1178 lines
45 KiB
C++
1178 lines
45 KiB
C++
////////////////////////////////////////////////////////////////
|
|
//
|
|
// Chromatic Aberration Auto-correction
|
|
//
|
|
// copyright (c) 2008-2010 Emil Martinec <ejmartin@uchicago.edu>
|
|
//
|
|
//
|
|
// code dated: November 24, 2010
|
|
// optimized: September 2013, Ingo Weyrich
|
|
// further optimized: February 2018, Ingo Weyrich
|
|
//
|
|
// Ingo Weyrich March 2018: The above comment 'Chromatic Aberration Auto-correction' sounds wrong
|
|
// I guess it should have been 'Purple fringe correction' though it's not restricted to 'Purple'
|
|
//
|
|
// PF_correct_RT.cc is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
//
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
#include "gauss.h"
|
|
#include "improcfun.h"
|
|
#include "cieimage.h"
|
|
#include "color.h"
|
|
#include "curves.h"
|
|
#include "labimage.h"
|
|
#include "sleef.c"
|
|
#include "curves.h"
|
|
#include "rt_math.h"
|
|
#include "opthelper.h"
|
|
#include "median.h"
|
|
#include "jaggedarray.h"
|
|
#include "StopWatch.h"
|
|
#include "procparams.h"
|
|
|
|
namespace rtengine
|
|
{
|
|
|
|
// Defringe in Lab mode
|
|
void ImProcFunctions::PF_correct_RT(LabImage * lab, double radius, int thresh)
|
|
{
|
|
BENCHFUN
|
|
std::unique_ptr<FlatCurve> chCurve;
|
|
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
|
|
chCurve.reset(new FlatCurve(params->defringe.huecurve));
|
|
}
|
|
|
|
const int width = lab->W, height = lab->H;
|
|
|
|
// temporary array to store chromaticity
|
|
const std::unique_ptr<float[]> fringe(new float[width * height]);
|
|
|
|
JaggedArray<float> tmpa(width, height);
|
|
JaggedArray<float> tmpb(width, height);
|
|
|
|
double chromave = 0.0; // use double precision for large summations
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
gaussianBlur(lab->a, tmpa, width, height, radius);
|
|
gaussianBlur(lab->b, tmpb, width, height, radius);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
#ifdef __SSE2__
|
|
|
|
// vectorized per row precalculation of the atan2 values
|
|
if (chCurve) {
|
|
int k = 0;
|
|
|
|
for (; k < width - 3; k += 4) {
|
|
STVFU(fringe[i * width + k], xatan2f(LVFU(lab->b[i][k]), LVFU(lab->a[i][k])));
|
|
}
|
|
|
|
for (; k < width; k++) {
|
|
fringe[i * width + k] = xatan2f(lab->b[i][k], lab->a[i][k]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
for (int j = 0; j < width; j++) {
|
|
float chromaChfactor = 1.f;
|
|
if (chCurve) {
|
|
#ifdef __SSE2__
|
|
// use the precalculated atan values
|
|
const float HH = fringe[i * width + j];
|
|
#else
|
|
// no precalculated values without SSE => calculate
|
|
const float HH = xatan2f(lab->b[i][j], lab->a[i][j]);
|
|
#endif
|
|
float chparam = chCurve->getVal((Color::huelab_to_huehsv2(HH))) - 0.5f; // get C=f(H)
|
|
|
|
if (chparam < 0.f) {
|
|
chparam *= 2.f; // increased action if chparam < 0
|
|
}
|
|
|
|
chromaChfactor = SQR(1.f + chparam);
|
|
}
|
|
|
|
const float chroma = chromaChfactor * (SQR(lab->a[i][j] - tmpa[i][j]) + SQR(lab->b[i][j] - tmpb[i][j])); // modulate chroma function hue
|
|
chromave += chroma;
|
|
fringe[i * width + j] = chroma;
|
|
}
|
|
}
|
|
}
|
|
|
|
chromave /= height * width;
|
|
|
|
if (chromave > 0.0) {
|
|
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for simd
|
|
#endif
|
|
|
|
for (int j = 0; j < width * height; j++) {
|
|
fringe[j] = 1.f / (fringe[j] + chromave);
|
|
}
|
|
|
|
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
|
|
const int halfwin = std::ceil(2 * radius) + 1;
|
|
|
|
// Issue 1674:
|
|
// often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < halfwin - 1; j++) {
|
|
|
|
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
|
|
for (int j1 = 0; j1 < j + halfwin; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
|
|
for (; j < width - halfwin + 1; j++) {
|
|
|
|
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
|
|
// test for pixel darker than some fraction of neighbourhood ave, near an edge, more saturated than average
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++)
|
|
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
} // end of ab channel averaging
|
|
}
|
|
}
|
|
|
|
// Defringe in CIECAM02 mode
|
|
void ImProcFunctions::PF_correct_RTcam(CieImage * ncie, double radius, int thresh)
|
|
{
|
|
BENCHFUN
|
|
|
|
std::unique_ptr<FlatCurve> chCurve;
|
|
|
|
if (params->defringe.huecurve.size() && FlatCurveType(params->defringe.huecurve.at(0)) > FCT_Linear) {
|
|
chCurve.reset(new FlatCurve(params->defringe.huecurve));
|
|
}
|
|
|
|
const int width = ncie->W, height = ncie->H;
|
|
|
|
// temporary array to store chromaticity
|
|
const std::unique_ptr<float[]> fringe(new float[width * height]);
|
|
|
|
float** const sraa = ncie->h_p; // we use the ncie->h_p buffer to avoid memory allocation/deallocation and reduce memory pressure
|
|
float** const srbb = ncie->C_p; // we use the ncie->C_p buffer to avoid memory allocation/deallocation and reduce memory pressure
|
|
JaggedArray<float> tmaa(width, height);
|
|
JaggedArray<float> tmbb(width, height);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat piDiv180v = F2V(RT_PI_F_180);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - 3; j += 4) {
|
|
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
|
|
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.y);
|
|
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j]) * sincosvalv.x);
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
|
|
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
|
|
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
|
|
}
|
|
}
|
|
}
|
|
|
|
double chromave = 0.0; // use double precision for large summations
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
gaussianBlur(sraa, tmaa, width, height, radius);
|
|
gaussianBlur(srbb, tmbb, width, height, radius);
|
|
|
|
float chromaChfactor = 1.f;
|
|
#ifdef _OPENMP
|
|
#pragma omp for reduction(+:chromave) schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
#ifdef __SSE2__
|
|
// vectorized per row precalculation of the atan2 values
|
|
if (chCurve) {
|
|
int j = 0;
|
|
for (; j < width - 3; j += 4) {
|
|
STVFU(fringe[i * width + j], xatan2f(LVFU(srbb[i][j]), LVFU(sraa[i][j])));
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
fringe[i * width + j] = xatan2f(srbb[i][j], sraa[i][j]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (int j = 0; j < width; j++) {
|
|
if (chCurve) {
|
|
#ifdef __SSE2__
|
|
// use the precalculated atan2 values
|
|
const float HH = fringe[i * width + j];
|
|
#else
|
|
// no precalculated values without SSE => calculate
|
|
const float HH = xatan2f(srbb[i][j], sraa[i][j]);
|
|
#endif
|
|
float chparam = chCurve->getVal(Color::huelab_to_huehsv2(HH)) - 0.5f; //get C=f(H)
|
|
|
|
if (chparam < 0.f) {
|
|
chparam *= 2.f; // increase action if chparam < 0
|
|
}
|
|
|
|
chromaChfactor = SQR(1.f + chparam);
|
|
}
|
|
|
|
const float chroma = chromaChfactor * (SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j])); //modulate chroma function hue
|
|
chromave += chroma;
|
|
fringe[i * width + j] = chroma;
|
|
}
|
|
}
|
|
}
|
|
|
|
chromave /= height * width;
|
|
|
|
if (chromave > 0.0) {
|
|
// now as chromave is calculated, we postprocess fringe to reduce the number of divisions in future
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for simd
|
|
#endif
|
|
|
|
for (int j = 0; j < width * height; j++) {
|
|
fringe[j] = 1.f / (fringe[j] + chromave);
|
|
}
|
|
|
|
const float threshfactor = 1.f / (SQR(thresh / 33.f) * chromave * 5.0f + chromave);
|
|
const int halfwin = std::ceil(2 * radius) + 1;
|
|
|
|
// Issue 1674:
|
|
// often, colour fringe is not evenly distributed, e.g. a lot in contrasty regions and none in the sky.
|
|
// so it's better to schedule dynamic and let every thread only process 16 rows, to avoid running big threads out of work
|
|
// Measured it and in fact gives better performance than without schedule(dynamic,16). Of course, there could be a better
|
|
// choice for the chunk_size than 16
|
|
// Issue 1972: Split this loop in three parts to avoid most of the min and max-operations
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < halfwin - 1; j++) {
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = 0; j1 < j + halfwin; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
tmaa[i][j] = atot / norm;
|
|
tmbb[i][j] = btot / norm;
|
|
} else {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
}
|
|
}
|
|
|
|
for (; j < width - halfwin + 1; j++) {
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
tmaa[i][j] = atot / norm;
|
|
tmbb[i][j] = btot / norm;
|
|
} else {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
if (fringe[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
|
|
// neighbourhood average of pixels weighted by chrominance
|
|
const float wt = fringe[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
tmaa[i][j] = atot / norm;
|
|
tmbb[i][j] = btot / norm;
|
|
} else {
|
|
tmaa[i][j] = sraa[i][j];
|
|
tmbb[i][j] = srbb[i][j];
|
|
}
|
|
}
|
|
} // end of ab channel averaging
|
|
}
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for(int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - 3; j += 4) {
|
|
const vfloat interav = LVFU(tmaa[i][j]);
|
|
const vfloat interbv = LVFU(tmbb[i][j]);
|
|
STVFU(ncie->h_p[i][j], xatan2f(interbv, interav) / F2V(RT_PI_F_180));
|
|
STVFU(ncie->C_p[i][j], vsqrtf(SQRV(interbv) + SQRV(interav)));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
const float intera = tmaa[i][j];
|
|
const float interb = tmbb[i][j];
|
|
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
|
|
ncie->C_p[i][j] = sqrt(SQR(interb) + SQR(intera));
|
|
}
|
|
}
|
|
}
|
|
|
|
// CIECAM02 hot/bad pixel filter
|
|
void ImProcFunctions::Badpixelscam(CieImage * ncie, double radius, int thresh, int mode, float chrom, bool hotbad)
|
|
{
|
|
BENCHFUN
|
|
if (mode == 2 && radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
|
|
return;
|
|
}
|
|
|
|
const int width = ncie->W, height = ncie->H;
|
|
|
|
constexpr float eps = 1.f;
|
|
|
|
JaggedArray<float> tmL(width, height);
|
|
|
|
const std::unique_ptr<float[]> badpix(new float[width * height]);
|
|
|
|
if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
|
|
// luma badpixels
|
|
// for bad pixels in sh channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure
|
|
uint8_t *badpixb = reinterpret_cast<uint8_t*>(badpix.get());
|
|
constexpr float sh_thr = 4.5f; // low value for luma sh_p to avoid artifacts
|
|
constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
//luma sh_p
|
|
gaussianBlur(ncie->sh_p, tmL, width, height, radius / 2.0); // low value to avoid artifacts
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat shthrv = F2V(shthr);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < 2; j++) {
|
|
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = 0; j1 <= j + 2; j1++) {
|
|
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - 5; j += 4) {
|
|
const vfloat shfabsv = vabsf(LVFU(ncie->sh_p[i][j]) - LVFU(tmL[i][j]));
|
|
vfloat shmedv = ZEROV;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
shmedv += vabsf(LVFU(ncie->sh_p[i1][j1]) - LVFU(tmL[i1][j1]));
|
|
}
|
|
}
|
|
|
|
uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv));
|
|
badpixb[i * width + j] = mask & 1;
|
|
badpixb[i * width + j + 1] = mask & 2;
|
|
badpixb[i * width + j + 2] = mask & 4;
|
|
badpixb[i * width + j + 3] = mask & 8;
|
|
}
|
|
#endif
|
|
for (; j < width - 2; j++) {
|
|
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
const float shfabs = std::fabs(ncie->sh_p[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 < width; j1++) {
|
|
shmed += std::fabs(ncie->sh_p[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < 2; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = 0; j1 <= j + 2; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += ncie->sh_p[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
|
|
shsum += dirsh * ncie->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
ncie->sh_p[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
ncie->sh_p[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width - 2; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += ncie->sh_p[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
|
|
shsum += dirsh * ncie->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
ncie->sh_p[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
ncie->sh_p[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 < width; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += ncie->sh_p[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(ncie->sh_p[i1][j1] - ncie->sh_p[i][j]) + eps);
|
|
shsum += dirsh * ncie->sh_p[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
ncie->sh_p[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
ncie->sh_p[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end luma badpixels
|
|
|
|
if (hotbad) {
|
|
JaggedArray<float> sraa(width, height);
|
|
JaggedArray<float> srbb(width, height);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat piDiv180v = F2V(RT_PI_F_180);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - 3; j += 4) {
|
|
const vfloat2 sincosvalv = xsincosf(piDiv180v * LVFU(ncie->h_p[i][j]));
|
|
STVFU(sraa[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.y);
|
|
STVFU(srbb[i][j], LVFU(ncie->C_p[i][j])*sincosvalv.x);
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
const float2 sincosval = xsincosf(RT_PI_F_180 * ncie->h_p[i][j]);
|
|
sraa[i][j] = ncie->C_p[i][j] * sincosval.y;
|
|
srbb[i][j] = ncie->C_p[i][j] * sincosval.x;
|
|
}
|
|
}
|
|
}
|
|
|
|
float** const tmaa = tmL; // reuse tmL buffer
|
|
JaggedArray<float> tmbb(width, height);
|
|
|
|
if (mode == 2) { // choice of gaussian blur
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
//chroma a and b
|
|
gaussianBlur(sraa, tmaa, width, height, radius);
|
|
gaussianBlur(srbb, tmbb, width, height, radius);
|
|
}
|
|
|
|
} else if (mode == 1) { // choice of median
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef _OPENMP
|
|
#pragma omp for nowait // nowait because next loop inside this parallel region is independent on this one
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
const int ip = i < 2 ? i + 2 : i - 2;
|
|
const int in = i > height - 3 ? i - 2 : i + 2;
|
|
|
|
for (int j = 0; j < width; j++) {
|
|
const int jp = j < 2 ? j + 2 : j -2;
|
|
const int jn = j > width - 3 ? j - 2 : j + 2;
|
|
|
|
tmaa[i][j] = median(sraa[ip][jp], sraa[ip][j], sraa[ip][jn], sraa[i][jp], sraa[i][j], sraa[i][jn], sraa[in][jp], sraa[in][j], sraa[in][jn]);
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
for (int i = 0; i < height; i++) {
|
|
const int ip = i < 2 ? i + 2 : i - 2;
|
|
const int in = i > height - 3 ? i - 2 : i + 2;
|
|
|
|
for (int j = 0; j < width; j++) {
|
|
const int jp = j < 2 ? j + 2 : j -2;
|
|
const int jn = j > width - 3 ? j - 2 : j + 2;
|
|
|
|
tmbb[i][j] = median(srbb[ip][jp], srbb[ip][j], srbb[ip][jn], srbb[i][jp], srbb[i][j], srbb[i][jn], srbb[in][jp], srbb[in][j], srbb[in][jn]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// begin chroma badpixels
|
|
double chrommed = 0.0; // use double precision for large summations
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:chrommed)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float chroma = SQR(sraa[i][j] - tmaa[i][j]) + SQR(srbb[i][j] - tmbb[i][j]);
|
|
chrommed += chroma;
|
|
badpix[i * width + j] = chroma;
|
|
}
|
|
}
|
|
|
|
chrommed /= height * width;
|
|
|
|
if (chrommed > 0.0) {
|
|
// now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future
|
|
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
|
|
const int halfwin = std::ceil(2 * radius) + 1;
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat chrommedv = F2V(chrommed);
|
|
const vfloat onev = F2V(1.f);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
for (; j < width - 3; j += 4) {
|
|
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < halfwin; j++) {
|
|
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = 0; j1 < j + halfwin; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
const float intera = atot / norm;
|
|
const float interb = btot / norm;
|
|
const float CC = sqrt(SQR(interb) + SQR(intera));
|
|
|
|
if (CC < chrom) {
|
|
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
|
|
ncie->C_p[i][j] = CC;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat threshfactorv = F2V(threshfactor);
|
|
const vfloat chromv = F2V(chrom);
|
|
const vfloat piDiv180v = F2V(RT_PI_F_180);
|
|
for (; j < width - halfwin - 3; j+=4) {
|
|
|
|
vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv);
|
|
if (_mm_movemask_ps((vfloat)selMask)) {
|
|
vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
const vfloat wtv = LVFU(badpix[i1 * width + j1]);
|
|
atotv += wtv * LVFU(sraa[i1][j1]);
|
|
btotv += wtv * LVFU(srbb[i1][j1]);
|
|
normv += wtv;
|
|
}
|
|
}
|
|
const vfloat interav = atotv / normv;
|
|
const vfloat interbv = btotv / normv;
|
|
const vfloat CCv = vsqrtf(SQRV(interbv) + SQRV(interav));
|
|
|
|
selMask = vandm(selMask, vmaskf_lt(CCv, chromv));
|
|
if (_mm_movemask_ps((vfloat)selMask)) {
|
|
STVFU(ncie->h_p[i][j], vself(selMask, xatan2f(interbv, interav) / piDiv180v, LVFU(ncie->h_p[i][j])));
|
|
STVFU(ncie->C_p[i][j], vself(selMask, CCv, LVFU(ncie->C_p[i][j])));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
for (; j < width - halfwin; j++) {
|
|
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
const float intera = atot / norm;
|
|
const float interb = btot / norm;
|
|
const float CC = sqrt(SQR(interb) + SQR(intera));
|
|
|
|
if (CC < chrom) {
|
|
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
|
|
ncie->C_p[i][j] = CC;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * sraa[i1][j1];
|
|
btot += wt * srbb[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
const float intera = atot / norm;
|
|
const float interb = btot / norm;
|
|
const float CC = sqrt(SQR(interb) + SQR(intera));
|
|
|
|
if (CC < chrom) {
|
|
ncie->h_p[i][j] = xatan2f(interb, intera) / RT_PI_F_180;
|
|
ncie->C_p[i][j] = CC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// CbDL reduce artifacts
|
|
void ImProcFunctions::BadpixelsLab(LabImage * lab, double radius, int thresh, float chrom)
|
|
{
|
|
BENCHFUN
|
|
|
|
if (radius < 0.25) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
|
|
return;
|
|
}
|
|
|
|
const int halfwin = std::ceil(2 * radius) + 1;
|
|
|
|
const int width = lab->W, height = lab->H;
|
|
|
|
constexpr float eps = 1.f;
|
|
|
|
JaggedArray<float> tmL(width, height);
|
|
|
|
const std::unique_ptr<float[]> badpix(new float[width * height]);
|
|
|
|
if (radius >= 0.5) { // for gauss sigma less than 0.25 gaussianblur() just calls memcpy => nothing to do here
|
|
//luma badpixels
|
|
// for bad pixels in L channel we need 0 / != 0 information. Use 1 byte per pixel instead of 4 to reduce memory pressure
|
|
uint8_t *badpixb = reinterpret_cast<uint8_t*>(badpix.get());
|
|
constexpr float sh_thr = 4.5f; // low value for luma L to avoid artifacts
|
|
constexpr float shthr = sh_thr / 24.0f; // divide by 24 because we are using a 5x5 grid and centre point is excluded from summation
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
// blur L channel
|
|
gaussianBlur(lab->L, tmL, width, height, radius / 2.0); // low value to avoid artifacts
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat shthrv = F2V(shthr);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < 2; j++) {
|
|
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = 0; j1 <= j + 2; j1++) {
|
|
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
|
|
for (; j < width - 5; j += 4) {
|
|
const vfloat shfabsv = vabsf(LVFU(lab->L[i][j]) - LVFU(tmL[i][j]));
|
|
vfloat shmedv = ZEROV;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
shmedv += vabsf(LVFU(lab->L[i1][j1]) - LVFU(tmL[i1][j1]));
|
|
}
|
|
}
|
|
uint8_t mask = _mm_movemask_ps((vfloat)vmaskf_gt(shfabsv, (shmedv - shfabsv) * shthrv));
|
|
badpixb[i * width + j] = mask & 1;
|
|
badpixb[i * width + j + 1] = mask & 2;
|
|
badpixb[i * width + j + 2] = mask & 4;
|
|
badpixb[i * width + j + 3] = mask & 8;
|
|
}
|
|
#endif
|
|
for (; j < width - 2; j++) {
|
|
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
const float shfabs = std::fabs(lab->L[i][j] - tmL[i][j]);
|
|
float shmed = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 < width; j1++) {
|
|
shmed += std::fabs(lab->L[i1][j1] - tmL[i1][j1]);
|
|
}
|
|
}
|
|
badpixb[i * width + j] = shfabs > ((shmed - shfabs) * shthr);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < 2; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = 0; j1 <= j + 2; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += lab->L[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
|
|
shsum += dirsh * lab->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
lab->L[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
lab->L[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width - 2; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 <= j + 2; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += lab->L[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
|
|
shsum += dirsh * lab->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
lab->L[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
lab->L[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
if (badpixb[i * width + j]) {
|
|
float norm = 0.f, shsum = 0.f, sum = 0.f, tot = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - 2); i1 <= std::min(i + 2, height - 1); i1++) {
|
|
for (int j1 = j - 2; j1 < width; j1++) {
|
|
if (!badpixb[i1 * width + j1]) {
|
|
sum += lab->L[i1][j1];
|
|
tot += 1.f;
|
|
const float dirsh = 1.f / (SQR(lab->L[i1][j1] - lab->L[i][j]) + eps);
|
|
shsum += dirsh * lab->L[i1][j1];
|
|
norm += dirsh;
|
|
}
|
|
}
|
|
}
|
|
if (norm > 0.f) {
|
|
lab->L[i][j] = shsum / norm;
|
|
} else if (tot > 0.f) {
|
|
lab->L[i][j] = sum / tot;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end luma badpixels
|
|
|
|
float** const tmaa = tmL; // reuse tmL buffer
|
|
JaggedArray<float> tmbb(width, height);
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
// blur chroma a and b
|
|
gaussianBlur(lab->a, tmaa, width, height, radius);
|
|
gaussianBlur(lab->b, tmbb, width, height, radius);
|
|
}
|
|
|
|
// begin chroma badpixels
|
|
double chrommed = 0.0; // use double precision for large summations
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for reduction(+:chrommed)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
for (int j = 0; j < width; j++) {
|
|
const float chroma = SQR(lab->a[i][j] - tmaa[i][j]) + SQR(lab->b[i][j] - tmbb[i][j]);
|
|
chrommed += chroma;
|
|
badpix[i * width + j] = chroma;
|
|
}
|
|
}
|
|
|
|
chrommed /= height * width;
|
|
|
|
if (chrommed > 0.0) {
|
|
// now as chrommed is calculated, we postprocess badpix to reduce the number of divisions in future
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel
|
|
#endif
|
|
{
|
|
#ifdef __SSE2__
|
|
const vfloat chrommedv = F2V(chrommed);
|
|
const vfloat onev = F2V(1.f);
|
|
#endif
|
|
#ifdef _OPENMP
|
|
#pragma omp for
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
#ifdef __SSE2__
|
|
for (; j < width - 3; j += 4) {
|
|
STVFU(badpix[i * width + j], onev / (LVFU(badpix[i * width + j]) + chrommedv));
|
|
}
|
|
#endif
|
|
for (; j < width; j++) {
|
|
badpix[i * width + j] = 1.f / (badpix[i * width + j] + chrommed);
|
|
}
|
|
}
|
|
}
|
|
|
|
const float threshfactor = 1.f / ((thresh * chrommed) / 33.f + chrommed);
|
|
|
|
chrom *= 327.68f;
|
|
chrom *= chrom;
|
|
|
|
#ifdef _OPENMP
|
|
#pragma omp parallel for schedule(dynamic,16)
|
|
#endif
|
|
|
|
for (int i = 0; i < height; i++) {
|
|
int j = 0;
|
|
for (; j < halfwin; j++) {
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = 0; j1 < j + halfwin; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __SSE2__
|
|
const vfloat chromv = F2V(chrom);
|
|
const vfloat threshfactorv = F2V(threshfactor);
|
|
for (; j < width - halfwin - 3; j += 4) {
|
|
vmask selMask = vmaskf_lt(LVFU(badpix[i * width + j]), threshfactorv);
|
|
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
|
|
vfloat atotv = ZEROV, btotv = ZEROV, normv = ZEROV;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
const vfloat wtv = LVFU(badpix[i1 * width + j1]);
|
|
atotv += wtv * LVFU(lab->a[i1][j1]);
|
|
btotv += wtv * LVFU(lab->b[i1][j1]);
|
|
normv += wtv;
|
|
}
|
|
}
|
|
selMask = vandm(selMask, vmaskf_lt(SQRV(atotv) + SQR(btotv), chromv * SQRV(normv)));
|
|
if (_mm_movemask_ps(reinterpret_cast<vfloat>(selMask))) {
|
|
const vfloat aOrig = LVFU(lab->a[i][j]);
|
|
const vfloat bOrig = LVFU(lab->b[i][j]);
|
|
STVFU(lab->a[i][j], vself(selMask, atotv / normv, aOrig));
|
|
STVFU(lab->b[i][j], vself(selMask, btotv / normv, bOrig));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
for (; j < width - halfwin; j++) {
|
|
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < j + halfwin; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (; j < width; j++) {
|
|
|
|
if (badpix[i * width + j] < threshfactor) {
|
|
float atot = 0.f, btot = 0.f, norm = 0.f;
|
|
|
|
for (int i1 = std::max(0, i - halfwin + 1); i1 < std::min(height, i + halfwin); i1++) {
|
|
for (int j1 = j - halfwin + 1; j1 < width; j1++) {
|
|
const float wt = badpix[i1 * width + j1];
|
|
atot += wt * lab->a[i1][j1];
|
|
btot += wt * lab->b[i1][j1];
|
|
norm += wt;
|
|
}
|
|
}
|
|
if (SQR(atot) + SQR(btot) < chrom * SQR(norm)) {
|
|
lab->a[i][j] = atot / norm;
|
|
lab->b[i][j] = btot / norm;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|