBVNG4) ) {
|
|
dcb_demosaic(raw.bayersensor.dcb_iterations, raw.bayersensor.dcb_enhance);
|
|
} else if (raw.bayersensor.method == RAWParams::BayerSensor::getMethodString(RAWParams::BayerSensor::Method::RCDVNG4) ) {
|
|
rcd_demosaic();
|
|
}
|
|
} else {
|
|
if (raw.xtranssensor.method == RAWParams::XTransSensor::getMethodString(RAWParams::XTransSensor::Method::FOUR_PASS) ) {
|
|
xtrans_interpolate (3, true);
|
|
} else {
|
|
xtrans_interpolate (1, false);
|
|
}
|
|
fast_xtrans_interpolate(rawData, redTmp, greenTmp, blueTmp);
|
|
}
|
|
|
|
const float xyz_rgb[3][3] = { // XYZ from RGB
|
|
{ 0.412453, 0.357580, 0.180423 },
|
|
{ 0.212671, 0.715160, 0.072169 },
|
|
{ 0.019334, 0.119193, 0.950227 }
|
|
};
|
|
|
|
if (autoContrast && autoX >= 0 && autoY >= 0) {
|
|
constexpr int rectSize = 40;
|
|
const int autoWidth = min(rectSize, winw - autoX);
|
|
const int autoHeight = min(rectSize, winh - autoY);
|
|
if (std::min(autoWidth, autoHeight) > 20) {
|
|
array2D<float> autoL(autoWidth, autoHeight);
|
|
for(int i = 0; i < autoHeight; ++i) {
|
|
Color::RGB2L(red[i + autoY] + autoX, green[i + autoY] + autoX, blue[i + autoY] + autoX, autoL[i], xyz_rgb, autoWidth);
|
|
}
|
|
// calculate contrast based blend factors to use vng4 in regions with low contrast
|
|
JaggedArray<float> blend(autoWidth - 2, autoHeight - 2);
|
|
int c = calcContrastThreshold(autoL, blend, autoWidth, autoHeight);
|
|
if(c < 100) {
|
|
contrast = c; // alternative : contrast = c - 1
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel
|
|
{
|
|
#pragma omp for
|
|
for(int i = 0; i < winh; ++i) {
|
|
Color::RGB2L(red[i], green[i], blue[i], L[i], xyz_rgb, winw);
|
|
}
|
|
}
|
|
// calculate contrast based blend factors to use vng4 in regions with low contrast
|
|
JaggedArray<float> blend(winw, winh);
|
|
buildBlendMask(L, blend, winw, winh, contrast / 100.f, 1.f, true);
|
|
|
|
// the following is split into 3 loops intentionally to avoid cache conflicts on CPUs with only 4-way cache
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < winh; ++i) {
|
|
for(int j = 0; j < winw; ++j) {
|
|
red[i][j] = intp(blend[i][j], red[i][j], redTmp[i][j]);
|
|
}
|
|
}
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < winh; ++i) {
|
|
for(int j = 0; j < winw; ++j) {
|
|
green[i][j] = intp(blend[i][j], green[i][j], greenTmp[i][j]);
|
|
}
|
|
}
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < winh; ++i) {
|
|
for(int j = 0; j < winw; ++j) {
|
|
blue[i][j] = intp(blend[i][j], blue[i][j], blueTmp[i][j]);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|