rawTherapee/rtengine/hilite_recon.cc
2019-09-10 12:34:57 +02:00

1132 lines
40 KiB
C++

////////////////////////////////////////////////////////////////
//
// Highlight reconstruction
//
// copyright (c) 2008-2011 Emil Martinec <ejmartin@uchicago.edu>
// copyright (c) 2019 Ingo Weyrich <heckflosse67@gmx.de>
//
//
// code dated: June 16, 2011
// code dated: July 09, 2019, speedups by Ingo Weyrich <heckflosse67@gmx.de>
//
// hilite_recon.cc is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////
#include <cassert>
#include <cmath>
#include <cstddef>
#include "array2D.h"
#include "opthelper.h"
#include "rawimagesource.h"
#include "rt_math.h"
namespace
{
void boxblur2(const float* const* src, float** dst, float** temp, int startY, int startX, int H, int W, int bufferW, int box)
{
constexpr int numCols = 16;
assert((bufferW % numCols) == 0);
//box blur image channel; box size = 2*box+1
//horizontal blur
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row = 0; row < H; ++row) {
int len = box + 1;
temp[row][0] = src[row + startY][startX] / len;
for (int j = 1; j <= box; ++j) {
temp[row][0] += src[row + startY][j + startX] / len;
}
for (int col = 1; col <= box; ++col, ++len) {
temp[row][col] = (temp[row][col - 1] * len + src[row + startY][col + box + startX]) / (len + 1);
}
for (int col = box + 1; col < W - box; ++col) {
temp[row][col] = temp[row][col - 1] + (src[row + startY][col + box + startX] - src[row + startY][col - box - 1 + startX]) / len;
}
for (int col = W - box; col < W; ++col, --len) {
temp[row][col] = (temp[row][col - 1] * len - src[row + startY][col - box - 1 + startX]) / (len - 1);
}
}
//vertical blur
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float tempvalN[numCols] ALIGNED64;
#ifdef _OPENMP
#pragma omp for
#endif
for (int col = 0; col < bufferW - numCols + 1; col += numCols) {
float len = box + 1;
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = temp[0][col + n] / len;
}
for (int i = 1; i <= box; ++i) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] += temp[i][col + n] / len;
}
}
for (int n = 0; n < numCols; ++n) {
dst[0][col + n] = tempvalN[n];
}
for (int row = 1; row <= box; ++row, ++len) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1);
dst[row][col + n] = tempvalN[n];
}
}
const float rlen = 1.f / len;
for (int row = box + 1; row < H - box; ++row) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] += (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) * rlen;
dst[row][col + n] = tempvalN[n];
}
}
for (int row = H - box; row < H; ++row, --len) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = (dst[(row - 1)][col + n] * len - temp[(row - box - 1)][col + n]) / (len - 1);
dst[row][col + n] = tempvalN[n];
}
}
}
}
}
void boxblur_resamp(const float* const* src, float** dst, float** temp, int H, int W, int box, int samp)
{
assert(samp != 0);
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for
#endif
//box blur image channel; box size = 2*box+1
//horizontal blur
for (int row = 0; row < H; ++row) {
int len = box + 1;
float tempval = src[row][0] / len;
for (int j = 1; j <= box; ++j) {
tempval += src[row][j] / len;
}
temp[row][0] = tempval;
for (int col = 1; col <= box; ++col, ++len) {
tempval = (tempval * len + src[row][col + box]) / (len + 1);
if (col % samp == 0) {
temp[row][col / samp] = tempval;
}
}
const float oneByLen = 1.f / static_cast<float>(len);
for (int col = box + 1; col < W - box; ++col) {
tempval = tempval + (src[row][col + box] - src[row][col - box - 1]) * oneByLen;
if (col % samp == 0) {
temp[row][col / samp] = tempval;
}
}
for (int col = W - box; col < W; ++col, --len) {
tempval = (tempval * len - src[row][col - box - 1]) / (len - 1);
if (col % samp == 0) {
temp[row][col / samp] = tempval;
}
}
}
}
constexpr int numCols = 8; // process numCols columns at once for better L1 CPU cache usage
#ifdef _OPENMP
#pragma omp parallel
#endif
{
float tempvalN[numCols] ALIGNED64;
#ifdef _OPENMP
#pragma omp for nowait
#endif
//vertical blur
for (int col = 0; col < (W / samp) - (numCols - 1); col += numCols) {
float len = box + 1;
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = temp[0][col + n] / len;
}
for (int i = 1; i <= box; ++i) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] += temp[i][col + n] / len;
}
}
for (int n = 0; n < numCols; ++n) {
dst[0][col + n] = tempvalN[n];
}
for (int row = 1; row <= box; ++row, ++len) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = (tempvalN[n] * len + temp[(row + box)][col + n]) / (len + 1);
}
if (row % samp == 0) {
for (int n = 0; n < numCols; ++n) {
dst[row / samp][col + n] = tempvalN[n];
}
}
}
const float rlen = 1.f / len;
for (int row = box + 1; row < H - box; ++row) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] += (temp[(row + box)][col + n] - temp[(row - box - 1)][col + n]) * rlen;
}
if (row % samp == 0) {
for (int n = 0; n < numCols; ++n) {
dst[row / samp][col + n] = tempvalN[n];
}
}
}
for (int row = H - box; row < H; ++row, --len) {
for (int n = 0; n < numCols; ++n) {
tempvalN[n] = (tempvalN[n] * len - temp[(row - box - 1)][col + n]) / (len - 1);
}
if (row % samp == 0) {
for (int n = 0; n < numCols; ++n) {
dst[row / samp][col + n] = tempvalN[n];
}
}
}
}
// process remaining columns
#ifdef _OPENMP
#pragma omp single
#endif
{
//vertical blur
for (int col = (W / samp) - ((W / samp) % numCols); col < W / samp; ++col) {
int len = box + 1;
float tempval = temp[0][col] / len;
for (int i = 1; i <= box; ++i) {
tempval += temp[i][col] / len;
}
dst[0][col] = tempval;
for (int row = 1; row <= box; ++row, ++len) {
tempval = (tempval * len + temp[(row + box)][col]) / (len + 1);
if (row % samp == 0) {
dst[row / samp][col] = tempval;
}
}
for (int row = box + 1; row < H - box; ++row) {
tempval += (temp[(row + box)][col] - temp[(row - box - 1)][col]) / len;
if (row % samp == 0) {
dst[row / samp][col] = tempval;
}
}
for (int row = H - box; row < H; ++row, --len) {
tempval = (tempval * len - temp[(row - box - 1)][col]) / (len - 1);
if (row % samp == 0) {
dst[row / samp][col] = tempval;
}
}
}
}
}
}
}
namespace rtengine
{
extern const Settings* settings;
void RawImageSource::HLRecovery_inpaint(float** red, float** green, float** blue)
{
double progress = 0.0;
if (plistener) {
plistener->setProgressStr("PROGRESSBAR_HLREC");
plistener->setProgress(progress);
}
const int height = H;
const int width = W;
constexpr int range = 2;
constexpr int pitch = 4;
constexpr float threshpct = 0.25f;
constexpr float maxpct = 0.95f;
constexpr float epsilon = 0.00001f;
//%%%%%%%%%%%%%%%%%%%%
//for blend algorithm:
constexpr float blendthresh = 1.0;
// Transform matrixes rgb>lab and back
constexpr float trans[3][3] = {
{1.f, 1.f, 1.f},
{1.7320508f, -1.7320508f, 0.f},
{-1.f, -1.f, 2.f}
};
constexpr float itrans[3][3] = {
{1.f, 0.8660254f, -0.5f},
{1.f, -0.8660254f, -0.5f},
{1.f, 0.f, 1.f}
};
if (settings->verbose) {
for (int c = 0; c < 3; ++c) {
printf("chmax[%d] : %f\tclmax[%d] : %f\tratio[%d] : %f\n", c, chmax[c], c, clmax[c], c, chmax[c] / clmax[c]);
}
}
float factor[3];
for (int c = 0; c < 3; ++c) {
factor[c] = chmax[c] / clmax[c];
}
const float minFactor = min(factor[0], factor[1], factor[2]);
if (minFactor > 1.f) { // all 3 channels clipped
// calculate clip factor per channel
for (int c = 0; c < 3; ++c) {
factor[c] /= minFactor;
}
// get max clip factor
int maxpos = 0;
float maxValNew = 0.f;
for (int c = 0; c < 3; ++c) {
if (chmax[c] / factor[c] > maxValNew) {
maxValNew = chmax[c] / factor[c];
maxpos = c;
}
}
const float clipFactor = clmax[maxpos] / maxValNew;
if (clipFactor < maxpct) {
// if max clipFactor < maxpct (0.95) adjust per channel factors
for (int c = 0; c < 3; ++c) {
factor[c] *= (maxpct / clipFactor);
}
}
} else {
factor[0] = factor[1] = factor[2] = 1.f;
}
if (settings->verbose) {
for (int c = 0; c < 3; ++c) {
printf("correction factor[%d] : %f\n", c, factor[c]);
}
}
float max_f[3];
float thresh[3];
for (int c = 0; c < 3; ++c) {
thresh[c] = chmax[c] * threshpct / factor[c];
max_f[c] = chmax[c] * maxpct / factor[c];
}
const float whitept = max(max_f[0], max_f[1], max_f[2]);
const float clippt = min(max_f[0], max_f[1], max_f[2]);
const float medpt = max_f[0] + max_f[1] + max_f[2] - whitept - clippt;
const float blendpt = blendthresh * clippt;
float medFactor[3];
for (int c = 0; c < 3; ++c) {
medFactor[c] = max(1.0f, max_f[c] / medpt) / -blendpt;
}
int minx = width - 1;
int maxx = 0;
int miny = height - 1;
int maxy = 0;
#pragma omp parallel for reduction(min:minx,miny) reduction(max:maxx,maxy) schedule(dynamic, 16)
for (int i = 0; i < height; ++i) {
for (int j = 0; j< width; ++j) {
if (red[i][j] >= max_f[0] || green[i][j] >= max_f[1] || blue[i][j] >= max_f[2]) {
minx = std::min(minx, j);
maxx = std::max(maxx, j);
miny = std::min(miny, i);
maxy = std::max(maxy, i);
}
}
}
if (minx > maxx || miny > maxy) { // nothing to reconstruct
return;
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
constexpr int blurBorder = 256;
minx = std::max(0, minx - blurBorder);
miny = std::max(0, miny - blurBorder);
maxx = std::min(width - 1, maxx + blurBorder);
maxy = std::min(height - 1, maxy + blurBorder);
const int blurWidth = maxx - minx + 1;
const int blurHeight = maxy - miny + 1;
const int bufferWidth = blurWidth + ((16 - (blurWidth % 16)) & 15);
multi_array2D<float, 3> channelblur(bufferWidth, blurHeight, 0, 48);
array2D<float> temp(bufferWidth, blurHeight); // allocate temporary buffer
// blur RGB channels
boxblur2(red, channelblur[0], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
if (plistener) {
progress += 0.07;
plistener->setProgress(progress);
}
boxblur2(green, channelblur[1], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
if (plistener) {
progress += 0.07;
plistener->setProgress(progress);
}
boxblur2(blue, channelblur[2], temp, miny, minx, blurHeight, blurWidth, bufferWidth, 4);
if (plistener) {
progress += 0.07;
plistener->setProgress(progress);
}
// reduce channel blur to one array
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int i = 0; i < blurHeight; ++i) {
for (int j = 0; j < blurWidth; ++j) {
channelblur[0][i][j] = fabsf(channelblur[0][i][j] - red[i + miny][j + minx]) + fabsf(channelblur[1][i][j] - green[i + miny][j + minx]) + fabsf(channelblur[2][i][j] - blue[i + miny][j + minx]);
}
}
for (int c = 1; c < 3; ++c) {
channelblur[c].free(); //free up some memory
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
multi_array2D<float, 4> hilite_full(bufferWidth, blurHeight, ARRAY2D_CLEAR_DATA, 32);
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
double hipass_sum = 0.0;
int hipass_norm = 0;
// set up which pixels are clipped or near clipping
#ifdef _OPENMP
#pragma omp parallel for reduction(+:hipass_sum,hipass_norm) schedule(dynamic,16)
#endif
for (int i = 0; i < blurHeight; ++i) {
for (int j = 0; j < blurWidth; ++j) {
if (
(
red[i + miny][j + minx] > thresh[0]
|| green[i + miny][j + minx] > thresh[1]
|| blue[i + miny][j + minx] > thresh[2]
)
&& red[i + miny][j + minx] < max_f[0]
&& green[i + miny][j + minx] < max_f[1]
&& blue[i + miny][j + minx] < max_f[2]
) {
// if one or more channels is highlight but none are blown, add to highlight accumulator
hipass_sum += channelblur[0][i][j];
++hipass_norm;
hilite_full[0][i][j] = red[i + miny][j + minx];
hilite_full[1][i][j] = green[i + miny][j + minx];
hilite_full[2][i][j] = blue[i + miny][j + minx];
hilite_full[3][i][j] = 1.f;
}
}
}
const float hipass_ave = 2.f * hipass_sum / (hipass_norm + epsilon);
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
array2D<float> hilite_full4(bufferWidth, blurHeight);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//blur highlight data
boxblur2(hilite_full[3], hilite_full4, temp, 0, 0, blurHeight, blurWidth, bufferWidth, 1);
temp.free(); // free temporary buffer
if (plistener) {
progress += 0.07;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < blurHeight; ++i) {
for (int j = 0; j < blurWidth; ++j) {
if (channelblur[0][i][j] > hipass_ave) {
//too much variation
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
continue;
}
if (hilite_full4[i][j] > epsilon && hilite_full4[i][j] < 0.95f) {
//too near an edge, could risk using CA affected pixels, therefore omit
hilite_full[0][i][j] = hilite_full[1][i][j] = hilite_full[2][i][j] = hilite_full[3][i][j] = 0.f;
}
}
}
channelblur[0].free(); //free up some memory
hilite_full4.free(); //free up some memory
const int hfh = (blurHeight - blurHeight % pitch) / pitch;
const int hfw = (blurWidth - blurWidth % pitch) / pitch;
multi_array2D<float, 4> hilite(hfw + 1, hfh + 1, ARRAY2D_CLEAR_DATA, 48);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// blur and resample highlight data; range=size of blur, pitch=sample spacing
array2D<float> temp2(blurWidth / pitch + (blurWidth % pitch == 0 ? 0 : 1), blurHeight);
for (int m = 0; m < 4; ++m) {
boxblur_resamp(hilite_full[m], hilite[m], temp2, blurHeight, blurWidth, range, pitch);
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
}
temp2.free();
for (int c = 0; c < 4; ++c) {
hilite_full[c].free(); //free up some memory
}
multi_array2D<float, 8> hilite_dir(hfw, hfh, ARRAY2D_CLEAR_DATA, 64);
// for faster processing we create two buffers using (height,width) instead of (width,height)
multi_array2D<float, 4> hilite_dir0(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
multi_array2D<float, 4> hilite_dir4(hfh, hfw, ARRAY2D_CLEAR_DATA, 64);
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//fill gaps in highlight map by directional extension
//raster scan from four corners
for (int j = 1; j < hfw - 1; ++j) {
for (int i = 2; i < hfh - 2; ++i) {
//from left
if (hilite[3][i][j] > epsilon) {
hilite_dir0[3][j][i] = 1.f;
} else {
hilite_dir0[3][j][i] = (hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2]) == 0.f ? 0.f : 0.1f;
}
}
if (hilite[3][2][j] <= epsilon) {
hilite_dir[0 + 3][0][j] = hilite_dir0[3][j][2];
}
if (hilite[3][3][j] <= epsilon) {
hilite_dir[0 + 3][1][j] = hilite_dir0[3][j][3];
}
if (hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] = hilite_dir0[3][j][hfh - 3];
}
if (hilite[3][hfh - 4][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 2][j] = hilite_dir0[3][j][hfh - 4];
}
}
for (int i = 2; i < hfh - 2; ++i) {
if (hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir4[3][hfw - 1][i] = hilite_dir0[3][hfw - 2][i];
}
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int c = 0; c < 3; ++c) {
for (int j = 1; j < hfw - 1; ++j) {
for (int i = 2; i < hfh - 2; ++i) {
//from left
if (hilite[3][i][j] > epsilon) {
hilite_dir0[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir0[c][j][i] = 0.1f * ((hilite_dir0[0 + c][j - 1][i - 2] + hilite_dir0[0 + c][j - 1][i - 1] + hilite_dir0[0 + c][j - 1][i] + hilite_dir0[0 + c][j - 1][i + 1] + hilite_dir0[0 + c][j - 1][i + 2]) /
(hilite_dir0[0 + 3][j - 1][i - 2] + hilite_dir0[0 + 3][j - 1][i - 1] + hilite_dir0[0 + 3][j - 1][i] + hilite_dir0[0 + 3][j - 1][i + 1] + hilite_dir0[0 + 3][j - 1][i + 2] + epsilon));
}
}
if (hilite[3][2][j] <= epsilon) {
hilite_dir[0 + c][0][j] = hilite_dir0[c][j][2];
}
if (hilite[3][3][j] <= epsilon) {
hilite_dir[0 + c][1][j] = hilite_dir0[c][j][3];
}
if (hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] = hilite_dir0[c][j][hfh - 3];
}
if (hilite[3][hfh - 4][j] <= epsilon) {
hilite_dir[4 + c][hfh - 2][j] = hilite_dir0[c][j][hfh - 4];
}
}
for (int i = 2; i < hfh - 2; ++i) {
if (hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir4[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
}
}
}
#ifdef _OPENMP
#pragma omp single
#endif
{
for (int j = hfw - 2; j > 0; --j) {
for (int i = 2; i < hfh - 2; ++i) {
//from right
if (hilite[3][i][j] > epsilon) {
hilite_dir4[3][j][i] = 1.f;
} else {
hilite_dir4[3][j][i] = (hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)]) == 0.f ? 0.f : 0.1f;
}
}
if (hilite[3][2][j] <= epsilon) {
hilite_dir[0 + 3][0][j] += hilite_dir4[3][j][2];
}
if (hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir4[3][j][hfh - 3];
}
}
for (int i = 2; i < hfh - 2; ++i) {
if (hilite[3][i][0] <= epsilon) {
hilite_dir[0 + 3][i - 2][0] += hilite_dir4[3][0][i];
hilite_dir[4 + 3][i + 2][0] += hilite_dir4[3][0][i];
}
if (hilite[3][i][1] <= epsilon) {
hilite_dir[0 + 3][i - 2][1] += hilite_dir4[3][1][i];
hilite_dir[4 + 3][i + 2][1] += hilite_dir4[3][1][i];
}
if (hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir[0 + 3][i - 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
hilite_dir[4 + 3][i + 2][hfw - 2] += hilite_dir4[3][hfw - 2][i];
}
}
}
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int c = 0; c < 3; ++c) {
for (int j = hfw - 2; j > 0; --j) {
for (int i = 2; i < hfh - 2; ++i) {
//from right
if (hilite[3][i][j] > epsilon) {
hilite_dir4[c][j][i] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir4[c][j][i] = 0.1f * ((hilite_dir4[c][(j + 1)][(i - 2)] + hilite_dir4[c][(j + 1)][(i - 1)] + hilite_dir4[c][(j + 1)][(i)] + hilite_dir4[c][(j + 1)][(i + 1)] + hilite_dir4[c][(j + 1)][(i + 2)]) /
(hilite_dir4[3][(j + 1)][(i - 2)] + hilite_dir4[3][(j + 1)][(i - 1)] + hilite_dir4[3][(j + 1)][(i)] + hilite_dir4[3][(j + 1)][(i + 1)] + hilite_dir4[3][(j + 1)][(i + 2)] + epsilon));
}
}
if (hilite[3][2][j] <= epsilon) {
hilite_dir[0 + c][0][j] += hilite_dir4[c][j][2];
}
if (hilite[3][hfh - 3][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] += hilite_dir4[c][j][hfh - 3];
}
}
for (int i = 2; i < hfh - 2; ++i) {
if (hilite[3][i][0] <= epsilon) {
hilite_dir[0 + c][i - 2][0] += hilite_dir4[c][0][i];
hilite_dir[4 + c][i + 2][0] += hilite_dir4[c][0][i];
}
if (hilite[3][i][1] <= epsilon) {
hilite_dir[0 + c][i - 2][1] += hilite_dir4[c][1][i];
hilite_dir[4 + c][i + 2][1] += hilite_dir4[c][1][i];
}
if (hilite[3][i][hfw - 2] <= epsilon) {
hilite_dir[0 + c][i - 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
hilite_dir[4 + c][i + 2][hfw - 2] += hilite_dir4[c][hfw - 2][i];
}
}
}
#ifdef _OPENMP
#pragma omp single
#endif
{
for (int i = 1; i < hfh - 1; ++i)
for (int j = 2; j < hfw - 2; ++j) {
//from top
if (hilite[3][i][j] > epsilon) {
hilite_dir[0 + 3][i][j] = 1.f;
} else {
hilite_dir[0 + 3][i][j] = (hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2]) == 0.f ? 0.f : 0.1f;
}
}
for (int j = 2; j < hfw - 2; ++j) {
if (hilite[3][hfh - 2][j] <= epsilon) {
hilite_dir[4 + 3][hfh - 1][j] += hilite_dir[0 + 3][hfh - 2][j];
}
}
}
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel
#endif
{
#ifdef _OPENMP
#pragma omp for nowait
#endif
for (int c = 0; c < 3; ++c) {
for (int i = 1; i < hfh - 1; ++i) {
for (int j = 2; j < hfw - 2; ++j) {
//from top
if (hilite[3][i][j] > epsilon) {
hilite_dir[0 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir[0 + c][i][j] = 0.1f * ((hilite_dir[0 + c][i - 1][j - 2] + hilite_dir[0 + c][i - 1][j - 1] + hilite_dir[0 + c][i - 1][j] + hilite_dir[0 + c][i - 1][j + 1] + hilite_dir[0 + c][i - 1][j + 2]) /
(hilite_dir[0 + 3][i - 1][j - 2] + hilite_dir[0 + 3][i - 1][j - 1] + hilite_dir[0 + 3][i - 1][j] + hilite_dir[0 + 3][i - 1][j + 1] + hilite_dir[0 + 3][i - 1][j + 2] + epsilon));
}
}
}
for (int j = 2; j < hfw - 2; ++j) {
if (hilite[3][hfh - 2][j] <= epsilon) {
hilite_dir[4 + c][hfh - 1][j] += hilite_dir[0 + c][hfh - 2][j];
}
}
}
#ifdef _OPENMP
#pragma omp single
#endif
for (int i = hfh - 2; i > 0; --i) {
for (int j = 2; j < hfw - 2; ++j) {
//from bottom
if (hilite[3][i][j] > epsilon) {
hilite_dir[4 + 3][i][j] = 1.f;
} else {
hilite_dir[4 + 3][i][j] = (hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)]) == 0.f ? 0.f : 0.1f;
}
}
}
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int c = 0; c < 4; ++c) {
for (int i = hfh - 2; i > 0; --i) {
for (int j = 2; j < hfw - 2; ++j) {
//from bottom
if (hilite[3][i][j] > epsilon) {
hilite_dir[4 + c][i][j] = hilite[c][i][j] / hilite[3][i][j];
} else {
hilite_dir[4 + c][i][j] = 0.1f * ((hilite_dir[4 + c][(i + 1)][(j - 2)] + hilite_dir[4 + c][(i + 1)][(j - 1)] + hilite_dir[4 + c][(i + 1)][(j)] + hilite_dir[4 + c][(i + 1)][(j + 1)] + hilite_dir[4 + c][(i + 1)][(j + 2)]) /
(hilite_dir[4 + 3][(i + 1)][(j - 2)] + hilite_dir[4 + 3][(i + 1)][(j - 1)] + hilite_dir[4 + 3][(i + 1)][(j)] + hilite_dir[4 + 3][(i + 1)][(j + 1)] + hilite_dir[4 + 3][(i + 1)][(j + 2)] + epsilon));
}
}
}
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//fill in edges
for (int dir = 0; dir < 2; ++dir) {
for (int i = 1; i < hfh - 1; ++i) {
for (int c = 0; c < 4; ++c) {
hilite_dir[dir * 4 + c][i][0] = hilite_dir[dir * 4 + c][i][1];
hilite_dir[dir * 4 + c][i][hfw - 1] = hilite_dir[dir * 4 + c][i][hfw - 2];
}
}
for (int j = 1; j < hfw - 1; ++j) {
for (int c = 0; c < 4; ++c) {
hilite_dir[dir * 4 + c][0][j] = hilite_dir[dir * 4 + c][1][j];
hilite_dir[dir * 4 + c][hfh - 1][j] = hilite_dir[dir * 4 + c][hfh - 2][j];
}
}
for (int c = 0; c < 4; ++c) {
hilite_dir[dir * 4 + c][0][0] = hilite_dir[dir * 4 + c][1][0] = hilite_dir[dir * 4 + c][0][1] = hilite_dir[dir * 4 + c][1][1] = hilite_dir[dir * 4 + c][2][2];
hilite_dir[dir * 4 + c][0][hfw - 1] = hilite_dir[dir * 4 + c][1][hfw - 1] = hilite_dir[dir * 4 + c][0][hfw - 2] = hilite_dir[dir * 4 + c][1][hfw - 2] = hilite_dir[dir * 4 + c][2][hfw - 3];
hilite_dir[dir * 4 + c][hfh - 1][0] = hilite_dir[dir * 4 + c][hfh - 2][0] = hilite_dir[dir * 4 + c][hfh - 1][1] = hilite_dir[dir * 4 + c][hfh - 2][1] = hilite_dir[dir * 4 + c][hfh - 3][2];
hilite_dir[dir * 4 + c][hfh - 1][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 1] = hilite_dir[dir * 4 + c][hfh - 1][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 2][hfw - 2] = hilite_dir[dir * 4 + c][hfh - 3][hfw - 3];
}
}
for (int i = 1; i < hfh - 1; ++i) {
for (int c = 0; c < 4; ++c) {
hilite_dir0[c][0][i] = hilite_dir0[c][1][i];
hilite_dir0[c][hfw - 1][i] = hilite_dir0[c][hfw - 2][i];
}
}
for (int j = 1; j < hfw - 1; ++j) {
for (int c = 0; c < 4; ++c) {
hilite_dir0[c][j][0] = hilite_dir0[c][j][1];
hilite_dir0[c][j][hfh - 1] = hilite_dir0[c][j][hfh - 2];
}
}
for (int c = 0; c < 4; ++c) {
hilite_dir0[c][0][0] = hilite_dir0[c][0][1] = hilite_dir0[c][1][0] = hilite_dir0[c][1][1] = hilite_dir0[c][2][2];
hilite_dir0[c][hfw - 1][0] = hilite_dir0[c][hfw - 1][1] = hilite_dir0[c][hfw - 2][0] = hilite_dir0[c][hfw - 2][1] = hilite_dir0[c][hfw - 3][2];
hilite_dir0[c][0][hfh - 1] = hilite_dir0[c][0][hfh - 2] = hilite_dir0[c][1][hfh - 1] = hilite_dir0[c][1][hfh - 2] = hilite_dir0[c][2][hfh - 3];
hilite_dir0[c][hfw - 1][hfh - 1] = hilite_dir0[c][hfw - 1][hfh - 2] = hilite_dir0[c][hfw - 2][hfh - 1] = hilite_dir0[c][hfw - 2][hfh - 2] = hilite_dir0[c][hfw - 3][hfh - 3];
}
for (int i = 1; i < hfh - 1; ++i) {
for (int c = 0; c < 4; ++c) {
hilite_dir4[c][0][i] = hilite_dir4[c][1][i];
hilite_dir4[c][hfw - 1][i] = hilite_dir4[c][hfw - 2][i];
}
}
for (int j = 1; j < hfw - 1; ++j) {
for (int c = 0; c < 4; ++c) {
hilite_dir4[c][j][0] = hilite_dir4[c][j][1];
hilite_dir4[c][j][hfh - 1] = hilite_dir4[c][j][hfh - 2];
}
}
for (int c = 0; c < 4; ++c) {
hilite_dir4[c][0][0] = hilite_dir4[c][0][1] = hilite_dir4[c][1][0] = hilite_dir4[c][1][1] = hilite_dir4[c][2][2];
hilite_dir4[c][hfw - 1][0] = hilite_dir4[c][hfw - 1][1] = hilite_dir4[c][hfw - 2][0] = hilite_dir4[c][hfw - 2][1] = hilite_dir4[c][hfw - 3][2];
hilite_dir4[c][0][hfh - 1] = hilite_dir4[c][0][hfh - 2] = hilite_dir4[c][1][hfh - 1] = hilite_dir4[c][1][hfh - 2] = hilite_dir4[c][2][hfh - 3];
hilite_dir4[c][hfw - 1][hfh - 1] = hilite_dir4[c][hfw - 1][hfh - 2] = hilite_dir4[c][hfw - 2][hfh - 1] = hilite_dir4[c][hfw - 2][hfh - 2] = hilite_dir4[c][hfw - 3][hfh - 3];
}
if (plistener) {
progress += 0.05;
plistener->setProgress(progress);
}
//free up some memory
for (int c = 0; c < 4; ++c) {
hilite[c].free();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// now reconstruct clipped channels using color ratios
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic,16)
#endif
for (int i = 0; i < blurHeight; ++i) {
const int i1 = min((i - i % pitch) / pitch, hfh - 1);
for (int j = 0; j < blurWidth; ++j) {
const float pixel[3] = {
red[i + miny][j + minx],
green[i + miny][j + minx],
blue[i + miny][j + minx]
};
if (pixel[0] < max_f[0] && pixel[1] < max_f[1] && pixel[2] < max_f[2]) {
continue; //pixel not clipped
}
const int j1 = min((j - j % pitch) / pitch, hfw - 1);
//estimate recovered values using modified HLRecovery_blend algorithm
float rgb[3] = {
pixel[0],
pixel[1],
pixel[2]
};// Copy input pixel to rgb so it's easier to access in loops
float rgb_blend[3] = {};
float cam[2][3];
float lab[2][3];
float sum[2];
// Initialize cam with raw input [0] and potentially clipped input [1]
for (int c = 0; c < 3; ++c) {
cam[0][c] = rgb[c];
cam[1][c] = min(cam[0][c], clippt);
}
// Calculate the lightness correction ratio (chratio)
for (int i2 = 0; i2 < 2; ++i2) {
for (int c = 0; c < 3; ++c) {
lab[i2][c] = 0;
for (int j2 = 0; j2 < 3; ++j2) {
lab[i2][c] += trans[c][j2] * cam[i2][j2];
}
}
sum[i2] = 0.f;
for (int c = 1; c < 3; ++c) {
sum[i2] += SQR(lab[i2][c]);
}
}
// avoid division by zero
sum[0] = std::max(sum[0], epsilon);
const float chratio = sqrtf(sum[1] / sum[0]);
// Apply ratio to lightness in lab space
for (int c = 1; c < 3; ++c) {
lab[0][c] *= chratio;
}
// Transform back from lab to RGB
for (int c = 0; c < 3; ++c) {
cam[0][c] = 0.f;
for (int j2 = 0; j2 < 3; ++j2) {
cam[0][c] += itrans[c][j2] * lab[0][j2];
}
}
for (int c = 0; c < 3; ++c) {
rgb[c] = cam[0][c] / 3;
}
// Copy converted pixel back
if (pixel[0] > blendpt) {
const float rfrac = LIM01(medFactor[0] * (pixel[0] - blendpt));
rgb_blend[0] = rfrac * rgb[0] + (1.f - rfrac) * pixel[0];
}
if (pixel[1] > blendpt) {
const float gfrac = LIM01(medFactor[1] * (pixel[1] - blendpt));
rgb_blend[1] = gfrac * rgb[1] + (1.f - gfrac) * pixel[1];
}
if (pixel[2] > blendpt) {
const float bfrac = LIM01(medFactor[2] * (pixel[2] - blendpt));
rgb_blend[2] = bfrac * rgb[2] + (1.f - bfrac) * pixel[2];
}
//end of HLRecovery_blend estimation
//%%%%%%%%%%%%%%%%%%%%%%%
//there are clipped highlights
//first, determine weighted average of unclipped extensions (weighting is by 'hue' proximity)
bool totwt = false;
float clipfix[3] = {0.f, 0.f, 0.f};
float Y = epsilon + rgb_blend[0] + rgb_blend[1] + rgb_blend[2];
for (int c = 0; c < 3; ++c) {
rgb_blend[c] /= Y;
}
float Yhi = 1.f / (hilite_dir0[0][j1][i1] + hilite_dir0[1][j1][i1] + hilite_dir0[2][j1][i1]);
if (Yhi < 2.f) {
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir0[0][j1][i1] * Yhi) +
SQR(rgb_blend[1] - hilite_dir0[1][j1][i1] * Yhi) +
SQR(rgb_blend[2] - hilite_dir0[2][j1][i1] * Yhi))) * (hilite_dir0[3][j1][i1] + epsilon));
totwt = true;
clipfix[0] = dirwt * hilite_dir0[0][j1][i1];
clipfix[1] = dirwt * hilite_dir0[1][j1][i1];
clipfix[2] = dirwt * hilite_dir0[2][j1][i1];
}
for (int dir = 0; dir < 2; ++dir) {
const float Yhi2 = 1.f / ( hilite_dir[dir * 4 + 0][i1][j1] + hilite_dir[dir * 4 + 1][i1][j1] + hilite_dir[dir * 4 + 2][i1][j1]);
if (Yhi2 < 2.f) {
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir[dir * 4 + 0][i1][j1] * Yhi2) +
SQR(rgb_blend[1] - hilite_dir[dir * 4 + 1][i1][j1] * Yhi2) +
SQR(rgb_blend[2] - hilite_dir[dir * 4 + 2][i1][j1] * Yhi2))) * (hilite_dir[dir * 4 + 3][i1][j1] + epsilon));
totwt = true;
clipfix[0] += dirwt * hilite_dir[dir * 4 + 0][i1][j1];
clipfix[1] += dirwt * hilite_dir[dir * 4 + 1][i1][j1];
clipfix[2] += dirwt * hilite_dir[dir * 4 + 2][i1][j1];
}
}
Yhi = 1.f / (hilite_dir4[0][j1][i1] + hilite_dir4[1][j1][i1] + hilite_dir4[2][j1][i1]);
if (Yhi < 2.f) {
const float dirwt = 1.f / ((1.f + 65535.f * (SQR(rgb_blend[0] - hilite_dir4[0][j1][i1] * Yhi) +
SQR(rgb_blend[1] - hilite_dir4[1][j1][i1] * Yhi) +
SQR(rgb_blend[2] - hilite_dir4[2][j1][i1] * Yhi))) * (hilite_dir4[3][j1][i1] + epsilon));
totwt = true;
clipfix[0] += dirwt * hilite_dir4[0][j1][i1];
clipfix[1] += dirwt * hilite_dir4[1][j1][i1];
clipfix[2] += dirwt * hilite_dir4[2][j1][i1];
}
if (UNLIKELY(!totwt)) {
continue;
}
//now correct clipped channels
if (pixel[0] > max_f[0] && pixel[1] > max_f[1] && pixel[2] > max_f[2]) {
//all channels clipped
const float mult = whitept / (0.299f * clipfix[0] + 0.587f * clipfix[1] + 0.114f * clipfix[2]);
red[i + miny][j + minx] = clipfix[0] * mult;
green[i + miny][j + minx] = clipfix[1] * mult;
blue[i + miny][j + minx] = clipfix[2] * mult;
} else {//some channels clipped
const float notclipped[3] = {
pixel[0] <= max_f[0] ? 1.f : 0.f,
pixel[1] <= max_f[1] ? 1.f : 0.f,
pixel[2] <= max_f[2] ? 1.f : 0.f
};
if (notclipped[0] == 0.f) { //red clipped
red[i + miny][j + minx] = max(pixel[0], clipfix[0] * ((notclipped[1] * pixel[1] + notclipped[2] * pixel[2]) /
(notclipped[1] * clipfix[1] + notclipped[2] * clipfix[2] + epsilon)));
}
if (notclipped[1] == 0.f) { //green clipped
green[i + miny][j + minx] = max(pixel[1], clipfix[1] * ((notclipped[2] * pixel[2] + notclipped[0] * pixel[0]) /
(notclipped[2] * clipfix[2] + notclipped[0] * clipfix[0] + epsilon)));
}
if (notclipped[2] == 0.f) { //blue clipped
blue[i + miny][j + minx] = max(pixel[2], clipfix[2] * ((notclipped[0] * pixel[0] + notclipped[1] * pixel[1]) /
(notclipped[0] * clipfix[0] + notclipped[1] * clipfix[1] + epsilon)));
}
}
Y = 0.299f * red[i + miny][j + minx] + 0.587f * green[i + miny][j + minx] + 0.114f * blue[i + miny][j + minx];
if (Y > whitept) {
const float mult = whitept / Y;
red[i + miny][j + minx] *= mult;
green[i + miny][j + minx] *= mult;
blue[i + miny][j + minx] *= mult;
}
}
}
if (plistener) {
plistener->setProgress(1.00);
}
}// end of HLReconstruction
}