rawTherapee/rtengine/PF_correct_RT.cc

1888 lines
54 KiB
C++

////////////////////////////////////////////////////////////////
//
// Chromatic Aberration Auto-correction
//
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
//
//
// code dated: November 24, 2010
// optimized: September 2013, Ingo Weyrich
//
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#include "gauss.h"
#include "improcfun.h"
#include "sleef.c"
#include "mytime.h"
#include "../rtgui/myflatcurve.h"
#include "rt_math.h"
#include "opthelper.h"
#ifdef _OPENMP
#include <omp.h>
#endif
using namespace std;
namespace rtengine
{
extern const Settings* settings;
SSEFUNCTION void ImProcFunctions::PF_correct_RT(LabImage * src, LabImage * dst, double radius, int thresh)
{
const int halfwin = ceil(2 * radius) + 1;
FlatCurve* chCurve = NULL;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve = new FlatCurve(params->defringe.huecurve);
}
// local variables
const int width = src->W, height = src->H;
//temporary array to store chromaticity
float (*fringe);
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
LabImage * tmp1;
tmp1 = new LabImage(width, height);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur<float> (src->a, tmp1->a, src->W, src->H, radius);
gaussianBlur<float> (src->b, tmp1->b, src->W, src->H, radius);
}
float chromave = 0.0f;
#ifdef __SSE2__
if( chCurve ) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ )
{
for(j = 0; j < width - 3; j += 4) {
_mm_storeu_ps(&fringe[i * width + j], xatan2f(LVFU(src->b[i][j]), LVFU(src->a[i][j])));
}
for(; j < width; j++) {
fringe[i * width + j] = xatan2f(src->b[i][j], src->a[i][j]);
}
}
}
}
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.0f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
float HH = fringe[i * width + j];
#else
// no precalculated values without SSE => calculate
float HH = xatan2f(src->b[i][j], src->a[i][j]);
#endif
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f) * 2.0f); //get C=f(H)
if(chparam > 0.f) {
chparam /= 2.f; // reduced action if chparam > 0
}
chromaChfactor = 1.0f + chparam;
}
float chroma = SQR(chromaChfactor * (src->a[i][j] - tmp1->a[i][j])) + SQR(chromaChfactor * (src->b[i][j] - tmp1->b[i][j])); //modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
}
}
chromave /= (height * width);
float threshfactor = SQR(thresh / 33.f) * chromave * 5.0f;
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
__m128 sumv = _mm_set1_ps( chromave );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int j = 0; j < width * height - 3; j += 4) {
_mm_storeu_ps( &fringe[j], onev / (LVFU(fringe[j]) + sumv));
}
}
for(int j = width * height - (width * height) % 4; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave);
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int j = 0; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave);
}
#endif
// because we changed the values of fringe we also have to recalculate threshfactor
threshfactor = 1.0f / (threshfactor + chromave);
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
int j;
for(j = 0; j < halfwin - 1; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot / norm;
tmp1->b[i][j] = btot / norm;
}
}
for(; j < width - halfwin + 1; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot / norm;
tmp1->b[i][j] = btot / norm;
}
}
for(; j < width; j++) {
tmp1->a[i][j] = src->a[i][j];
tmp1->b[i][j] = src->b[i][j];
//test for pixel darker than some fraction of neighborhood ave, near an edge, more saturated than average
/*if (100*tmp1->L[i][j]>50*src->L[i][j] && \*/
/*1000*abs(tmp1->L[i][j]-src->L[i][j])>thresh*(tmp1->L[i][j]+src->L[i][j]) && \*/
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * src->a[i1][j1];
btot += wt * src->b[i1][j1];
norm += wt;
}
tmp1->a[i][j] = atot / norm;
tmp1->b[i][j] = btot / norm;
}
}
}//end of ab channel averaging
if(src != dst)
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
dst->L[i][j] = src->L[i][j];
}
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
dst->a[i][j] = tmp1->a[i][j];
dst->b[i][j] = tmp1->b[i][j];
}
}
delete tmp1;
if(chCurve) {
delete chCurve;
}
free(fringe);
}
SSEFUNCTION void ImProcFunctions::PF_correct_RTcam(CieImage * src, CieImage * dst, double radius, int thresh)
{
const int halfwin = ceil(2 * radius) + 1;
FlatCurve* chCurve = NULL;
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
chCurve = new FlatCurve(params->defringe.huecurve);
}
// local variables
const int width = src->W, height = src->H;
const float piid = 3.14159265f / 180.f;
const float eps2 = 0.01f;
//temporary array to store chromaticity
float (*fringe);
fringe = (float (*)) malloc (height * width * sizeof(*fringe));
float** sraa;
sraa = new float*[height];
for (int i = 0; i < height; i++) {
sraa[i] = new float[width];
}
float** srbb;
srbb = new float*[height];
for (int i = 0; i < height; i++) {
srbb[i] = new float[width];
}
float** tmaa;
tmaa = new float*[height];
for (int i = 0; i < height; i++) {
tmaa[i] = new float[width];
}
float** tmbb;
tmbb = new float*[height];
for (int i = 0; i < height; i++) {
tmbb[i] = new float[width];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float2 sincosval;
#ifdef __SSE2__
int j;
vfloat2 sincosvalv;
__m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
for (j = 0; j < width - 3; j += 4) {
sincosvalv = xsincosf(piidv * LVFU(src->h_p[i][j]));
_mm_storeu_ps(&sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y);
_mm_storeu_ps(&srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x);
}
for (; j < width; j++) {
sincosval = xsincosf(piid * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
}
#else
for (int j = 0; j < width; j++) {
sincosval = xsincosf(piid * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
gaussianBlur<float> (sraa, tmaa, src->W, src->H, radius);
gaussianBlur<float> (srbb, tmbb, src->W, src->H, radius);
}
float chromave = 0.0f;
#ifdef __SSE2__
if( chCurve ) {
// vectorized precalculation of the atan2 values
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ )
{
for(j = 0; j < width - 3; j += 4) {
_mm_storeu_ps(&fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
}
for(; j < width; j++) {
fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]);
}
}
}
}
#endif
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float chromaChfactor = 1.0f;
#ifdef _OPENMP
#pragma omp for reduction(+:chromave)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
if (chCurve) {
#ifdef __SSE2__
// use the precalculated atan values
float HH = fringe[i * width + j];
#else
// no precalculated values without SSE => calculate
float HH = xatan2f(srbb[i][j], sraa[i][j]);
#endif
float chparam = float((chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f) * 2.0f); //get C=f(H)
if(chparam > 0.f) {
chparam /= 2.f; // reduced action if chparam > 0
}
chromaChfactor = 1.0f + chparam;
}
float chroma = SQR(chromaChfactor * (sraa[i][j] - tmaa[i][j])) + SQR(chromaChfactor * (srbb[i][j] - tmbb[i][j])); //modulate chroma function hue
chromave += chroma;
fringe[i * width + j] = chroma;
}
}
}
chromave /= (height * width);
float threshfactor = SQR(thresh / 33.f) * chromave * 5.0f; // Calculated once to eliminate mult inside the next loop
// now chromave is calculated, so we postprocess fringe to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
__m128 sumv = _mm_set1_ps( chromave + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int j = 0; j < width * height - 3; j += 4) {
_mm_storeu_ps( &fringe[j], onev / (LVFU(fringe[j]) + sumv));
}
}
for(int j = width * height - (width * height) % 4; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave + eps2);
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int j = 0; j < width * height; j++) {
fringe[j] = 1.f / (fringe[j] + chromave + eps2);
}
#endif
// because we changed the values of fringe we also have to recalculate threshfactor
threshfactor = 1.0f / (threshfactor + chromave + eps2);
// Issue 1674:
// often, CA isn't evenly distributed, e.g. a lot in contrasty regions and none in the sky.
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
// choice for the chunk_size than 16
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
int j;
for(j = 0; j < halfwin - 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width - halfwin + 1; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (fringe[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
//neighborhood average of pixels weighted by chrominance
wt = fringe[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
} //end of ab channel averaging
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef __SSE2__
int j;
__m128 interav, interbv;
__m128 piidv = _mm_set1_ps(piid);
#endif
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
#ifdef __SSE2__
for(j = 0; j < width - 3; j += 4) {
_mm_storeu_ps( &dst->sh_p[i][j], LVFU(src->sh_p[i][j]));
interav = LVFU(tmaa[i][j]);
interbv = LVFU(tmbb[i][j]);
_mm_storeu_ps(&dst->h_p[i][j], (xatan2f(interbv, interav)) / piidv);
_mm_storeu_ps(&dst->C_p[i][j], _mm_sqrt_ps(SQRV(interbv) + SQRV(interav)));
}
for(; j < width; j++) {
dst->sh_p[i][j] = src->sh_p[i][j];
float intera = tmaa[i][j];
float interb = tmbb[i][j];
dst->h_p[i][j] = (xatan2f(interb, intera)) / piid;
dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
#else
for(int j = 0; j < width; j++) {
dst->sh_p[i][j] = src->sh_p[i][j];
float intera = tmaa[i][j];
float interb = tmbb[i][j];
dst->h_p[i][j] = (xatan2f(interb, intera)) / piid;
dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
#endif
}
}
for (int i = 0; i < height; i++) {
delete [] sraa[i];
}
delete [] sraa;
for (int i = 0; i < height; i++) {
delete [] srbb[i];
}
delete [] srbb;
for (int i = 0; i < height; i++) {
delete [] tmaa[i];
}
delete [] tmaa;
for (int i = 0; i < height; i++) {
delete [] tmbb[i];
}
delete [] tmbb;
if(chCurve) {
delete chCurve;
}
free(fringe);
}
SSEFUNCTION void ImProcFunctions::Badpixelscam(CieImage * src, CieImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom, int hotbad)
{
const int halfwin = ceil(2 * radius) + 1;
MyTime t1, t2;
t1.set();
const int width = src->W, height = src->H;
const float piid = 3.14159265f / 180.f;
float shfabs, shmed;
int i1, j1, tot;
const float eps = 1.0f;
const float eps2 = 0.01f;
float shsum, dirsh, norm, sum;
float** sraa;
sraa = new float*[height];
for (int i = 0; i < height; i++) {
sraa[i] = new float[width];
}
float** srbb;
srbb = new float*[height];
for (int i = 0; i < height; i++) {
srbb[i] = new float[width];
}
float** tmaa;
tmaa = new float*[height];
for (int i = 0; i < height; i++) {
tmaa[i] = new float[width];
}
float** tmbb;
tmbb = new float*[height];
for (int i = 0; i < height; i++) {
tmbb[i] = new float[width];
}
float* badpix = (float*)malloc(width * height * sizeof(float));
float** tmL;
tmL = new float*[height];
for (int i = 0; i < height; i++) {
tmL[i] = new float[width];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float2 sincosval;
#ifdef __SSE2__
int j;
vfloat2 sincosvalv;
__m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
for (j = 0; j < width - 3; j += 4) {
sincosvalv = xsincosf(piidv * LVFU(src->h_p[i][j]));
_mm_storeu_ps(&sraa[i][j], LVFU(src->C_p[i][j])*sincosvalv.y);
_mm_storeu_ps(&srbb[i][j], LVFU(src->C_p[i][j])*sincosvalv.x);
}
for (; j < width; j++) {
sincosval = xsincosf(piid * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
}
#else
for (int j = 0; j < width; j++) {
sincosval = xsincosf(piid * src->h_p[i][j]);
sraa[i][j] = src->C_p[i][j] * sincosval.y;
srbb[i][j] = src->C_p[i][j] * sincosval.x;
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
//chroma a and b
if(mode == 2) { //choice of gaussian blur
gaussianBlur<float> (sraa, tmaa, src->W, src->H, radius);
gaussianBlur<float> (srbb, tmbb, src->W, src->H, radius);
}
//luma sh_p
gaussianBlur<float> (src->sh_p, tmL, src->W, src->H, 2.0);//low value to avoid artifacts
}
if(mode == 1) { //choice of median
#pragma omp parallel
{
int ip, in, jp, jn;
float pp[9], temp;
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
for (int i = 0; i < height; i++) {
if (i < 2) {
ip = i + 2;
} else {
ip = i - 2;
}
if (i > height - 3) {
in = i - 2;
} else {
in = i + 2;
}
for (int j = 0; j < width; j++) {
if (j < 2) {
jp = j + 2;
} else {
jp = j - 2;
}
if (j > width - 3) {
jn = j - 2;
} else {
jn = j + 2;
}
med3(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn], tmaa[i][j]);
}
}
#pragma omp for
for (int i = 0; i < height; i++) {
if (i < 2) {
ip = i + 2;
} else {
ip = i - 2;
}
if (i > height - 3) {
in = i - 2;
} else {
in = i + 2;
}
for (int j = 0; j < width; j++) {
if (j < 2) {
jp = j + 2;
} else {
jp = j - 2;
}
if (j > width - 3) {
jn = j - 2;
} else {
jn = j + 2;
}
med3(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn], tmbb[i][j]);
}
}
}
}
//luma badpixels
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
const float shthr = sh_thr / 24.0f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef __SSE2__
__m128 shfabsv, shmedv;
__m128 shthrv = _mm_set1_ps(shthr);
__m128 onev = _mm_set1_ps(1.0f);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for private(shfabs, shmed,i1,j1)
#endif
for (int i = 0; i < height; i++) {
for (j = 0; j < 2; j++) {
shfabs = fabs(src->sh_p[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
shfabsv = vabsf(LVFU(src->sh_p[i][j]) - LVFU(tmL[i][j]));
shmedv = _mm_setzero_ps();
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmedv += vabsf(LVFU(src->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
}
_mm_storeu_ps( &badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
}
for (; j < width - 2; j++) {
shfabs = fabs(src->sh_p[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#else
for (; j < width - 2; j++) {
shfabs = fabs(src->sh_p[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#endif
for (; j < width; j++) {
shfabs = fabs(src->sh_p[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
shmed += fabs(src->sh_p[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (j = 0; j < 2; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->sh_p[i][j] = sum / tot;
}
}
}
for (; j < width - 2; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->sh_p[i][j] = sum / tot;
}
}
}
for (; j < width; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->sh_p[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->sh_p[i1][j1] - src->sh_p[i][j]) + eps);
shsum += dirsh * src->sh_p[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->sh_p[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->sh_p[i][j] = sum / tot;
}
}
}
}
}
// end luma badpixels
// begin chroma badpixels
float chrommed = 0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]);
chrommed += chroma;
badpix[i * width + j] = chroma;
}
}
chrommed /= (height * width);
float threshfactor = (thresh * chrommed) / 33.f;
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
for(j = 0; j < width - 3; j += 4) {
_mm_storeu_ps( &badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv));
}
for(; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
}
}
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
}
#endif
// because we changed the values of badpix we also have to recalculate threshfactor
threshfactor = 1.0f / (threshfactor + chrommed + eps2);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width - halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float intera = tmaa[i][j];
float interb = tmbb[i][j];
float CC = sqrt(SQR(interb) + SQR(intera));
if(hotbad == 0) {
if(CC < chrom && skinprot != 0.f) {
dst->h_p[i][j] = (xatan2f(interb, intera)) / piid;
dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
} else {
dst->h_p[i][j] = (xatan2f(interb, intera)) / piid;
dst->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
}
}
}
}
if(src != dst) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ )
for(int j = 0; j < width; j++) {
dst->sh_p[i][j] = src->sh_p[i][j];
}
}
for (int i = 0; i < height; i++) {
delete [] sraa[i];
}
delete [] sraa;
for (int i = 0; i < height; i++) {
delete [] srbb[i];
}
delete [] srbb;
for (int i = 0; i < height; i++) {
delete [] tmaa[i];
}
delete [] tmaa;
for (int i = 0; i < height; i++) {
delete [] tmbb[i];
}
delete [] tmbb;
for (int i = 0; i < height; i++) {
delete [] tmL[i];
}
delete [] tmL;
free(badpix);
t2.set();
if( settings->verbose ) {
printf("Ciecam badpixels:- %d usec\n", t2.etime(t1));
}
}
SSEFUNCTION void ImProcFunctions::BadpixelsLab(LabImage * src, LabImage * dst, double radius, int thresh, int mode, float b_l, float t_l, float t_r, float b_r, float skinprot, float chrom)
{
const int halfwin = ceil(2 * radius) + 1;
MyTime t1, t2;
t1.set();
const int width = src->W, height = src->H;
// const float piid=3.14159265f/180.f;
float shfabs, shmed;
int i1, j1, tot;
const float eps = 1.0f;
const float eps2 = 0.01f;
float shsum, dirsh, norm, sum;
float** sraa;
sraa = new float*[height];
for (int i = 0; i < height; i++) {
sraa[i] = new float[width];
}
float** srbb;
srbb = new float*[height];
for (int i = 0; i < height; i++) {
srbb[i] = new float[width];
}
float** tmaa;
tmaa = new float*[height];
for (int i = 0; i < height; i++) {
tmaa[i] = new float[width];
}
float** tmbb;
tmbb = new float*[height];
for (int i = 0; i < height; i++) {
tmbb[i] = new float[width];
}
float* badpix = (float*)malloc(width * height * sizeof(float));
float** tmL;
tmL = new float*[height];
for (int i = 0; i < height; i++) {
tmL[i] = new float[width];
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// float2 sincosval;
#ifdef __SSE2__
int j;
// vfloat2 sincosvalv;
// __m128 piidv = _mm_set1_ps(piid);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for
#endif
for (int i = 0; i < height; i++) {
#ifdef __SSE2__
for (j = 0; j < width - 3; j += 4) {
_mm_storeu_ps(&sraa[i][j], LVFU(src->a[i][j]));
_mm_storeu_ps(&srbb[i][j], LVFU(src->b[i][j]));
}
for (; j < width; j++) {
sraa[i][j] = src->a[i][j];
srbb[i][j] = src->b[i][j];
}
#else
for (int j = 0; j < width; j++) {
sraa[i][j] = src->a[i][j];
srbb[i][j] = src->b[i][j];
}
#endif
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
//chroma a and b
if(mode >= 2) { //choice of gaussian blur
gaussianBlur<float> (sraa, tmaa, src->W, src->H, radius);
gaussianBlur<float> (srbb, tmbb, src->W, src->H, radius);
}
//luma sh_p
gaussianBlur<float> (src->L, tmL, src->W, src->H, 2.0);//low value to avoid artifacts
}
if(mode == 1) { //choice of median
#pragma omp parallel
{
int ip, in, jp, jn;
float pp[9], temp;
#pragma omp for nowait //nowait because next loop inside this parallel region is independent on this one
for (int i = 0; i < height; i++) {
if (i < 2) {
ip = i + 2;
} else {
ip = i - 2;
}
if (i > height - 3) {
in = i - 2;
} else {
in = i + 2;
}
for (int j = 0; j < width; j++) {
if (j < 2) {
jp = j + 2;
} else {
jp = j - 2;
}
if (j > width - 3) {
jn = j - 2;
} else {
jn = j + 2;
}
med3(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn], tmaa[i][j]);
}
}
#pragma omp for
for (int i = 0; i < height; i++) {
if (i < 2) {
ip = i + 2;
} else {
ip = i - 2;
}
if (i > height - 3) {
in = i - 2;
} else {
in = i + 2;
}
for (int j = 0; j < width; j++) {
if (j < 2) {
jp = j + 2;
} else {
jp = j - 2;
}
if (j > width - 3) {
jn = j - 2;
} else {
jn = j + 2;
}
med3(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn], tmbb[i][j]);
}
}
}
}
//luma badpixels
const float sh_thr = 4.5f;//low value for luma sh_p to avoid artifacts
const float shthr = sh_thr / 24.0f;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef __SSE2__
__m128 shfabsv, shmedv;
__m128 shthrv = _mm_set1_ps(shthr);
__m128 onev = _mm_set1_ps(1.0f);
#endif // __SSE2__
#ifdef _OPENMP
#pragma omp for private(shfabs, shmed,i1,j1)
#endif
for (int i = 0; i < height; i++) {
for (j = 0; j < 2; j++) {
shfabs = fabs(src->L[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#ifdef __SSE2__
for (; j < width - 5; j += 4) {
shfabsv = vabsf(LVFU(src->L[i][j]) - LVFU(tmL[i][j]));
shmedv = _mm_setzero_ps();
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmedv += vabsf(LVFU(src->L[i1][j1]) - LVFU(tmL[i1][j1]));
}
_mm_storeu_ps( &badpix[i * width + j], vself(vmaskf_gt(shfabsv, (shmedv - shfabsv)*shthrv), onev, _mm_setzero_ps()));
}
for (; j < width - 2; j++) {
shfabs = fabs(src->L[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#else
for (; j < width - 2; j++) {
shfabs = fabs(src->L[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
#endif
for (; j < width; j++) {
shfabs = fabs(src->L[i][j] - tmL[i][j]);
shmed = 0.0f;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
shmed += fabs(src->L[i1][j1] - tmL[i1][j1]);
}
badpix[i * width + j] = (shfabs > ((shmed - shfabs) * shthr));
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for private(shsum,norm,dirsh,sum,i1,j1) schedule(dynamic,16)
#endif
for (int i = 0; i < height; i++) {
for (j = 0; j < 2; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = 0; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->L[i][j] = sum / tot;
}
}
}
for (; j < width - 2; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 <= j + 2; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->L[i][j] = sum / tot;
}
}
}
for (; j < width; j++) {
if (!badpix[i * width + j]) {
continue;
}
norm = 0.0f;
shsum = 0.0f;
sum = 0.0f;
tot = 0;
for (i1 = max(0, i - 2); i1 <= min(i + 2, height - 1); i1++ )
for (j1 = j - 2; j1 < width; j1++ ) {
if (i1 == i && j1 == j) {
continue;
}
if (badpix[i1 * width + j1]) {
continue;
}
sum += src->L[i1][j1];
tot++;
dirsh = 1.f / (SQR(src->L[i1][j1] - src->L[i][j]) + eps);
shsum += dirsh * src->L[i1][j1];
norm += dirsh;
}
if (norm > 0.f) {
src->L[i][j] = shsum / norm;
} else {
if(tot > 0) {
src->L[i][j] = sum / tot;
}
}
}
}
}
// end luma badpixels
if(mode == 3) {
// begin chroma badpixels
float chrommed = 0.f;
#ifdef _OPENMP
#pragma omp parallel for reduction(+:chrommed)
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]);
chrommed += chroma;
badpix[i * width + j] = chroma;
}
}
chrommed /= (height * width);
float threshfactor = (thresh * chrommed) / 33.f;
// now chrommed is calculated, so we postprocess badpix to reduce the number of divisions in future
#ifdef __SSE2__
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
__m128 sumv = _mm_set1_ps( chrommed + eps2 );
__m128 onev = _mm_set1_ps( 1.0f );
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++) {
for(j = 0; j < width - 3; j += 4) {
_mm_storeu_ps( &badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + sumv));
}
for(; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
}
}
}
#else
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++) {
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed + eps2);
}
#endif
// because we changed the values of badpix we also have to recalculate threshfactor
threshfactor = 1.0f / (threshfactor + chrommed + eps2);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
int j;
#ifdef _OPENMP
#pragma omp for schedule(dynamic,16)
#endif
for(int i = 0; i < height; i++ ) {
for(j = 0; j < halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = 0; j1 < j + halfwin; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width - halfwin; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
for(; j < width; j++) {
tmaa[i][j] = sraa[i][j];
tmbb[i][j] = srbb[i][j];
if (badpix[i * width + j] < threshfactor) {
float atot = 0.f;
float btot = 0.f;
float norm = 0.f;
float wt;
for (int i1 = max(0, i - halfwin + 1); i1 < min(height, i + halfwin); i1++)
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
wt = badpix[i1 * width + j1];
atot += wt * sraa[i1][j1];
btot += wt * srbb[i1][j1];
norm += wt;
}
if(norm > 0.f) {
tmaa[i][j] = (atot / norm);
tmbb[i][j] = (btot / norm);
}
}
}
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
for(int i = 0; i < height; i++ ) {
for(int j = 0; j < width; j++) {
float intera = tmaa[i][j];
float interb = tmbb[i][j];
float CC = sqrt(SQR(interb / 327.68) + SQR(intera / 327.68f));
if(CC < chrom && skinprot != 0.f) {
dst->a[i][j] = intera;
dst->b[i][j] = interb;
}
}
}
}
}
if(src != dst) {
#ifdef _OPENMP
#pragma omp parallel for
#endif
for(int i = 0; i < height; i++ )
for(int j = 0; j < width; j++) {
dst->L[i][j] = src->L[i][j];
}
}
for (int i = 0; i < height; i++) {
delete [] sraa[i];
}
delete [] sraa;
for (int i = 0; i < height; i++) {
delete [] srbb[i];
}
delete [] srbb;
for (int i = 0; i < height; i++) {
delete [] tmaa[i];
}
delete [] tmaa;
for (int i = 0; i < height; i++) {
delete [] tmbb[i];
}
delete [] tmbb;
for (int i = 0; i < height; i++) {
delete [] tmL[i];
}
delete [] tmL;
free(badpix);
t2.set();
if( settings->verbose ) {
printf("Lab artifacts:- %d usec\n", t2.etime(t1));
}
}
}