1132 lines
40 KiB
C++
1132 lines
40 KiB
C++
////////////////////////////////////////////////////////////////
|
|
//
|
|
// Highlight reconstruction
|
|
//
|
|
// copyright (c) 2008-2011 Emil Martinec <ejmartin@uchicago.edu>
|
|
// copyright (c) 2019 Ingo Weyrich <heckflosse67@gmx.de>
|
|
//
|
|
//
|
|
// code dated: June 16, 2011
|
|
// code dated: July 09, 2019, speedups by Ingo Weyrich <heckflosse67@gmx.de>
|
|
//
|
|
// hilite_recon.cc is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
|
|
#include "array2D.h"
|
|
#include "opthelper.h"
|
|
#include "rawimagesource.h"
|
|
#include "rt_math.h"
|
|
|
|
namespace
|
|
{
|
|
|
|
void boxblur2(const float* const* src, float** dst, float** temp, int startY, int startX, int H, int W, int bufferW, int box)
|
|
{
|
|
constexpr int numCols = 16;
|
|
assert((bufferW % numCols) == 0);
|
|
|
|
//box blur image channel; box size = 2*box+1
|
|
//horizontal blur
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int row = 0; row < H; ++row) {
|
|
int len = box + 1;
|
|
temp[row][0] = src[row + startY][startX] / len;
|
|
|
|
for (int j = 1; j <= box; ++j) {
|
|
temp[row][0] += src[row + startY][j + startX] / len;
|
|
}
|
|
|
|
for (int col = 1; col <= box; ++col, ++len) {
|
|
temp[row][col] = (temp[row][col - 1] * len + src[row + startY][col + box + startX]) / (len + 1);
|
|
}
|
|
|
|
for (int col = box + 1; col < W - box; ++col) {
|
|
temp[row][col] = temp[row][col - 1] + (src[row + startY][col + box + startX] - src[row + startY][col - box - 1 + startX]) / len;
|
|
}
|
|
|
|
for (int col = W - box; col < W; ++col, --len) {
|
|
temp[row][col] = (temp[row][col - 1] * len - src[row + startY][col - box - 1 + startX]) / (len - 1);
|
|
}
|
|
}
|
|
|
|
//vertical blur
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float tempvalN[numCols] ALIGNED64;
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int col = 0; col < bufferW - numCols + 1; col += numCols) {
|
|
float len = box + 1;
|
|
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = temp[0][col + n] / len;
|
|
}
|
|
|
|
for (int i = 1; i <= box; ++i) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] += temp[i][col + n] / len;
|
|
}
|
|
}
|
|
|
|
for (int n = 0; n < numCols; ++n) {
|
|
dst[0][col + n] = tempvalN[n];
|
|
}
|
|
|
|
for (int row = 1; row <= box; ++row, ++len) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1);
|
|
dst[row][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
|
|
const float rlen = 1.f / len;
|
|
|
|
for (int row = box + 1; row < H - box; ++row) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] += (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) * rlen;
|
|
dst[row][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
|
|
for (int row = H - box; row < H; ++row, --len) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = (dst[(row - 1)][col + n] * len - temp[(row - box - 1)][col + n]) / (len - 1);
|
|
dst[row][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void boxblur_resamp(const float* const* src, float** dst, float** temp, int H, int W, int box, int samp)
|
|
{
|
|
assert(samp != 0);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
//box blur image channel; box size = 2*box+1
|
|
//horizontal blur
|
|
for (int row = 0; row < H; ++row) {
|
|
int len = box + 1;
|
|
float tempval = src[row][0] / len;
|
|
|
|
for (int j = 1; j <= box; ++j) {
|
|
tempval += src[row][j] / len;
|
|
}
|
|
|
|
temp[row][0] = tempval;
|
|
|
|
for (int col = 1; col <= box; ++col, ++len) {
|
|
tempval = (tempval * len + src[row][col + box]) / (len + 1);
|
|
|
|
if (col % samp == 0) {
|
|
temp[row][col / samp] = tempval;
|
|
}
|
|
}
|
|
|
|
const float oneByLen = 1.f / static_cast<float>(len);
|
|
|
|
for (int col = box + 1; col < W - box; ++col) {
|
|
tempval = tempval + (src[row][col + box] - src[row][col - box - 1]) * oneByLen;
|
|
|
|
if (col % samp == 0) {
|
|
temp[row][col / samp] = tempval;
|
|
}
|
|
}
|
|
|
|
for (int col = W - box; col < W; ++col, --len) {
|
|
tempval = (tempval * len - src[row][col - box - 1]) / (len - 1);
|
|
|
|
if (col % samp == 0) {
|
|
temp[row][col / samp] = tempval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr int numCols = 8; // process numCols columns at once for better L1 CPU cache usage
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
float tempvalN[numCols] ALIGNED64;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
//vertical blur
|
|
for (int col = 0; col < (W / samp) - (numCols - 1); col += numCols) {
|
|
float len = box + 1;
|
|
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = temp[0][col + n] / len;
|
|
}
|
|
|
|
for (int i = 1; i <= box; ++i) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] += temp[i][col + n] / len;
|
|
}
|
|
}
|
|
|
|
for (int n = 0; n < numCols; ++n) {
|
|
dst[0][col + n] = tempvalN[n];
|
|
}
|
|
|
|
for (int row = 1; row <= box; ++row, ++len) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1);
|
|
}
|
|
|
|
if (row % samp == 0) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
dst[row / samp][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
}
|
|
|
|
const float rlen = 1.f / len;
|
|
|
|
for (int row = box + 1; row < H - box; ++row) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] += (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) * rlen;
|
|
}
|
|
|
|
if (row % samp == 0) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
dst[row / samp][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int row = H - box; row < H; ++row, --len) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
tempvalN[n] = (tempvalN[n] * len - temp[(row - box - 1)][col + n]) / (len - 1);
|
|
}
|
|
|
|
if (row % samp == 0) {
|
|
for (int n = 0; n < numCols; ++n) {
|
|
dst[row / samp][col + n] = tempvalN[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// process remaining columns
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
{
|
|
|
|
//vertical blur
|
|
for (int col = (W / samp) - ((W / samp) % numCols); col < W / samp; ++col) {
|
|
int len = box + 1;
|
|
float tempval = temp[0][col] / len;
|
|
|
|
for (int i = 1; i <= box; ++i) {
|
|
tempval += temp[i][col] / len;
|
|
}
|
|
|
|
dst[0][col] = tempval;
|
|
|
|
for (int row = 1; row <= box; ++row, ++len) {
|
|
tempval = (tempval * len + temp[(row + box)][col]) / (len + 1);
|
|
|
|
if (row % samp == 0) {
|
|
dst[row / samp][col] = tempval;
|
|
}
|
|
}
|
|
|
|
for (int row = box + 1; row < H - box; ++row) {
|
|
tempval += (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
|
|
|
|
if (row % samp == 0) {
|
|
dst[row / samp][col] = tempval;
|
|
}
|
|
}
|
|
|
|
for (int row = H - box; row < H; ++row, --len) {
|
|
tempval = (tempval * len - temp[(row - box - 1)][col]) / (len - 1);
|
|
|
|
if (row % samp == 0) {
|
|
dst[row / samp][col] = tempval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
extern const Settings* settings;
|
|
|
|
void RawImageSource::HLRecovery_inpaint(float** red, float** green, float** blue)
|
|
{
|
|
double progress = 0.0;
|
|
|
|
if (plistener) {
|
|
plistener->setProgressStr("PROGRESSBAR_HLREC");
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
const int height = H;
|
|
const int width = W;
|
|
|
|
constexpr int range = 2;
|
|
constexpr int pitch = 4;
|
|
|
|
constexpr float threshpct = 0.25f;
|
|
constexpr float maxpct = 0.95f;
|
|
constexpr float epsilon = 0.00001f;
|
|
//%%%%%%%%%%%%%%%%%%%%
|
|
//for blend algorithm:
|
|
constexpr float blendthresh = 1.0;
|
|
// Transform matrixes rgb>lab and back
|
|
constexpr float trans[3][3] = {
|
|
{1.f, 1.f, 1.f},
|
|
{1.7320508f, -1.7320508f, 0.f},
|
|
{-1.f, -1.f, 2.f}
|
|
};
|
|
constexpr float itrans[3][3] = {
|
|
{1.f, 0.8660254f, -0.5f},
|
|
{1.f, -0.8660254f, -0.5f},
|
|
{1.f, 0.f, 1.f}
|
|
};
|
|
|
|
if (settings->verbose) {
|
|
for (int c = 0; c < 3; ++c) {
|
|
printf("chmax[%d] : %f\tclmax[%d] : %f\tratio[%d] : %f\n", c, chmax[c], c, clmax[c], c, chmax[c] / clmax[c]);
|
|
}
|
|
}
|
|
|
|
float factor[3];
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
factor[c] = chmax[c] / clmax[c];
|
|
}
|
|
|
|
const float minFactor = min(factor[0], factor[1], factor[2]);
|
|
|
|
if (minFactor > 1.f) { // all 3 channels clipped
|
|
// calculate clip factor per channel
|
|
for (int c = 0; c < 3; ++c) {
|
|
factor[c] /= minFactor;
|
|
}
|
|
|
|
// get max clip factor
|
|
int maxpos = 0;
|
|
float maxValNew = 0.f;
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
if (chmax[c] / factor[c] > maxValNew) {
|
|
maxValNew = chmax[c] / factor[c];
|
|
maxpos = c;
|
|
}
|
|
}
|
|
|
|
const float clipFactor = clmax[maxpos] / maxValNew;
|
|
|
|
if (clipFactor < maxpct) {
|
|
// if max clipFactor < maxpct (0.95) adjust per channel factors
|
|
for (int c = 0; c < 3; ++c) {
|
|
factor[c] *= (maxpct / clipFactor);
|
|
}
|
|
}
|
|
} else {
|
|
factor[0] = factor[1] = factor[2] = 1.f;
|
|
}
|
|
|
|
if (settings->verbose) {
|
|
for (int c = 0; c < 3; ++c) {
|
|
printf("correction factor[%d] : %f\n", c, factor[c]);
|
|
}
|
|
}
|
|
|
|
float max_f[3];
|
|
float thresh[3];
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
thresh[c] = chmax[c] * threshpct / factor[c];
|
|
max_f[c] = chmax[c] * maxpct / factor[c];
|
|
}
|
|
|
|
const float whitept = max(max_f[0], max_f[1], max_f[2]);
|
|
const float clippt = min(max_f[0], max_f[1], max_f[2]);
|
|
const float medpt = max_f[0] + max_f[1] + max_f[2] - whitept - clippt;
|
|
const float blendpt = blendthresh * clippt;
|
|
|
|
float medFactor[3];
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
medFactor[c] = max(1.0f, max_f[c] / medpt) / -blendpt;
|
|
}
|
|
|
|
int minx = width - 1;
|
|
int maxx = 0;
|
|
int miny = height - 1;
|
|
int maxy = 0;
|
|
|
|
#pragma omp parallel for reduction(min:minx,miny) reduction(max:maxx,maxy) schedule(dynamic, 16)
|
|
for (int i = 0; i < height; ++i) {
|
|
for (int j = 0; j< width; ++j) {
|
|
if (red[i][j] >= max_f[0] || green[i][j] >= max_f[1] || blue[i][j] >= max_f[2]) {
|
|
minx = std::min(minx, j);
|
|
maxx = std::max(maxx, j);
|
|
miny = std::min(miny, i);
|
|
maxy = std::max(maxy, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minx > maxx || miny > maxy) { // nothing to reconstruct
|
|
return;
|
|
}
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
constexpr int blurBorder = 256;
|
|
minx = std::max(0, minx - blurBorder);
|
|
miny = std::max(0, miny - blurBorder);
|
|
maxx = std::min(width - 1, maxx + blurBorder);
|
|
maxy = std::min(height - 1, maxy + blurBorder);
|
|
const int blurWidth = maxx - minx + 1;
|
|
const int blurHeight = maxy - miny + 1;
|
|
const int bufferWidth = blurWidth + ((16 - (blurWidth % 16)) & 15);
|
|
|
|
multi_array2D<float, 3> channelblur(bufferWidth, blurHeight, 0, 48);
|
|
array2D<float> temp(bufferWidth, blurHeight); // allocate temporary buffer
|
|
|
|
// blur RGB channels
|
|
|
|
boxblur2(red, channelblur[0], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
|
|
|
|
if (plistener) {
|
|
progress += 0.07;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
boxblur2(green, channelblur[1], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
|
|
|
|
if (plistener) {
|
|
progress += 0.07;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
boxblur2(blue, channelblur[2], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
|
|
|
|
if (plistener) {
|
|
progress += 0.07;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
// reduce channel blur to one array
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < blurHeight; ++i) {
|
|
for (int j = 0; j < blurWidth; ++j) {
|
|
channelblur[0][i][j] = fabsf(channelblur[0][i][j] - red[i + miny][j + minx]) + fabsf(channelblur[1][i][j] - green[i + miny][j + minx]) + fabsf(channelblur[2][i][j] - blue[i + miny][j + minx]);
|
|
}
|
|
}
|
|
|
|
for (int c = 1; c < 3; ++c) {
|
|
channelblur[c].free(); //free up some memory
|
|
}
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
multi_array2D<float, 4> hilite_full(bufferWidth, blurHeight, ARRAY2D_CLEAR_DATA, 32);
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
double hipass_sum = 0.0;
|
|
int hipass_norm = 0;
|
|
|
|
// set up which pixels are clipped or near clipping
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:hipass_sum,hipass_norm) schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < blurHeight; ++i) {
|
|
for (int j = 0; j < blurWidth; ++j) {
|
|
if (
|
|
(
|
|
red[i + miny][j + minx] > thresh[0]
|
|
|| green[i + miny][j + minx] > thresh[1]
|
|
|| blue[i + miny][j + minx] > thresh[2]
|
|
)
|
|
&& red[i + miny][j + minx] < max_f[0]
|
|
&& green[i + miny][j + minx] < max_f[1]
|
|
&& blue[i + miny][j + minx] < max_f[2]
|
|
) {
|
|
// if one or more channels is highlight but none are blown, add to highlight accumulator
|
|
hipass_sum += channelblur[0][i][j];
|
|
++hipass_norm;
|
|
|
|
hilite_full[0][i][j] = red[i + miny][j + minx];
|
|
hilite_full[1][i][j] = green[i + miny][j + minx];
|
|
hilite_full[2][i][j] = blue[i + miny][j + minx];
|
|
hilite_full[3][i][j] = 1.f;
|
|
}
|
|
}
|
|
}
|
|
|
|
const float hipass_ave = 2.f * hipass_sum / (hipass_norm + epsilon);
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
array2D<float> hilite_full4(bufferWidth, blurHeight);
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
//blur highlight data
|
|
boxblur2(hilite_full[3], hilite_full4, temp, 0, 0, blurHeight, blurWidth, bufferWidth, 1);
|
|
|
|
temp.free(); // free temporary buffer
|
|
|
|
if (plistener) {
|
|
progress += 0.07;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < blurHeight; ++i) {
|
|
for (int j = 0; j < blurWidth; ++j) {
|
|
if (channelblur[0][i][j] > hipass_ave) {
|
|
//too much variation
|
|
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
|
|
continue;
|
|
}
|
|
|
|
if (hilite_full4[i][j] > epsilon && hilite_full4[i][j] < 0.95f) {
|
|
//too near an edge, could risk using CA affected pixels, therefore omit
|
|
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
|
|
}
|
|
}
|
|
}
|
|
|
|
channelblur[0].free(); //free up some memory
|
|
hilite_full4.free(); //free up some memory
|
|
|
|
const int hfh = (blurHeight - blurHeight % pitch) / pitch;
|
|
const int hfw = (blurWidth - blurWidth % pitch) / pitch;
|
|
|
|
multi_array2D<float, 4> hilite(hfw + 1, hfh + 1, ARRAY2D_CLEAR_DATA, 48);
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// blur and resample highlight data; range=size of blur, pitch=sample spacing
|
|
|
|
array2D<float> temp2(blurWidth / pitch + (blurWidth % pitch == 0 ? 0 : 1), blurHeight);
|
|
|
|
for (int m = 0; m < 4; ++m) {
|
|
boxblur_resamp(hilite_full[m], hilite[m], temp2, blurHeight, blurWidth, range, pitch);
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
}
|
|
|
|
temp2.free();
|
|
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_full[c].free(); //free up some memory
|
|
}
|
|
|
|
multi_array2D<float, 8> hilite_dir(hfw, hfh, ARRAY2D_CLEAR_DATA, 64);
|
|
// for faster processing we create two buffers using (height,width) instead of (width,height)
|
|
multi_array2D<float, 4> hilite_dir0(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
|
|
multi_array2D<float, 4> hilite_dir4(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
//fill gaps in highlight map by directional extension
|
|
//raster scan from four corners
|
|
for (int j = 1; j < hfw - 1; ++j) {
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
//from left
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir0[3][j][i] = 1.f;
|
|
} else {
|
|
hilite_dir0[3][j][i] = (hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2]) == 0.f ? 0.f : 0.1f;
|
|
}
|
|
}
|
|
|
|
if (hilite[3][2][j] <= epsilon) {
|
|
hilite_dir[0 + 3][0][j] = hilite_dir0[3][j][2];
|
|
}
|
|
|
|
if (hilite[3][3][j] <= epsilon) {
|
|
hilite_dir[0 + 3][1][j] = hilite_dir0[3][j][3];
|
|
}
|
|
|
|
if (hilite[3][hfh - 3][j] <= epsilon) {
|
|
hilite_dir[4 + 3][hfh - 1][j] = hilite_dir0[3][j][hfh - 3];
|
|
}
|
|
|
|
if (hilite[3][hfh - 4][j] <= epsilon) {
|
|
hilite_dir[4 + 3][hfh - 2][j] = hilite_dir0[3][j][hfh - 4];
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
if (hilite[3][i][hfw - 2] <= epsilon) {
|
|
hilite_dir4[3][hfw - 1][i] = hilite_dir0[3][hfw - 2][i];
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
for (int c = 0; c < 3; ++c) {
|
|
for (int j = 1; j < hfw - 1; ++j) {
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
//from left
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir0[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
|
|
} else {
|
|
hilite_dir0[c][j][i] = 0.1f * ((hilite_dir0[0 + c][j - 1][i - 2] + hilite_dir0[0 + c][j - 1][i - 1] + hilite_dir0[0 + c][j - 1][i] + hilite_dir0[0 + c][j - 1][i + 1] + hilite_dir0[0 + c][j - 1][i + 2]) /
|
|
(hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2] + epsilon));
|
|
}
|
|
}
|
|
|
|
if (hilite[3][2][j] <= epsilon) {
|
|
hilite_dir[0 + c][0][j] = hilite_dir0[c][j][2];
|
|
}
|
|
|
|
if (hilite[3][3][j] <= epsilon) {
|
|
hilite_dir[0 + c][1][j] = hilite_dir0[c][j][3];
|
|
}
|
|
|
|
if (hilite[3][hfh - 3][j] <= epsilon) {
|
|
hilite_dir[4 + c][hfh - 1][j] = hilite_dir0[c][j][hfh - 3];
|
|
}
|
|
|
|
if (hilite[3][hfh - 4][j] <= epsilon) {
|
|
hilite_dir[4 + c][hfh - 2][j] = hilite_dir0[c][j][hfh - 4];
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
if (hilite[3][i][hfw - 2] <= epsilon) {
|
|
hilite_dir4[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
{
|
|
for (int j = hfw - 2; j > 0; --j) {
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
//from right
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir4[3][j][i] = 1.f;
|
|
} else {
|
|
hilite_dir4[3][j][i] = (hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)]) == 0.f ? 0.f : 0.1f;
|
|
}
|
|
}
|
|
|
|
if (hilite[3][2][j] <= epsilon) {
|
|
hilite_dir[0 + 3][0][j] += hilite_dir4[3][j][2];
|
|
}
|
|
|
|
if (hilite[3][hfh - 3][j] <= epsilon) {
|
|
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir4[3][j][hfh - 3];
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
if (hilite[3][i][0] <= epsilon) {
|
|
hilite_dir[0 + 3][i - 2][0] += hilite_dir4[3][0][i];
|
|
hilite_dir[4 + 3][i + 2][0] += hilite_dir4[3][0][i];
|
|
}
|
|
|
|
if (hilite[3][i][1] <= epsilon) {
|
|
hilite_dir[0 + 3][i - 2][1] += hilite_dir4[3][1][i];
|
|
hilite_dir[4 + 3][i + 2][1] += hilite_dir4[3][1][i];
|
|
}
|
|
|
|
if (hilite[3][i][hfw - 2] <= epsilon) {
|
|
hilite_dir[0 + 3][i - 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
|
|
hilite_dir[4 + 3][i + 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
for (int c = 0; c < 3; ++c) {
|
|
for (int j = hfw - 2; j > 0; --j) {
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
//from right
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir4[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
|
|
} else {
|
|
hilite_dir4[c][j][i] = 0.1f * ((hilite_dir4[c][(j + 1)][(i - 2)] + hilite_dir4[c][(j + 1)][(i - 1)] + hilite_dir4[c][(j + 1)][(i)] + hilite_dir4[c][(j + 1)][(i + 1)] + hilite_dir4[c][(j + 1)][(i + 2)]) /
|
|
(hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)] + epsilon));
|
|
}
|
|
}
|
|
|
|
if (hilite[3][2][j] <= epsilon) {
|
|
hilite_dir[0 + c][0][j] += hilite_dir4[c][j][2];
|
|
}
|
|
|
|
if (hilite[3][hfh - 3][j] <= epsilon) {
|
|
hilite_dir[4 + c][hfh - 1][j] += hilite_dir4[c][j][hfh - 3];
|
|
}
|
|
}
|
|
|
|
for (int i = 2; i < hfh - 2; ++i) {
|
|
if (hilite[3][i][0] <= epsilon) {
|
|
hilite_dir[0 + c][i - 2][0] += hilite_dir4[c][0][i];
|
|
hilite_dir[4 + c][i + 2][0] += hilite_dir4[c][0][i];
|
|
}
|
|
|
|
if (hilite[3][i][1] <= epsilon) {
|
|
hilite_dir[0 + c][i - 2][1] += hilite_dir4[c][1][i];
|
|
hilite_dir[4 + c][i + 2][1] += hilite_dir4[c][1][i];
|
|
}
|
|
|
|
if (hilite[3][i][hfw - 2] <= epsilon) {
|
|
hilite_dir[0 + c][i - 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
|
|
hilite_dir[4 + c][i + 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
{
|
|
for (int i = 1; i < hfh - 1; ++i)
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
//from top
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir[0 + 3][i][j] = 1.f;
|
|
} else {
|
|
hilite_dir[0 + 3][i][j] = (hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2]) == 0.f ? 0.f : 0.1f;
|
|
}
|
|
}
|
|
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
if (hilite[3][hfh - 2][j] <= epsilon) {
|
|
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir[0 + 3][hfh - 2][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
for (int c = 0; c < 3; ++c) {
|
|
for (int i = 1; i < hfh - 1; ++i) {
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
//from top
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir[0 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
|
|
} else {
|
|
hilite_dir[0 + c][i][j] = 0.1f * ((hilite_dir[0 + c][i - 1][j - 2] + hilite_dir[0 + c][i - 1][j - 1] + hilite_dir[0 + c][i - 1][j] + hilite_dir[0 + c][i - 1][j + 1] + hilite_dir[0 + c][i - 1][j + 2]) /
|
|
(hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2] + epsilon));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
if (hilite[3][hfh - 2][j] <= epsilon) {
|
|
hilite_dir[4 + c][hfh - 1][j] += hilite_dir[0 + c][hfh - 2][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
for (int i = hfh - 2; i > 0; --i) {
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
//from bottom
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir[4 + 3][i][j] = 1.f;
|
|
} else {
|
|
hilite_dir[4 + 3][i][j] = (hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)]) == 0.f ? 0.f : 0.1f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int c = 0; c < 4; ++c) {
|
|
for (int i = hfh - 2; i > 0; --i) {
|
|
for (int j = 2; j < hfw - 2; ++j) {
|
|
//from bottom
|
|
if (hilite[3][i][j] > epsilon) {
|
|
hilite_dir[4 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
|
|
} else {
|
|
hilite_dir[4 + c][i][j] = 0.1f * ((hilite_dir[4 + c][(i + 1)][(j - 2)] + hilite_dir[4 + c][(i + 1)][(j - 1)] + hilite_dir[4 + c][(i + 1)][(j)] + hilite_dir[4 + c][(i + 1)][(j + 1)] + hilite_dir[4 + c][(i + 1)][(j + 2)]) /
|
|
(hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)] + epsilon));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
//fill in edges
|
|
for (int dir = 0; dir < 2; ++dir) {
|
|
for (int i = 1; i < hfh - 1; ++i) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir[dir * 4 + c][i][0] = hilite_dir[dir * 4 + c][i][1];
|
|
hilite_dir[dir * 4 + c][i][hfw - 1] = hilite_dir[dir * 4 + c][i][hfw - 2];
|
|
}
|
|
}
|
|
|
|
for (int j = 1; j < hfw - 1; ++j) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir[dir * 4 + c][0][j] = hilite_dir[dir * 4 + c][1][j];
|
|
hilite_dir[dir * 4 + c][hfh - 1][j] = hilite_dir[dir * 4 + c][hfh - 2][j];
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir[dir * 4 + c][0][0] = hilite_dir[dir * 4 + c][1][0] = hilite_dir[dir * 4 + c][0][1] = hilite_dir[dir * 4 + c][1][1] = hilite_dir[dir * 4 + c][2][2];
|
|
hilite_dir[dir * 4 + c][0][hfw - 1] = hilite_dir[dir * 4 + c][1][hfw - 1] = hilite_dir[dir * 4 + c][0][hfw - 2] = hilite_dir[dir * 4 + c][1][hfw - 2] = hilite_dir[dir * 4 + c][2][hfw - 3];
|
|
hilite_dir[dir * 4 + c][hfh - 1][0] = hilite_dir[dir * 4 + c][hfh - 2][0] = hilite_dir[dir * 4 + c][hfh - 1][1] = hilite_dir[dir * 4 + c][hfh - 2][1] = hilite_dir[dir * 4 + c][hfh - 3][2];
|
|
hilite_dir[dir * 4 + c][hfh - 1][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 1][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 3][hfw - 3];
|
|
}
|
|
}
|
|
|
|
for (int i = 1; i < hfh - 1; ++i) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir0[c][0][i] = hilite_dir0[c][1][i];
|
|
hilite_dir0[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
|
|
}
|
|
}
|
|
|
|
for (int j = 1; j < hfw - 1; ++j) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir0[c][j][0] = hilite_dir0[c][j][1];
|
|
hilite_dir0[c][j][hfh - 1] = hilite_dir0[c][j][hfh - 2];
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir0[c][0][0] = hilite_dir0[c][0][1] = hilite_dir0[c][1][0] = hilite_dir0[c][1][1] = hilite_dir0[c][2][2];
|
|
hilite_dir0[c][hfw - 1][0] = hilite_dir0[c][hfw - 1][1] = hilite_dir0[c][hfw - 2][0] = hilite_dir0[c][hfw - 2][1] = hilite_dir0[c][hfw - 3][2];
|
|
hilite_dir0[c][0][hfh - 1] = hilite_dir0[c][0][hfh - 2] = hilite_dir0[c][1][hfh - 1] = hilite_dir0[c][1][hfh - 2] = hilite_dir0[c][2][hfh - 3];
|
|
hilite_dir0[c][hfw - 1][hfh - 1] = hilite_dir0[c][hfw - 1][hfh - 2] = hilite_dir0[c][hfw - 2][hfh - 1] = hilite_dir0[c][hfw - 2][hfh - 2] = hilite_dir0[c][hfw - 3][hfh - 3];
|
|
}
|
|
|
|
for (int i = 1; i < hfh - 1; ++i) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir4[c][0][i] = hilite_dir4[c][1][i];
|
|
hilite_dir4[c][hfw - 1][i] = hilite_dir4[c][hfw - 2][i];
|
|
}
|
|
}
|
|
|
|
for (int j = 1; j < hfw - 1; ++j) {
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir4[c][j][0] = hilite_dir4[c][j][1];
|
|
hilite_dir4[c][j][hfh - 1] = hilite_dir4[c][j][hfh - 2];
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite_dir4[c][0][0] = hilite_dir4[c][0][1] = hilite_dir4[c][1][0] = hilite_dir4[c][1][1] = hilite_dir4[c][2][2];
|
|
hilite_dir4[c][hfw - 1][0] = hilite_dir4[c][hfw - 1][1] = hilite_dir4[c][hfw - 2][0] = hilite_dir4[c][hfw - 2][1] = hilite_dir4[c][hfw - 3][2];
|
|
hilite_dir4[c][0][hfh - 1] = hilite_dir4[c][0][hfh - 2] = hilite_dir4[c][1][hfh - 1] = hilite_dir4[c][1][hfh - 2] = hilite_dir4[c][2][hfh - 3];
|
|
hilite_dir4[c][hfw - 1][hfh - 1] = hilite_dir4[c][hfw - 1][hfh - 2] = hilite_dir4[c][hfw - 2][hfh - 1] = hilite_dir4[c][hfw - 2][hfh - 2] = hilite_dir4[c][hfw - 3][hfh - 3];
|
|
}
|
|
|
|
if (plistener) {
|
|
progress += 0.05;
|
|
plistener->setProgress(progress);
|
|
}
|
|
|
|
//free up some memory
|
|
for (int c = 0; c < 4; ++c) {
|
|
hilite[c].free();
|
|
}
|
|
|
|
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
// now reconstruct clipped channels using color ratios
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
for (int i = 0; i < blurHeight; ++i) {
|
|
const int i1 = min((i - i % pitch) / pitch, hfh - 1);
|
|
|
|
for (int j = 0; j < blurWidth; ++j) {
|
|
const float pixel[3] = {
|
|
red[i + miny][j + minx],
|
|
green[i + miny][j + minx],
|
|
blue[i + miny][j + minx]
|
|
};
|
|
|
|
if (pixel[0] < max_f[0] && pixel[1] < max_f[1] && pixel[2] < max_f[2]) {
|
|
continue; //pixel not clipped
|
|
}
|
|
|
|
const int j1 = min((j - j % pitch) / pitch, hfw - 1);
|
|
|
|
//estimate recovered values using modified HLRecovery_blend algorithm
|
|
float rgb[3] = {
|
|
pixel[0],
|
|
pixel[1],
|
|
pixel[2]
|
|
};// Copy input pixel to rgb so it's easier to access in loops
|
|
float rgb_blend[3] = {};
|
|
float cam[2][3];
|
|
float lab[2][3];
|
|
float sum[2];
|
|
|
|
// Initialize cam with raw input [0] and potentially clipped input [1]
|
|
for (int c = 0; c < 3; ++c) {
|
|
cam[0][c] = rgb[c];
|
|
cam[1][c] = min(cam[0][c], clippt);
|
|
}
|
|
|
|
// Calculate the lightness correction ratio (chratio)
|
|
for (int i2 = 0; i2 < 2; ++i2) {
|
|
for (int c = 0; c < 3; ++c) {
|
|
lab[i2][c] = 0;
|
|
|
|
for (int j2 = 0; j2 < 3; ++j2) {
|
|
lab[i2][c] += trans[c][j2] * cam[i2][j2];
|
|
}
|
|
}
|
|
|
|
sum[i2] = 0.f;
|
|
|
|
for (int c = 1; c < 3; ++c) {
|
|
sum[i2] += SQR(lab[i2][c]);
|
|
}
|
|
}
|
|
|
|
// avoid division by zero
|
|
sum[0] = std::max(sum[0], epsilon);
|
|
|
|
const float chratio = sqrtf(sum[1] / sum[0]);
|
|
|
|
// Apply ratio to lightness in lab space
|
|
for (int c = 1; c < 3; ++c) {
|
|
lab[0][c] *= chratio;
|
|
}
|
|
|
|
// Transform back from lab to RGB
|
|
for (int c = 0; c < 3; ++c) {
|
|
cam[0][c] = 0.f;
|
|
|
|
for (int j2 = 0; j2 < 3; ++j2) {
|
|
cam[0][c] += itrans[c][j2] * lab[0][j2];
|
|
}
|
|
}
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
rgb[c] = cam[0][c] / 3;
|
|
}
|
|
|
|
// Copy converted pixel back
|
|
if (pixel[0] > blendpt) {
|
|
const float rfrac = LIM01(medFactor[0] * (pixel[0] - blendpt));
|
|
rgb_blend[0] = rfrac * rgb[0] + (1.f - rfrac) * pixel[0];
|
|
}
|
|
|
|
if (pixel[1] > blendpt) {
|
|
const float gfrac = LIM01(medFactor[1] * (pixel[1] - blendpt));
|
|
rgb_blend[1] = gfrac * rgb[1] + (1.f - gfrac) * pixel[1];
|
|
}
|
|
|
|
if (pixel[2] > blendpt) {
|
|
const float bfrac = LIM01(medFactor[2] * (pixel[2] - blendpt));
|
|
rgb_blend[2] = bfrac * rgb[2] + (1.f - bfrac) * pixel[2];
|
|
}
|
|
|
|
//end of HLRecovery_blend estimation
|
|
//%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
//there are clipped highlights
|
|
//first, determine weighted average of unclipped extensions (weighting is by 'hue' proximity)
|
|
bool totwt = false;
|
|
float clipfix[3] = {0.f, 0.f, 0.f};
|
|
|
|
float Y = epsilon + rgb_blend[0] + rgb_blend[1] + rgb_blend[2];
|
|
|
|
for (int c = 0; c < 3; ++c) {
|
|
rgb_blend[c] /= Y;
|
|
}
|
|
|
|
float Yhi = 1.f / (hilite_dir0[0][j1][i1] + hilite_dir0[1][j1][i1] + hilite_dir0[2][j1][i1]);
|
|
|
|
if (Yhi < 2.f) {
|
|
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir0[0][j1][i1] * Yhi) +
|
|
SQR(rgb_blend[1] - hilite_dir0[1][j1][i1] * Yhi) +
|
|
SQR(rgb_blend[2] - hilite_dir0[2][j1][i1] * Yhi))) * (hilite_dir0[3][j1][i1] + epsilon));
|
|
totwt = true;
|
|
clipfix[0] = dirwt * hilite_dir0[0][j1][i1];
|
|
clipfix[1] = dirwt * hilite_dir0[1][j1][i1];
|
|
clipfix[2] = dirwt * hilite_dir0[2][j1][i1];
|
|
}
|
|
|
|
for (int dir = 0; dir < 2; ++dir) {
|
|
const float Yhi2 = 1.f / ( hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1]);
|
|
|
|
if (Yhi2 < 2.f) {
|
|
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir[dir * 4 + 0][i1][j1] * Yhi2) +
|
|
SQR(rgb_blend[1] - hilite_dir[dir * 4 + 1][i1][j1] * Yhi2) +
|
|
SQR(rgb_blend[2] - hilite_dir[dir * 4 + 2][i1][j1] * Yhi2))) * (hilite_dir[dir * 4 + 3][i1][j1] + epsilon));
|
|
totwt = true;
|
|
clipfix[0] += dirwt * hilite_dir[dir * 4 + 0][i1][j1];
|
|
clipfix[1] += dirwt * hilite_dir[dir * 4 + 1][i1][j1];
|
|
clipfix[2] += dirwt * hilite_dir[dir * 4 + 2][i1][j1];
|
|
}
|
|
}
|
|
|
|
|
|
Yhi = 1.f / (hilite_dir4[0][j1][i1] + hilite_dir4[1][j1][i1] + hilite_dir4[2][j1][i1]);
|
|
|
|
if (Yhi < 2.f) {
|
|
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir4[0][j1][i1] * Yhi) +
|
|
SQR(rgb_blend[1] - hilite_dir4[1][j1][i1] * Yhi) +
|
|
SQR(rgb_blend[2] - hilite_dir4[2][j1][i1] * Yhi))) * (hilite_dir4[3][j1][i1] + epsilon));
|
|
totwt = true;
|
|
clipfix[0] += dirwt * hilite_dir4[0][j1][i1];
|
|
clipfix[1] += dirwt * hilite_dir4[1][j1][i1];
|
|
clipfix[2] += dirwt * hilite_dir4[2][j1][i1];
|
|
}
|
|
|
|
if (UNLIKELY(!totwt)) {
|
|
continue;
|
|
}
|
|
|
|
//now correct clipped channels
|
|
if (pixel[0] > max_f[0] && pixel[1] > max_f[1] && pixel[2] > max_f[2]) {
|
|
//all channels clipped
|
|
|
|
const float mult = whitept / (0.299f * clipfix[0] + 0.587f * clipfix[1] + 0.114f * clipfix[2]);
|
|
red[i + miny][j + minx] = clipfix[0] * mult;
|
|
green[i + miny][j + minx] = clipfix[1] * mult;
|
|
blue[i + miny][j + minx] = clipfix[2] * mult;
|
|
} else {//some channels clipped
|
|
const float notclipped[3] = {
|
|
pixel[0] <= max_f[0] ? 1.f : 0.f,
|
|
pixel[1] <= max_f[1] ? 1.f : 0.f,
|
|
pixel[2] <= max_f[2] ? 1.f : 0.f
|
|
};
|
|
|
|
if (notclipped[0] == 0.f) { //red clipped
|
|
red[i + miny][j + minx] = max(pixel[0], clipfix[0] * ((notclipped[1] * pixel[1] + notclipped[2] * pixel[2]) /
|
|
(notclipped[1] * clipfix[1] + notclipped[2] * clipfix[2] + epsilon)));
|
|
}
|
|
|
|
if (notclipped[1] == 0.f) { //green clipped
|
|
green[i + miny][j + minx] = max(pixel[1], clipfix[1] * ((notclipped[2] * pixel[2] + notclipped[0] * pixel[0]) /
|
|
(notclipped[2] * clipfix[2] + notclipped[0] * clipfix[0] + epsilon)));
|
|
}
|
|
|
|
if (notclipped[2] == 0.f) { //blue clipped
|
|
blue[i + miny][j + minx] = max(pixel[2], clipfix[2] * ((notclipped[0] * pixel[0] + notclipped[1] * pixel[1]) /
|
|
(notclipped[0] * clipfix[0] + notclipped[1] * clipfix[1] + epsilon)));
|
|
}
|
|
}
|
|
|
|
Y = 0.299f * red[i + miny][j + minx] + 0.587f * green[i + miny][j + minx] + 0.114f * blue[i + miny][j + minx];
|
|
|
|
if (Y > whitept) {
|
|
const float mult = whitept / Y;
|
|
|
|
red[i + miny][j + minx] *= mult;
|
|
green[i + miny][j + minx] *= mult;
|
|
blue[i + miny][j + minx] *= mult;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (plistener) {
|
|
plistener->setProgress(1.00);
|
|
}
|
|
|
|
}// end of HLReconstruction
|
|
|
|
}
|
|
|