2019-11-03 14:52:42 +01:00

1814 lines
53 KiB
C++

/*
* This file is part of RawTherapee.
*
* Copyright (c) 2004-2010 Gabor Horvath <hgabor@rawtherapee.com>
*
* RawTherapee is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* RawTherapee is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with RawTherapee. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include <vector>
#include <glibmm/ustring.h>
#include <lcms2.h>
#include "alignedbuffer.h"
#include "coord2d.h"
#include "imagedimensions.h"
#include "LUT.h"
#include "rt_math.h"
#include "../rtgui/threadutils.h"
#define TR_NONE 0
#define TR_R90 1
#define TR_R180 2
#define TR_R270 3
#define TR_VFLIP 4
#define TR_HFLIP 8
#define TR_ROT 3
#define CHECK_BOUNDS 0
namespace rtengine
{
namespace procparams
{
struct CoarseTransformParams;
}
class ProgressListener;
class Color;
extern const char sImage8[];
extern const char sImage16[];
extern const char sImagefloat[];
int getCoarseBitMask(const procparams::CoarseTransformParams& coarse);
int igammasrgb(float in);
enum TypeInterpolation { TI_Nearest, TI_Bilinear };
// --------------------------------------------------------------------
// Generic classes
// --------------------------------------------------------------------
class ImageDatas : virtual public ImageDimensions
{
public:
template<class S, class D>
void convertTo(S src, D& dst) const
{
dst = src;
}
// parameters that will never be used, replaced by the subclasses r, g and b parameters!
// they are still necessary to implement operator() in this parent class
virtual ~ImageDatas() {}
virtual void allocate (int W, int H) {}
virtual void rotate (int deg) {}
// free the memory allocated for the image data without deleting the object.
virtual void flushData ()
{
allocate(0, 0);
}
virtual void hflip () {}
virtual void vflip () {}
// Read the raw dump of the data
void readData (FILE *fh) {}
// Write a raw dump of the data
void writeData (FILE *fh) const {}
virtual void normalizeInt (int srcMinVal, int srcMaxVal) {};
virtual void normalizeFloat (float srcMinVal, float srcMaxVal) {};
virtual void computeHistogramAutoWB (double &avg_r, double &avg_g, double &avg_b, int &n, LUTu &histogram, int compression) const {}
virtual void getSpotWBData (double &reds, double &greens, double &blues, int &rn, int &gn, int &bn,
std::vector<Coord2D> &red, std::vector<Coord2D> &green, std::vector<Coord2D> &blue,
int tran) const {}
virtual void getAutoWBMultipliers (double &rm, double &gm, double &bm) const
{
rm = gm = bm = 1.0;
}
};
template<>
inline void ImageDatas::convertTo(unsigned short src, unsigned char& dst) const
{
dst = uint16ToUint8Rounded(src);
}
template<>
inline void ImageDatas::convertTo(unsigned char src, int& dst) const
{
dst = src * 257;
}
template<>
inline void ImageDatas::convertTo(unsigned char src, unsigned short& dst) const
{
dst = src * 257;
}
template<>
inline void ImageDatas::convertTo(float src, unsigned char& dst) const
{
dst = uint16ToUint8Rounded(CLIP(src));
}
template<>
inline void ImageDatas::convertTo(unsigned char src, float& dst) const
{
dst = src * 257;
}
template<>
inline void ImageDatas::convertTo(float src, float& dst) const
{
dst = std::isnan(src) ? 0.f : src;
}
// --------------------------------------------------------------------
// Planar order classes
// --------------------------------------------------------------------
template <class T>
class PlanarPtr
{
protected:
AlignedBuffer<T*> ab;
public:
#if CHECK_BOUNDS
size_t width_, height_;
#endif
T** ptrs;
#if CHECK_BOUNDS
PlanarPtr() : width_(0), height_(0), ptrs (NULL) {}
#else
PlanarPtr() : ptrs (nullptr) {}
#endif
bool resize(size_t newSize)
{
if (ab.resize(newSize)) {
ptrs = ab.data;
return true;
} else {
ptrs = nullptr;
return false;
}
}
void swap (PlanarPtr<T> &other)
{
ab.swap(other.ab);
T** tmpsPtrs = other.ptrs;
other.ptrs = ptrs;
ptrs = tmpsPtrs;
#if CHECK_BOUNDS
size_t tmp = other.width_;
other.width_ = width_;
width_ = tmp;
tmp = other.height_;
other.height_ = height_;
height_ = tmp;
#endif
}
T*& operator() (size_t row)
{
#if CHECK_BOUNDS
assert (row < height_);
#endif
return ptrs[row];
}
// Will send back the start of a row, starting with a red, green or blue value
T* operator() (size_t row) const
{
#if CHECK_BOUNDS
assert (row < height_);
#endif
return ptrs[row];
}
// Will send back a value at a given row, col position
T& operator() (size_t row, size_t col)
{
#if CHECK_BOUNDS
assert (row < height_ && col < width_);
#endif
return ptrs[row][col];
}
const T operator() (size_t row, size_t col) const
{
#if CHECK_BOUNDS
assert (row < height_ && col < width_);
#endif
return ptrs[row][col];
}
};
template <class T>
class PlanarWhateverData : virtual public ImageDatas
{
private:
AlignedBuffer<T> abData;
size_t rowstride; // Plan size, in bytes (all padding bytes included)
public:
T* data;
PlanarPtr<T> v; // v stands for "value", whatever it represent
PlanarWhateverData() : rowstride(0), data (nullptr) {}
PlanarWhateverData(int w, int h) : rowstride(0), data (nullptr)
{
allocate(w, h);
}
// Send back the row stride. WARNING: unit = byte, not element!
size_t getRowStride () const
{
return rowstride;
}
void swap(PlanarWhateverData<T> &other)
{
abData.swap(other.abData);
v.swap(other.v);
T* tmpData = other.data;
other.data = data;
data = tmpData;
int tmpWidth = other.width;
other.width = width;
width = tmpWidth;
int tmpHeight = other.height;
other.height = height;
height = tmpHeight;
#if CHECK_BOUNDS
v.width_ = width;
v.height_ = height;
#endif
}
// use as pointer to data
//operator void*() { return data; };
/* If any of the required allocation fails, "width" and "height" are set to -1, and all remaining buffer are freed
* Can be safely used to reallocate an existing image */
void allocate (int W, int H) override
{
if (W == width && H == height) {
return;
}
width = W;
height = H;
#if CHECK_BOUNDS
v.width_ = width;
v.height_ = height;
#endif
if (sizeof(T) > 1) {
// 128 bits memory alignment for >8bits data
rowstride = ( width * sizeof(T) + 15 ) / 16 * 16;
} else {
// No memory alignment for 8bits data
rowstride = width * sizeof(T);
}
// find the padding length to ensure a 128 bits alignment for each row
size_t size = rowstride * height;
if (!width) {
size = 0;
rowstride = 0;
}
if (size && abData.resize(size, 1)
&& v.resize(height) ) {
data = abData.data;
} else {
// asking for a new size of 0 is safe and will free memory, if any!
abData.resize(0);
data = nullptr;
v.resize(0);
width = height = -1;
#if CHECK_BOUNDS
v.width_ = v.height_ = -1;
#endif
return;
}
char *start = (char*)(data);
for (int i = 0; i < height; ++i) {
int k = i * rowstride;
v(i) = (T*)(start + k);
}
}
/** Copy the data to another PlanarWhateverData */
void copyData(PlanarWhateverData<T> *dest) const
{
assert (dest != NULL);
// Make sure that the size is the same, reallocate if necessary
dest->allocate(width, height);
if (dest->width == -1) {
return;
}
for (int i = 0; i < height; i++) {
memcpy (dest->v(i), v(i), width * sizeof(T));
}
}
void rotate (int deg) override
{
if (deg == 90) {
PlanarWhateverData<T> rotatedImg(height, width); // New image, rotated
for (int ny = 0; ny < rotatedImg.height; ny++) {
int ox = ny;
int oy = height - 1;
for (int nx = 0; nx < rotatedImg.width; nx++) {
rotatedImg.v(ny, nx) = v(oy, ox);
--oy;
}
}
swap(rotatedImg);
} else if (deg == 270) {
PlanarWhateverData<T> rotatedImg(height, width); // New image, rotated
for (int nx = 0; nx < rotatedImg.width; nx++) {
int oy = nx;
int ox = width - 1;
for (int ny = 0; ny < rotatedImg.height; ny++) {
rotatedImg.v(ny, nx) = v(oy, ox);
--ox;
}
}
swap(rotatedImg);
} else if (deg == 180) {
int height2 = height / 2 + (height & 1);
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height2; i++) {
for (int j = 0; j < width; j++) {
T tmp;
int x = width - 1 - j;
int y = height - 1 - i;
tmp = v(i, j);
v(i, j) = v(y, x);
v(y, x) = tmp;
}
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
}
template <class IC>
void resizeImgTo (int nw, int nh, TypeInterpolation interp, PlanarWhateverData<IC> *imgPtr) const
{
//printf("resizeImgTo: resizing %s image data (%d x %d) to %s (%d x %d)\n", getType(), width, height, imgPtr->getType(), imgPtr->width, imgPtr->height);
if (width == nw && height == nh) {
// special case where no resizing is necessary, just type conversion....
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
convertTo(v(i, j), imgPtr->v(i, j));
}
}
} else if (interp == TI_Nearest) {
for (int i = 0; i < nh; i++) {
int ri = i * height / nh;
for (int j = 0; j < nw; j++) {
int ci = j * width / nw;
convertTo(v(ri, ci), imgPtr->v(i, j));
}
}
} else if (interp == TI_Bilinear) {
for (int i = 0; i < nh; i++) {
int sy = i * height / nh;
if (sy >= height) {
sy = height - 1;
}
float dy = float(i) * float(height) / float(nh) - float(sy);
int ny = sy + 1;
if (ny >= height) {
ny = sy;
}
for (int j = 0; j < nw; j++) {
int sx = j * width / nw;
if (sx >= width) {
sx = width;
}
float dx = float(j) * float(width) / float(nw) - float(sx);
int nx = sx + 1;
if (nx >= width) {
nx = sx;
}
convertTo(v(sy, sx) * (1.f - dx) * (1.f - dy) + v(sy, nx)*dx * (1.f - dy) + v(ny, sx) * (1.f - dx)*dy + v(ny, nx)*dx * dy, imgPtr->v(i, j));
}
}
} else {
// This case should never occur!
for (int i = 0; i < nh; i++) {
for (int j = 0; j < nw; j++) {
v(i, j) = 0;
}
}
}
}
void hflip () override
{
int width2 = width / 2;
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height; i++)
for (int j = 0; j < width2; j++) {
float temp;
int x = width - 1 - j;
temp = v(i, j);
v(i, j) = v(i, x);
v(i, x) = temp;
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
void vflip () override
{
int height2 = height / 2;
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height2; i++)
for (int j = 0; j < width; j++) {
T temp;
int y = height - 1 - i;
temp = v(i, j);
v(i, j) = v(y, j);
v(y, j) = temp;
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
void transformPixel (int x, int y, int tran, int& tx, int& ty) const
{
if (!tran) {
tx = x;
ty = y;
return;
}
int W = width;
int H = height;
int sw = W, sh = H;
if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) {
sw = H;
sh = W;
}
int ppx = x, ppy = y;
if (tran & TR_HFLIP) {
ppx = sw - 1 - x;
}
if (tran & TR_VFLIP) {
ppy = sh - 1 - y;
}
tx = ppx;
ty = ppy;
if ((tran & TR_ROT) == TR_R180) {
tx = W - 1 - ppx;
ty = H - 1 - ppy;
} else if ((tran & TR_ROT) == TR_R90) {
tx = ppy;
ty = H - 1 - ppx;
} else if ((tran & TR_ROT) == TR_R270) {
tx = W - 1 - ppy;
ty = ppx;
}
}
void getPipetteData (T &value, int posX, int posY, int squareSize, int tran) const
{
int x;
int y;
float accumulator = 0.f; // using float to avoid range overflow; -> please creates specialization if necessary
unsigned long int n = 0;
int halfSquare = squareSize / 2;
transformPixel (posX, posY, tran, x, y);
for (int iy = y - halfSquare; iy < y - halfSquare + squareSize; ++iy) {
for (int ix = x - halfSquare; ix < x - halfSquare + squareSize; ++ix) {
if (ix >= 0 && iy >= 0 && ix < width && iy < height) {
accumulator += float(this->v(iy, ix));
++n;
}
}
}
value = n ? T(accumulator / float(n)) : T(0);
}
void readData (FILE *f)
{
for (int i = 0; i < height; i++) {
fread (v(i), sizeof(T), width, f);
}
}
void writeData (FILE *f) const
{
for (int i = 0; i < height; i++) {
fwrite (v(i), sizeof(T), width, f);
}
}
void fill (T value) {
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
v(i, j) = value;
}
}
}
};
template <class T>
class PlanarRGBData : virtual public ImageDatas
{
private:
AlignedBuffer<T> abData;
size_t rowstride; // Plan size, in bytes (all padding bytes included)
size_t planestride; // Row length, in bytes (padding bytes included)
protected:
T* data;
public:
PlanarPtr<T> r;
PlanarPtr<T> g;
PlanarPtr<T> b;
PlanarRGBData() : rowstride(0), planestride(0), data (nullptr) {}
PlanarRGBData(size_t w, size_t h) : rowstride(0), planestride(0), data (nullptr)
{
allocate(w, h);
}
// Send back the row stride. WARNING: unit = byte, not element!
size_t getRowStride () const
{
return rowstride;
}
// Send back the plane stride. WARNING: unit = byte, not element!
size_t getPlaneStride () const
{
return planestride;
}
void swap(PlanarRGBData<T> &other)
{
abData.swap(other.abData);
r.swap(other.r);
g.swap(other.g);
b.swap(other.b);
T* tmpData = other.data;
other.data = data;
data = tmpData;
int tmpWidth = other.width;
other.width = width;
width = tmpWidth;
int tmpHeight = other.height;
other.height = height;
height = tmpHeight;
#if CHECK_BOUNDS
r.width_ = width;
r.height_ = height;
g.width_ = width;
g.height_ = height;
b.width_ = width;
b.height_ = height;
#endif
}
// use as pointer to data
//operator void*() { return data; };
/* If any of the required allocation fails, "width" and "height" are set to -1, and all remaining buffer are freed
* Can be safely used to reallocate an existing image */
void allocate (int W, int H) override
{
if (W == width && H == height) {
return;
}
width = W;
height = H;
#if CHECK_BOUNDS
r.width_ = width;
r.height_ = height;
g.width_ = width;
g.height_ = height;
b.width_ = width;
b.height_ = height;
#endif
if (sizeof(T) > 1) {
// 128 bits memory alignment for >8bits data
rowstride = ( width * sizeof(T) + 15 ) / 16 * 16;
planestride = rowstride * height;
} else {
// No memory alignment for 8bits data
rowstride = width * sizeof(T);
planestride = rowstride * height;
}
// find the padding length to ensure a 128 bits alignment for each row
size_t size = (size_t)rowstride * 3 * (size_t)height;
if (!width) {
size = 0;
rowstride = 0;
}
if (size && abData.resize(size, 1)
&& r.resize(height)
&& g.resize(height)
&& b.resize(height) ) {
data = abData.data;
} else {
// asking for a new size of 0 is safe and will free memory, if any!
abData.resize(0);
data = nullptr;
r.resize(0);
g.resize(0);
b.resize(0);
width = height = -1;
#if CHECK_BOUNDS
r.width_ = r.height_ = -1;
g.width_ = g.height_ = -1;
b.width_ = b.height_ = -1;
#endif
return;
}
char *redstart = (char*)(data);
char *greenstart = (char*)(data) + planestride;
char *bluestart = (char*)(data) + 2 * planestride;
for (int i = 0; i < height; ++i) {
size_t k = i * rowstride;
r(i) = (T*)(redstart + k);
g(i) = (T*)(greenstart + k);
b(i) = (T*)(bluestart + k);
}
}
/** Copy the data to another PlanarRGBData */
void copyData(PlanarRGBData<T> *dest) const
{
assert (dest != nullptr);
// Make sure that the size is the same, reallocate if necessary
dest->allocate(width, height);
if (dest->width == -1) {
printf("ERROR: PlanarRGBData::copyData >>> allocation failed!\n");
return;
}
for (int i = 0; i < height; i++) {
memcpy (dest->r(i), r(i), width * sizeof(T));
memcpy (dest->g(i), g(i), width * sizeof(T));
memcpy (dest->b(i), b(i), width * sizeof(T));
}
}
void rotate (int deg) override
{
if (deg == 90) {
PlanarRGBData<T> rotatedImg(height, width); // New image, rotated
for (int ny = 0; ny < rotatedImg.height; ny++) {
int ox = ny;
int oy = height - 1;
for (int nx = 0; nx < rotatedImg.width; nx++) {
rotatedImg.r(ny, nx) = r(oy, ox);
rotatedImg.g(ny, nx) = g(oy, ox);
rotatedImg.b(ny, nx) = b(oy, ox);
--oy;
}
}
swap(rotatedImg);
} else if (deg == 270) {
PlanarRGBData<T> rotatedImg(height, width); // New image, rotated
for (int nx = 0; nx < rotatedImg.width; nx++) {
int oy = nx;
int ox = width - 1;
for (int ny = 0; ny < rotatedImg.height; ny++) {
rotatedImg.r(ny, nx) = r(oy, ox);
rotatedImg.g(ny, nx) = g(oy, ox);
rotatedImg.b(ny, nx) = b(oy, ox);
--ox;
}
}
swap(rotatedImg);
} else if (deg == 180) {
int height2 = height / 2 + (height & 1);
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height2; i++) {
for (int j = 0; j < width; j++) {
T tmp;
int x = width - 1 - j;
int y = height - 1 - i;
tmp = r(i, j);
r(i, j) = r(y, x);
r(y, x) = tmp;
tmp = g(i, j);
g(i, j) = g(y, x);
g(y, x) = tmp;
tmp = b(i, j);
b(i, j) = b(y, x);
b(y, x) = tmp;
}
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
}
template <class IC>
void resizeImgTo (int nw, int nh, TypeInterpolation interp, IC *imgPtr) const
{
//printf("resizeImgTo: resizing %s image data (%d x %d) to %s (%d x %d)\n", getType(), width, height, imgPtr->getType(), imgPtr->width, imgPtr->height);
if (width == nw && height == nh) {
// special case where no resizing is necessary, just type conversion....
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
convertTo(r(i, j), imgPtr->r(i, j));
convertTo(g(i, j), imgPtr->g(i, j));
convertTo(b(i, j), imgPtr->b(i, j));
}
}
} else if (interp == TI_Nearest) {
for (int i = 0; i < nh; i++) {
int ri = i * height / nh;
for (int j = 0; j < nw; j++) {
int ci = j * width / nw;
convertTo(r(ri, ci), imgPtr->r(i, j));
convertTo(g(ri, ci), imgPtr->g(i, j));
convertTo(b(ri, ci), imgPtr->b(i, j));
}
}
} else if (interp == TI_Bilinear) {
float heightByNh = float(height) / float(nh);
float widthByNw = float(width) / float(nw);
float syf = 0.f;
for (int i = 0; i < nh; i++, syf += heightByNh) {
int sy = syf;
float dy = syf - float(sy);
int ny = sy < height - 1 ? sy + 1 : sy;
float sxf = 0.f;
for (int j = 0; j < nw; j++, sxf += widthByNw) {
int sx = sxf;
float dx = sxf - float(sx);
int nx = sx < width - 1 ? sx + 1 : sx;
convertTo(r(sy, sx) * (1.f - dx) * (1.f - dy) + r(sy, nx)*dx * (1.f - dy) + r(ny, sx) * (1.f - dx)*dy + r(ny, nx)*dx * dy, imgPtr->r(i, j));
convertTo(g(sy, sx) * (1.f - dx) * (1.f - dy) + g(sy, nx)*dx * (1.f - dy) + g(ny, sx) * (1.f - dx)*dy + g(ny, nx)*dx * dy, imgPtr->g(i, j));
convertTo(b(sy, sx) * (1.f - dx) * (1.f - dy) + b(sy, nx)*dx * (1.f - dy) + b(ny, sx) * (1.f - dx)*dy + b(ny, nx)*dx * dy, imgPtr->b(i, j));
}
}
} else {
// This case should never occur!
for (int i = 0; i < nh; i++) {
for (int j = 0; j < nw; j++) {
imgPtr->r(i, j) = 0;
imgPtr->g(i, j) = 0;
imgPtr->b(i, j) = 0;
}
}
}
}
void hflip () override
{
int width2 = width / 2;
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height; i++)
for (int j = 0; j < width2; j++) {
float temp;
int x = width - 1 - j;
temp = r(i, j);
r(i, j) = r(i, x);
r(i, x) = temp;
temp = g(i, j);
g(i, j) = g(i, x);
g(i, x) = temp;
temp = b(i, j);
b(i, j) = b(i, x);
b(i, x) = temp;
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
void vflip () override
{
int height2 = height / 2;
#ifdef _OPENMP
// difficult to find a cutoff value where parallelization is counter productive because of processor's data cache collision...
bool bigImage = width > 32 && height > 50;
#pragma omp parallel for schedule(static) if(bigImage)
#endif
for (int i = 0; i < height2; i++)
for (int j = 0; j < width; j++) {
T tempR, tempG, tempB;
int y = height - 1 - i;
tempR = r(i, j);
r(i, j) = r(y, j);
r(y, j) = tempR;
tempG = g(i, j);
g(i, j) = g(y, j);
g(y, j) = tempG;
tempB = b(i, j);
b(i, j) = b(y, j);
b(y, j) = tempB;
}
#ifdef _OPENMP
static_cast<void>(bigImage); // to silence cppcheck warning
#endif
}
void calcGrayscaleHist(unsigned int *hist16) const
{
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
unsigned short rIdx, gIdx, bIdx;
convertTo(r(row, col), rIdx);
convertTo(g(row, col), gIdx);
convertTo(b(row, col), bIdx);
hist16[rIdx]++;
hist16[gIdx] += 2; // Bayer 2x green correction
hist16[bIdx]++;
}
}
void computeAutoHistogram (LUTu & histogram, int& histcompr) const
{
histcompr = 3;
histogram(65536 >> histcompr);
histogram.clear();
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
histogram[igammasrgb (r_) >> histcompr]++;
histogram[igammasrgb (g_) >> histcompr]++;
histogram[igammasrgb (b_) >> histcompr]++;
}
}
void computeHistogramAutoWB (double &avg_r, double &avg_g, double &avg_b, int &n, LUTu &histogram, const int compression) const override
{
histogram.clear();
avg_r = avg_g = avg_b = 0.;
n = 0;
for (unsigned int i = 0; i < (unsigned int)(height); i++)
for (unsigned int j = 0; j < (unsigned int)(width); j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
int rtemp = igammasrgb (r_);
int gtemp = igammasrgb (g_);
int btemp = igammasrgb (b_);
histogram[rtemp >> compression]++;
histogram[gtemp >> compression] += 2;
histogram[btemp >> compression]++;
// autowb computation
if (r_ > 64000.f || g_ > 64000.f || b_ > 64000.f) {
continue;
}
avg_r += double(r_);
avg_g += double(g_);
avg_b += double(b_);
n++;
}
}
void getAutoWBMultipliers (double &rm, double &gm, double &bm) const override
{
double avg_r = 0.;
double avg_g = 0.;
double avg_b = 0.;
int n = 0;
//int p = 6;
for (unsigned int i = 0; i < (unsigned int)(height); i++)
for (unsigned int j = 0; j < (unsigned int)(width); j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
if (r_ > 64000.f || g_ > 64000.f || b_ > 64000.f) {
continue;
}
avg_r += double(r_);
avg_g += double(g_);
avg_b += double(b_);
n++;
}
rm = avg_r / double(n);
gm = avg_g / double(n);
bm = avg_b / double(n);
}
void transformPixel (int x, int y, int tran, int& tx, int& ty) const
{
if (!tran) {
tx = x;
ty = y;
return;
}
int W = width;
int H = height;
int sw = W, sh = H;
if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) {
sw = H;
sh = W;
}
int ppx = x, ppy = y;
if (tran & TR_HFLIP) {
ppx = sw - 1 - x;
}
if (tran & TR_VFLIP) {
ppy = sh - 1 - y;
}
tx = ppx;
ty = ppy;
if ((tran & TR_ROT) == TR_R180) {
tx = W - 1 - ppx;
ty = H - 1 - ppy;
} else if ((tran & TR_ROT) == TR_R90) {
tx = ppy;
ty = H - 1 - ppx;
} else if ((tran & TR_ROT) == TR_R270) {
tx = W - 1 - ppy;
ty = ppx;
}
}
void getSpotWBData (double &reds, double &greens, double &blues, int &rn, int &gn, int &bn,
std::vector<Coord2D> &red, std::vector<Coord2D> &green, std::vector<Coord2D> &blue,
int tran) const override
{
int x;
int y;
reds = 0, greens = 0, blues = 0;
rn = 0, gn = 0, bn = 0;
for (size_t i = 0; i < red.size(); i++) {
transformPixel (red[i].x, red[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->r(y, x), v);
reds += double(v);
rn++;
}
transformPixel (green[i].x, green[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->g(y, x), v);
greens += double(v);
gn++;
}
transformPixel (blue[i].x, blue[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->b(y, x), v);
blues += double(v);
bn++;
}
}
}
void getPipetteData (T &valueR, T &valueG, T &valueB, int posX, int posY, const int squareSize, int tran) const
{
int x;
int y;
float accumulatorR = 0.f; // using float to avoid range overflow; -> please creates specialization if necessary
float accumulatorG = 0.f; // "
float accumulatorB = 0.f; // "
unsigned long int n = 0;
int halfSquare = squareSize / 2;
transformPixel (posX, posY, tran, x, y);
for (int iy = y - halfSquare; iy < y - halfSquare + squareSize; ++iy) {
for (int ix = x - halfSquare; ix < x - halfSquare + squareSize; ++ix) {
if (ix >= 0 && iy >= 0 && ix < width && iy < height) {
accumulatorR += float(this->r(iy, ix));
accumulatorG += float(this->g(iy, ix));
accumulatorB += float(this->b(iy, ix));
++n;
}
}
}
valueR = n ? T(accumulatorR / float(n)) : T(0);
valueG = n ? T(accumulatorG / float(n)) : T(0);
valueB = n ? T(accumulatorB / float(n)) : T(0);
}
void readData (FILE *f)
{
for (int i = 0; i < height; i++) {
if (fread(r(i), sizeof(T), width, f) < static_cast<size_t>(width)) {
break;
}
}
for (int i = 0; i < height; i++) {
if (fread(g(i), sizeof(T), width, f) < static_cast<size_t>(width)) {
break;
}
}
for (int i = 0; i < height; i++) {
if (fread(b(i), sizeof(T), width, f) < static_cast<size_t>(width)) {
break;
}
}
}
void writeData (FILE *f) const
{
for (int i = 0; i < height; i++) {
fwrite (r(i), sizeof(T), width, f);
}
for (int i = 0; i < height; i++) {
fwrite (g(i), sizeof(T), width, f);
}
for (int i = 0; i < height; i++) {
fwrite (b(i), sizeof(T), width, f);
}
}
};
// --------------------------------------------------------------------
// Chunky order classes
// --------------------------------------------------------------------
template <class T>
class ChunkyPtr
{
private:
T* ptr;
ssize_t width;
public:
#if CHECK_BOUNDS
size_t width_, height_;
#endif
#if CHECK_BOUNDS
ChunkyPtr() : ptr (NULL), width(-1), width_(0), height_(0) {}
#else
ChunkyPtr() : ptr (nullptr), width(-1) {}
#endif
void init(T* base, ssize_t w = -1)
{
ptr = base;
width = w;
}
void swap (ChunkyPtr<T> &other)
{
T* tmpsPtr = other.ptr;
other.ptr = ptr;
ptr = tmpsPtr;
ssize_t tmpWidth = other.width;
other.width = width;
width = tmpWidth;
#if CHECK_BOUNDS
size_t tmp = other.width_;
other.width_ = width_;
width_ = tmp;
tmp = other.height_;
other.height_ = height_;
height_ = tmp;
#endif
}
// Will send back the start of a row, starting with a red, green or blue value
T* operator() (size_t row) const
{
#if CHECK_BOUNDS
assert (row < height_);
#endif
return &ptr[3 * (row * width)];
}
// Will send back a value at a given row, col position
T& operator() (size_t row, size_t col)
{
#if CHECK_BOUNDS
assert (row < height_ && col < width_);
#endif
return ptr[3 * (row * width + col)];
}
const T operator() (size_t row, size_t col) const
{
#if CHECK_BOUNDS
assert (row < height_ && col < width_);
#endif
return ptr[3 * (row * width + col)];
}
};
template <class T>
class ChunkyRGBData : virtual public ImageDatas
{
private:
AlignedBuffer<T> abData;
public:
T* data;
ChunkyPtr<T> r;
ChunkyPtr<T> g;
ChunkyPtr<T> b;
ChunkyRGBData() : data (nullptr) {}
ChunkyRGBData(int w, int h) : data (nullptr)
{
allocate(w, h);
}
/** Returns the pixel data, in r/g/b order from top left to bottom right continuously.
* @return a pointer to the pixel data */
const T* getData ()
{
return data;
}
void swap(ChunkyRGBData<T> &other)
{
abData.swap(other.abData);
r.swap(other.r);
g.swap(other.g);
b.swap(other.b);
T* tmpData = other.data;
other.data = data;
data = tmpData;
int tmpWidth = other.width;
other.width = width;
width = tmpWidth;
int tmpHeight = other.height;
other.height = height;
height = tmpHeight;
#if CHECK_BOUNDS
r.width_ = width;
r.height_ = height;
g.width_ = width;
g.height_ = height;
b.width_ = width;
b.height_ = height;
#endif
}
/*
* If any of the required allocation fails, "width" and "height" are set to -1, and all remaining buffer are freed
* Can be safely used to reallocate an existing image or to free up it's memory with "allocate (0,0);"
*/
void allocate (int W, int H) override
{
if (W == width && H == height) {
return;
}
width = W;
height = H;
#if CHECK_BOUNDS
r.width_ = width;
r.height_ = height;
g.width_ = width;
g.height_ = height;
b.width_ = width;
b.height_ = height;
#endif
abData.resize((size_t)width * (size_t)height * (size_t)3);
if (!abData.isEmpty()) {
data = abData.data;
r.init(data, width);
g.init(data + 1, width);
b.init(data + 2, width);
} else {
data = nullptr;
r.init(nullptr);
g.init(nullptr);
b.init(nullptr);
width = height = -1;
#if CHECK_BOUNDS
r.width_ = r.height_ = -1;
g.width_ = g.height_ = -1;
b.width_ = b.height_ = -1;
#endif
}
}
/** Copy the data to another ChunkyRGBData */
void copyData(ChunkyRGBData<T> *dest) const
{
assert (dest != nullptr);
// Make sure that the size is the same, reallocate if necessary
dest->allocate(width, height);
if (dest->width == -1) {
printf("ERROR: ChunkyRGBData::copyData >>> allocation failed!\n");
return;
}
memcpy (dest->data, data, 3 * width * height * sizeof(T));
}
void rotate (int deg) override
{
if (deg == 90) {
ChunkyRGBData<T> rotatedImg(height, width); // New image, rotated
for (int ny = 0; ny < rotatedImg.height; ny++) {
int ox = ny;
int oy = height - 1;
for (int nx = 0; nx < rotatedImg.width; nx++) {
rotatedImg.r(ny, nx) = r(oy, ox);
rotatedImg.g(ny, nx) = g(oy, ox);
rotatedImg.b(ny, nx) = b(oy, ox);
--oy;
}
}
swap(rotatedImg);
} else if (deg == 270) {
ChunkyRGBData<T> rotatedImg(height, width); // New image, rotated
for (int nx = 0; nx < rotatedImg.width; nx++) {
int oy = nx;
int ox = width - 1;
for (int ny = 0; ny < rotatedImg.height; ny++) {
rotatedImg.r(ny, nx) = r(oy, ox);
rotatedImg.g(ny, nx) = g(oy, ox);
rotatedImg.b(ny, nx) = b(oy, ox);
--ox;
}
}
swap(rotatedImg);
} else if (deg == 180) {
int height2 = height / 2 + (height & 1);
// Maybe not sufficiently optimized, but will do what it has to do
for (int i = 0; i < height2; i++) {
for (int j = 0; j < width; j++) {
T tmp;
int x = width - 1 - j;
int y = height - 1 - i;
tmp = r(i, j);
r(i, j) = r(y, x);
r(y, x) = tmp;
tmp = g(i, j);
g(i, j) = g(y, x);
g(y, x) = tmp;
tmp = b(i, j);
b(i, j) = b(y, x);
b(y, x) = tmp;
}
}
}
}
template <class IC>
void resizeImgTo (int nw, int nh, TypeInterpolation interp, IC *imgPtr) const
{
//printf("resizeImgTo: resizing %s image data (%d x %d) to %s (%d x %d)\n", getType(), width, height, imgPtr->getType(), imgPtr->width, imgPtr->height);
if (width == nw && height == nh) {
// special case where no resizing is necessary, just type conversion....
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
convertTo(r(i, j), imgPtr->r(i, j));
convertTo(g(i, j), imgPtr->g(i, j));
convertTo(b(i, j), imgPtr->b(i, j));
}
}
} else if (interp == TI_Nearest) {
for (int i = 0; i < nh; i++) {
int ri = i * height / nh;
for (int j = 0; j < nw; j++) {
int ci = j * width / nw;
convertTo(r(ri, ci), imgPtr->r(i, j));
convertTo(g(ri, ci), imgPtr->g(i, j));
convertTo(b(ri, ci), imgPtr->b(i, j));
}
}
} else if (interp == TI_Bilinear) {
for (int i = 0; i < nh; i++) {
int sy = i * height / nh;
if (sy >= height) {
sy = height - 1;
}
float dy = float(i) * float(height) / float(nh) - float(sy);
int ny = sy + 1;
if (ny >= height) {
ny = sy;
}
for (int j = 0; j < nw; j++) {
int sx = j * width / nw;
if (sx >= width) {
sx = width;
}
float dx = float(j) * float(width) / float(nw) - float(sx);
int nx = sx + 1;
if (nx >= width) {
nx = sx;
}
T valR = r(sy, sx) * (1.f - dx) * (1.f - dy) + r(sy, nx) * dx * (1.f - dy) + r(ny, sx) * (1.f - dx) * dy + r(ny, nx) * dx * dy;
T valG = g(sy, sx) * (1.f - dx) * (1.f - dy) + g(sy, nx) * dx * (1.f - dy) + g(ny, sx) * (1.f - dx) * dy + g(ny, nx) * dx * dy;
T valB = b(sy, sx) * (1.f - dx) * (1.f - dy) + b(sy, nx) * dx * (1.f - dy) + b(ny, sx) * (1.f - dx) * dy + b(ny, nx) * dx * dy;
convertTo(valR, imgPtr->r(i, j));
convertTo(valG, imgPtr->g(i, j));
convertTo(valB, imgPtr->b(i, j));
}
}
} else {
// This case should never occur!
for (int i = 0; i < nh; i++) {
for (int j = 0; j < nw; j++) {
imgPtr->r(i, j) = 0;
imgPtr->g(i, j) = 0;
imgPtr->b(i, j) = 0;
}
}
}
}
void hflip () override
{
int width2 = width / 2;
for (int i = 0; i < height; i++) {
int offsetBegin = 0;
int offsetEnd = 3 * (width - 1);
for (int j = 0; j < width2; j++) {
T temp;
temp = data[offsetBegin];
data[offsetBegin] = data[offsetEnd];
data[offsetEnd] = temp;
++offsetBegin;
++offsetEnd;
temp = data[offsetBegin];
data[offsetBegin] = data[offsetEnd];
data[offsetEnd] = temp;
++offsetBegin;
++offsetEnd;
temp = data[offsetBegin];
data[offsetBegin] = data[offsetEnd];
data[offsetEnd] = temp;
++offsetBegin;
offsetEnd -= 5;
}
}
}
void vflip () override
{
AlignedBuffer<T> lBuffer(3 * width);
T* lineBuffer = lBuffer.data;
size_t size = 3 * width * sizeof(T);
for (int i = 0; i < height / 2; i++) {
T *lineBegin1 = r(i);
T *lineBegin2 = r(height - 1 - i);
memcpy (lineBuffer, lineBegin1, size);
memcpy (lineBegin1, lineBegin2, size);
memcpy (lineBegin2, lineBuffer, size);
}
}
void calcGrayscaleHist(unsigned int *hist16) const
{
for (int row = 0; row < height; row++)
for (int col = 0; col < width; col++) {
unsigned short rIdx, gIdx, bIdx;
convertTo(r(row, col), rIdx);
convertTo(g(row, col), gIdx);
convertTo(b(row, col), bIdx);
hist16[rIdx]++;
hist16[gIdx] += 2; // Bayer 2x green correction
hist16[bIdx]++;
}
}
void computeAutoHistogram (LUTu & histogram, int& histcompr) const
{
histcompr = 3;
histogram(65536 >> histcompr);
histogram.clear();
for (int i = 0; i < height; i++)
for (int j = 0; j < width; j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
histogram[igammasrgb (r_) >> histcompr]++;
histogram[igammasrgb (g_) >> histcompr]++;
histogram[igammasrgb (b_) >> histcompr]++;
}
}
void computeHistogramAutoWB (double &avg_r, double &avg_g, double &avg_b, int &n, LUTu &histogram, const int compression) const override
{
histogram.clear();
avg_r = avg_g = avg_b = 0.;
n = 0;
for (unsigned int i = 0; i < (unsigned int)(height); i++)
for (unsigned int j = 0; j < (unsigned int)(width); j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
int rtemp = igammasrgb (r_);
int gtemp = igammasrgb (g_);
int btemp = igammasrgb (b_);
histogram[rtemp >> compression]++;
histogram[gtemp >> compression] += 2;
histogram[btemp >> compression]++;
// autowb computation
if (r_ > 64000.f || g_ > 64000.f || b_ > 64000.f) {
continue;
}
avg_r += double(r_);
avg_g += double(g_);
avg_b += double(b_);
n++;
}
}
void getAutoWBMultipliers (double &rm, double &gm, double &bm) const override
{
double avg_r = 0.;
double avg_g = 0.;
double avg_b = 0.;
int n = 0;
//int p = 6;
for (unsigned int i = 0; i < (unsigned int)(height); i++)
for (unsigned int j = 0; j < (unsigned int)(width); j++) {
float r_, g_, b_;
convertTo<T, float>(r(i, j), r_);
convertTo<T, float>(g(i, j), g_);
convertTo<T, float>(b(i, j), b_);
if (r_ > 64000.f || g_ > 64000.f || b_ > 64000.f) {
continue;
}
avg_r += double(r_);
avg_g += double(g_);
avg_b += double(b_);
n++;
}
rm = avg_r / double(n);
gm = avg_g / double(n);
bm = avg_b / double(n);
}
void transformPixel (int x, int y, int tran, int& tx, int& ty) const
{
if (!tran) {
tx = x;
ty = y;
return;
}
int W = width;
int H = height;
int sw = W, sh = H;
if ((tran & TR_ROT) == TR_R90 || (tran & TR_ROT) == TR_R270) {
sw = H;
sh = W;
}
int ppx = x, ppy = y;
if (tran & TR_HFLIP) {
ppx = sw - 1 - x;
}
if (tran & TR_VFLIP) {
ppy = sh - 1 - y;
}
tx = ppx;
ty = ppy;
if ((tran & TR_ROT) == TR_R180) {
tx = W - 1 - ppx;
ty = H - 1 - ppy;
} else if ((tran & TR_ROT) == TR_R90) {
tx = ppy;
ty = H - 1 - ppx;
} else if ((tran & TR_ROT) == TR_R270) {
tx = W - 1 - ppy;
ty = ppx;
}
}
void getSpotWBData (double &reds, double &greens, double &blues, int &rn, int &gn, int &bn,
std::vector<Coord2D> &red, std::vector<Coord2D> &green, std::vector<Coord2D> &blue,
int tran) const override
{
int x;
int y;
reds = 0, greens = 0, blues = 0;
rn = 0, gn = 0, bn = 0;
for (size_t i = 0; i < red.size(); i++) {
transformPixel (red[i].x, red[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->r(y, x), v);
reds += double(v);
rn++;
}
transformPixel (green[i].x, green[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->g(y, x), v);
greens += double(v);
gn++;
}
transformPixel (blue[i].x, blue[i].y, tran, x, y);
if (x >= 0 && y >= 0 && x < width && y < height) {
float v;
convertTo<T, float>(this->b(y, x), v);
blues += double(v);
bn++;
}
}
}
void readData (FILE *f)
{
for (int i = 0; i < height; i++) {
if (fread(r(i), sizeof(T), 3 * width, f) < 3 * static_cast<size_t>(width)) {
break;
}
}
}
void writeData (FILE *f) const
{
for (int i = 0; i < height; i++) {
fwrite (r(i), sizeof(T), 3 * width, f);
}
}
};
// --------------------------------------------------------------------
/** @brief This class represents an image (the result of the image processing) */
class IImage : virtual public ImageDimensions
{
public:
virtual ~IImage() {}
/** @brief Returns a mutex that can is useful in many situations. No image operations shuold be performed without locking this mutex.
* @return The mutex */
virtual MyMutex& getMutex () = 0;
virtual cmsHPROFILE getProfile () const = 0;
/** @brief Returns the bits per pixel of the image.
* @return The bits per pixel of the image */
virtual int getBitsPerPixel () const = 0;
/** @brief Saves the image to file. It autodetects the format (jpg, tif, png are supported).
* @param fname is the name of the file
@return the error code, 0 if none */
virtual int saveToFile (const Glib::ustring &fname) const = 0;
/** @brief Saves the image to file in a png format.
* @param fname is the name of the file
* @param compression is the amount of compression (0-6), -1 corresponds to the default
* @param bps can be 8 or 16 depending on the bits per pixels the output file will have
@return the error code, 0 if none */
virtual int saveAsPNG (const Glib::ustring &fname, int bps = -1) const = 0;
/** @brief Saves the image to file in a jpg format.
* @param fname is the name of the file
* @param quality is the quality of the jpeg (0...100), set it to -1 to use default
@return the error code, 0 if none */
virtual int saveAsJPEG (const Glib::ustring &fname, int quality = 100, int subSamp = 3 ) const = 0;
/** @brief Saves the image to file in a tif format.
* @param fname is the name of the file
* @param bps can be 8 or 16 depending on the bits per pixels the output file will have
* @param isFloat is true for saving float images. Will be ignored by file format not supporting float data
@return the error code, 0 if none */
virtual int saveAsTIFF (const Glib::ustring &fname, int bps = -1, bool isFloat = false, bool uncompressed = false) const = 0;
/** @brief Sets the progress listener if you want to follow the progress of the image saving operations (optional).
* @param pl is the pointer to the class implementing the ProgressListener interface */
virtual void setSaveProgressListener (ProgressListener* pl) = 0;
/** @brief Free the image */
virtual void free () = 0;
};
/** @brief This class represents an image having a float pixel planar representation.
The planes are stored as two dimensional arrays. All the rows have a 128 bits alignment. */
class IImagefloat : public IImage, public PlanarRGBData<float>
{
public:
~IImagefloat() override {}
};
/** @brief This class represents an image having a classical 8 bits/pixel representation */
class IImage8 : public IImage, public ChunkyRGBData<unsigned char>
{
public:
~IImage8() override {}
};
/** @brief This class represents an image having a 16 bits/pixel planar representation.
The planes are stored as two dimensional arrays. All the rows have a 128 bits alignment. */
class IImage16 : public IImage, public PlanarRGBData<unsigned short>
{
public:
~IImage16() override {}
};
}