474 lines
17 KiB
C++
474 lines
17 KiB
C++
/*
|
|
* This file is part of RawTherapee.
|
|
*
|
|
* Copyright (c) 2017-2018 Ingo Weyrich <heckflosse67@gmx.de>
|
|
*
|
|
* RawTherapee is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* RawTherapee is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
#ifdef _OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#include "gauss.h"
|
|
#include "opthelper.h"
|
|
#include "rt_algo.h"
|
|
#include "rt_math.h"
|
|
#include "sleef.c"
|
|
|
|
namespace {
|
|
float calcBlendFactor(float val, float threshold) {
|
|
// sigmoid function
|
|
// result is in ]0;1] range
|
|
// inflexion point is at (x, y) (threshold, 0.5)
|
|
return 1.f / (1.f + xexpf(16.f - 16.f * val / threshold));
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
vfloat calcBlendFactor(vfloat valv, vfloat thresholdv) {
|
|
// sigmoid function
|
|
// result is in ]0;1] range
|
|
// inflexion point is at (x, y) (threshold, 0.5)
|
|
const vfloat onev = F2V(1.f);
|
|
const vfloat c16v = F2V(16.f);
|
|
return onev / (onev + xexpf(c16v - c16v * valv / thresholdv));
|
|
}
|
|
#endif
|
|
|
|
float tileAverage(float **data, size_t tileY, size_t tileX, size_t tilesize) {
|
|
|
|
float avg = 0.f;
|
|
#ifdef __SSE2__
|
|
vfloat avgv = ZEROV;
|
|
#endif
|
|
for (std::size_t y = tileY; y < tileY + tilesize; ++y) {
|
|
std::size_t x = tileX;
|
|
#ifdef __SSE2__
|
|
for (; x < tileX + tilesize - 3; x += 4) {
|
|
avgv += LVFU(data[y][x]);
|
|
}
|
|
#endif
|
|
for (; x < tileX + tilesize; ++x) {
|
|
avg += data[y][x];
|
|
}
|
|
}
|
|
#ifdef __SSE2__
|
|
avg += vhadd(avgv);
|
|
#endif
|
|
return avg / rtengine::SQR(tilesize);
|
|
}
|
|
|
|
float tileVariance(float **data, size_t tileY, size_t tileX, size_t tilesize, float avg) {
|
|
|
|
float var = 0.f;
|
|
#ifdef __SSE2__
|
|
vfloat varv = ZEROV;
|
|
const vfloat avgv = F2V(avg);
|
|
#endif
|
|
for (std::size_t y = tileY; y < tileY + tilesize; ++y) {
|
|
std::size_t x = tileX;
|
|
#ifdef __SSE2__
|
|
for (; x < tileX + tilesize - 3; x += 4) {
|
|
varv += SQRV(LVFU(data[y][x]) - avgv);
|
|
}
|
|
#endif
|
|
for (; x < tileX + tilesize; ++x) {
|
|
var += rtengine::SQR(data[y][x] - avg);
|
|
}
|
|
}
|
|
#ifdef __SSE2__
|
|
var += vhadd(varv);
|
|
#endif
|
|
return var / (rtengine::SQR(tilesize) * avg);
|
|
}
|
|
|
|
float calcContrastThreshold(float** luminance, int tileY, int tileX, int tilesize) {
|
|
|
|
constexpr float scale = 0.0625f / 327.68f;
|
|
std::vector<std::vector<float>> blend(tilesize - 4, std::vector<float>(tilesize - 4));
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat scalev = F2V(scale);
|
|
#endif
|
|
|
|
for(int j = tileY + 2; j < tileY + tilesize - 2; ++j) {
|
|
int i = tileX + 2;
|
|
#ifdef __SSE2__
|
|
for(; i < tileX + tilesize - 5; i += 4) {
|
|
vfloat contrastv = vsqrtf(SQRV(LVFU(luminance[j][i+1]) - LVFU(luminance[j][i-1])) + SQRV(LVFU(luminance[j+1][i]) - LVFU(luminance[j-1][i])) +
|
|
SQRV(LVFU(luminance[j][i+2]) - LVFU(luminance[j][i-2])) + SQRV(LVFU(luminance[j+2][i]) - LVFU(luminance[j-2][i]))) * scalev;
|
|
STVFU(blend[j - tileY - 2][i - tileX - 2], contrastv);
|
|
}
|
|
#endif
|
|
for(; i < tileX + tilesize - 2; ++i) {
|
|
|
|
float contrast = sqrtf(rtengine::SQR(luminance[j][i+1] - luminance[j][i-1]) + rtengine::SQR(luminance[j+1][i] - luminance[j-1][i]) +
|
|
rtengine::SQR(luminance[j][i+2] - luminance[j][i-2]) + rtengine::SQR(luminance[j+2][i] - luminance[j-2][i])) * scale;
|
|
|
|
blend[j - tileY - 2][i - tileX - 2] = contrast;
|
|
}
|
|
}
|
|
|
|
const float limit = rtengine::SQR(tilesize - 4) / 100.f;
|
|
|
|
int c;
|
|
for (c = 1; c < 100; ++c) {
|
|
const float contrastThreshold = c / 100.f;
|
|
float sum = 0.f;
|
|
#ifdef __SSE2__
|
|
const vfloat contrastThresholdv = F2V(contrastThreshold);
|
|
vfloat sumv = ZEROV;
|
|
#endif
|
|
|
|
for(int j = 0; j < tilesize - 4; ++j) {
|
|
int i = 0;
|
|
#ifdef __SSE2__
|
|
for(; i < tilesize - 7; i += 4) {
|
|
sumv += calcBlendFactor(LVFU(blend[j][i]), contrastThresholdv);
|
|
}
|
|
#endif
|
|
for(; i < tilesize - 4; ++i) {
|
|
sum += calcBlendFactor(blend[j][i], contrastThreshold);
|
|
}
|
|
}
|
|
#ifdef __SSE2__
|
|
sum += vhadd(sumv);
|
|
#endif
|
|
if (sum <= limit) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return c / 100.f;
|
|
}
|
|
}
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
void findMinMaxPercentile(const float* data, size_t size, float minPrct, float& minOut, float maxPrct, float& maxOut, bool multithread)
|
|
{
|
|
// Copyright (c) 2017 Ingo Weyrich <heckflosse67@gmx.de>
|
|
// We need to find the (minPrct*size) smallest value and the (maxPrct*size) smallest value in data.
|
|
// We use a histogram based search for speed and to reduce memory usage.
|
|
// Memory usage of this method is histoSize * sizeof(uint32_t) * (t + 1) byte,
|
|
// where t is the number of threads and histoSize is in [1;65536].
|
|
// Processing time is O(n) where n is size of the input array.
|
|
// It scales well with multiple threads if the size of the input array is large.
|
|
// The current implementation is not guaranteed to work correctly if size > 2^32 (4294967296).
|
|
|
|
assert(minPrct <= maxPrct);
|
|
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
|
|
size_t numThreads = 1;
|
|
#ifdef _OPENMP
|
|
// Because we have an overhead in the critical region of the main loop for each thread
|
|
// we make a rough calculation to reduce the number of threads for small data size.
|
|
// This also works fine for the minmax loop.
|
|
if (multithread) {
|
|
const size_t maxThreads = omp_get_max_threads();
|
|
while (size > numThreads * numThreads * 16384 && numThreads < maxThreads) {
|
|
++numThreads;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// We need min and max value of data to calculate the scale factor for the histogram
|
|
float minVal = data[0];
|
|
float maxVal = data[0];
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(min:minVal) reduction(max:maxVal) num_threads(numThreads)
|
|
#endif
|
|
for (size_t i = 1; i < size; ++i) {
|
|
minVal = std::min(minVal, data[i]);
|
|
maxVal = std::max(maxVal, data[i]);
|
|
}
|
|
|
|
if (std::fabs(maxVal - minVal) == 0.f) { // fast exit, also avoids division by zero in calculation of scale factor
|
|
minOut = maxOut = minVal;
|
|
return;
|
|
}
|
|
|
|
// Caution: Currently this works correctly only for histoSize in range[1;65536].
|
|
// For small data size (i.e. thumbnails) we reduce the size of the histogram to the size of data.
|
|
const unsigned int histoSize = std::min<size_t>(65536, size);
|
|
|
|
// calculate scale factor to use full range of histogram
|
|
const float scale = (histoSize - 1) / (maxVal - minVal);
|
|
|
|
// We need one main histogram
|
|
std::vector<uint32_t> histo(histoSize, 0);
|
|
|
|
if (numThreads == 1) {
|
|
// just one thread => use main histogram
|
|
for (size_t i = 0; i < size; ++i) {
|
|
// we have to subtract minVal and multiply with scale to get the data in [0;histosize] range
|
|
histo[static_cast<uint16_t>(scale * (data[i] - minVal))]++;
|
|
}
|
|
} else {
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel num_threads(numThreads)
|
|
#endif
|
|
{
|
|
// We need one histogram per thread
|
|
std::vector<uint32_t> histothr(histoSize, 0);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait
|
|
#endif
|
|
for (size_t i = 0; i < size; ++i) {
|
|
// we have to subtract minVal and multiply with scale to get the data in [0;histosize] range
|
|
histothr[static_cast<uint16_t>(scale * (data[i] - minVal))]++;
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp critical
|
|
#endif
|
|
{
|
|
// add per thread histogram to main histogram
|
|
#ifdef _OPENMP
|
|
#pragma omp simd
|
|
#endif
|
|
|
|
for (size_t i = 0; i < histoSize; ++i) {
|
|
histo[i] += histothr[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t k = 0;
|
|
size_t count = 0;
|
|
|
|
// find (minPrct*size) smallest value
|
|
const float threshmin = minPrct * size;
|
|
while (count < threshmin) {
|
|
count += histo[k++];
|
|
}
|
|
|
|
if (k > 0) { // interpolate
|
|
const size_t count_ = count - histo[k - 1];
|
|
const float c0 = count - threshmin;
|
|
const float c1 = threshmin - count_;
|
|
minOut = (c1 * k + c0 * (k - 1)) / (c0 + c1);
|
|
} else {
|
|
minOut = k;
|
|
}
|
|
// go back to original range
|
|
minOut /= scale;
|
|
minOut += minVal;
|
|
minOut = rtengine::LIM(minOut, minVal, maxVal);
|
|
|
|
// find (maxPrct*size) smallest value
|
|
const float threshmax = maxPrct * size;
|
|
while (count < threshmax) {
|
|
count += histo[k++];
|
|
}
|
|
|
|
if (k > 0) { // interpolate
|
|
const size_t count_ = count - histo[k - 1];
|
|
const float c0 = count - threshmax;
|
|
const float c1 = threshmax - count_;
|
|
maxOut = (c1 * k + c0 * (k - 1)) / (c0 + c1);
|
|
} else {
|
|
maxOut = k;
|
|
}
|
|
// go back to original range
|
|
maxOut /= scale;
|
|
maxOut += minVal;
|
|
maxOut = rtengine::LIM(maxOut, minVal, maxVal);
|
|
}
|
|
|
|
void buildBlendMask(float** luminance, float **blend, int W, int H, float &contrastThreshold, float amount, bool autoContrast) {
|
|
|
|
if (autoContrast) {
|
|
constexpr float minLuminance = 2000.f;
|
|
constexpr float maxLuminance = 20000.f;
|
|
constexpr float minTileVariance = 0.5f;
|
|
for (int pass = 0; pass < 2; ++pass) {
|
|
const int tilesize = 80 / (pass + 1);
|
|
const int skip = pass == 0 ? tilesize : tilesize / 4;
|
|
const int numTilesW = W / skip - 3 * pass;
|
|
const int numTilesH = H / skip - 3 * pass;
|
|
std::vector<std::vector<float>> variances(numTilesH, std::vector<float>(numTilesW));
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic)
|
|
#endif
|
|
for (int i = 0; i < numTilesH; ++i) {
|
|
const int tileY = i * skip;
|
|
for (int j = 0; j < numTilesW; ++j) {
|
|
const int tileX = j * skip;
|
|
const float avg = tileAverage(luminance, tileY, tileX, tilesize);
|
|
if (avg < minLuminance || avg > maxLuminance) {
|
|
// too dark or too bright => skip the tile
|
|
variances[i][j] = RT_INFINITY_F;
|
|
continue;
|
|
} else {
|
|
variances[i][j] = tileVariance(luminance, tileY, tileX, tilesize, avg);
|
|
// exclude tiles with a variance less than minTileVariance
|
|
variances[i][j] = variances[i][j] < minTileVariance ? RT_INFINITY_F : variances[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
float minvar = RT_INFINITY_F;
|
|
int minI = 0, minJ = 0;
|
|
for (int i = 0; i < numTilesH; ++i) {
|
|
for (int j = 0; j < numTilesW; ++j) {
|
|
if (variances[i][j] < minvar) {
|
|
minvar = variances[i][j];
|
|
minI = i;
|
|
minJ = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minvar <= 1.f || pass == 1) {
|
|
const int minY = skip * minI;
|
|
const int minX = skip * minJ;
|
|
if (pass == 0) {
|
|
// a variance <= 1 means we already found a flat region and can skip second pass
|
|
contrastThreshold = calcContrastThreshold(luminance, minY, minX, tilesize);
|
|
break;
|
|
} else {
|
|
// in second pass we allow a variance of 4
|
|
// we additionally scan the tiles +-skip pixels around the best tile from pass 2
|
|
// Means we scan (2 * skip + 1)^2 tiles in this step to get a better hit rate
|
|
// fortunately the scan is quite fast, so we use only one core and don't parallelize
|
|
const int topLeftYStart = std::max(minY - skip, 0);
|
|
const int topLeftXStart = std::max(minX - skip, 0);
|
|
const int topLeftYEnd = std::min(minY + skip, H - tilesize);
|
|
const int topLeftXEnd = std::min(minX + skip, W - tilesize);
|
|
const int numTilesH = topLeftYEnd - topLeftYStart + 1;
|
|
const int numTilesW = topLeftXEnd - topLeftXStart + 1;
|
|
|
|
std::vector<std::vector<float>> variances(numTilesH, std::vector<float>(numTilesW));
|
|
for (int i = 0; i < numTilesH; ++i) {
|
|
const int tileY = topLeftYStart + i;
|
|
for (int j = 0; j < numTilesW; ++j) {
|
|
const int tileX = topLeftXStart + j;
|
|
const float avg = tileAverage(luminance, tileY, tileX, tilesize);
|
|
|
|
if (avg < minLuminance || avg > maxLuminance) {
|
|
// too dark or too bright => skip the tile
|
|
variances[i][j] = RT_INFINITY_F;
|
|
continue;
|
|
} else {
|
|
variances[i][j] = tileVariance(luminance, tileY, tileX, tilesize, avg);
|
|
// exclude tiles with a variance less than minTileVariance
|
|
variances[i][j] = variances[i][j] < minTileVariance ? RT_INFINITY_F : variances[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
float minvar = RT_INFINITY_F;
|
|
int minI = 0, minJ = 0;
|
|
for (int i = 0; i < numTilesH; ++i) {
|
|
for (int j = 0; j < numTilesW; ++j) {
|
|
if (variances[i][j] < minvar) {
|
|
minvar = variances[i][j];
|
|
minI = i;
|
|
minJ = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
contrastThreshold = minvar <= 4.f ? calcContrastThreshold(luminance, topLeftYStart + minI, topLeftXStart + minJ, tilesize) : 0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(contrastThreshold == 0.f) {
|
|
for(int j = 0; j < H; ++j) {
|
|
for(int i = 0; i < W; ++i) {
|
|
blend[j][i] = amount;
|
|
}
|
|
}
|
|
} else {
|
|
constexpr float scale = 0.0625f / 327.68f;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat contrastThresholdv = F2V(contrastThreshold);
|
|
const vfloat scalev = F2V(scale);
|
|
const vfloat amountv = F2V(amount);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for(int j = 2; j < H - 2; ++j) {
|
|
int i = 2;
|
|
#ifdef __SSE2__
|
|
for(; i < W - 5; i += 4) {
|
|
vfloat contrastv = vsqrtf(SQRV(LVFU(luminance[j][i+1]) - LVFU(luminance[j][i-1])) + SQRV(LVFU(luminance[j+1][i]) - LVFU(luminance[j-1][i])) +
|
|
SQRV(LVFU(luminance[j][i+2]) - LVFU(luminance[j][i-2])) + SQRV(LVFU(luminance[j+2][i]) - LVFU(luminance[j-2][i]))) * scalev;
|
|
|
|
STVFU(blend[j][i], amountv * calcBlendFactor(contrastv, contrastThresholdv));
|
|
}
|
|
#endif
|
|
for(; i < W - 2; ++i) {
|
|
|
|
float contrast = sqrtf(rtengine::SQR(luminance[j][i+1] - luminance[j][i-1]) + rtengine::SQR(luminance[j+1][i] - luminance[j-1][i]) +
|
|
rtengine::SQR(luminance[j][i+2] - luminance[j][i-2]) + rtengine::SQR(luminance[j+2][i] - luminance[j-2][i])) * scale;
|
|
|
|
blend[j][i] = amount * calcBlendFactor(contrast, contrastThreshold);
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp single
|
|
#endif
|
|
{
|
|
// upper border
|
|
for(int j = 0; j < 2; ++j) {
|
|
for(int i = 2; i < W - 2; ++i) {
|
|
blend[j][i] = blend[2][i];
|
|
}
|
|
}
|
|
// lower border
|
|
for(int j = H - 2; j < H; ++j) {
|
|
for(int i = 2; i < W - 2; ++i) {
|
|
blend[j][i] = blend[H-3][i];
|
|
}
|
|
}
|
|
for(int j = 0; j < H; ++j) {
|
|
// left border
|
|
blend[j][0] = blend[j][1] = blend[j][2];
|
|
// right border
|
|
blend[j][W - 2] = blend[j][W - 1] = blend[j][W - 3];
|
|
}
|
|
}
|
|
|
|
// blur blend mask to smooth transitions
|
|
gaussianBlur(blend, blend, W, H, 2.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|